1
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
4
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
5
|
Wang X, Yan B, Li H, Yuan J, Guo J, Wang S, Dai P, Liu X. Reprogrammed IDO-Induced Immunosuppressive Microenvironment Synergizes with Immunogenic Magnetothermodynamics for Improved Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30671-30684. [PMID: 38843203 DOI: 10.1021/acsami.4c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Indoleamine 2,3-dioxygenase (IDO), highly expressed in hepatocellular carcinoma (HCC), plays a pivotal role in creating an immune-suppressive tumor microenvironment. Inhibiting IDO activity has emerged as a promising immunotherapeutic strategy; however, the delivery of IDO inhibitors to the tumor site is constrained, limiting their therapeutic efficacy. In this study, we developed a magnetic vortex nanodelivery system for the targeted delivery of the IDO inhibitor NLG919, integrated with magnetic hyperthermia therapy to reverse the immune-suppressive microenvironment of liver cancer and inhibit tumor growth. This system comprises thermoresponsive polyethylenimine-coated ferrimagnetic vortex-domain iron oxide nanorings (PI-FVIOs) loaded with NLG919 (NLG919/PI-FVIOs). Under thermal effects, NLG919 can be precisely released from the delivery system, counteracting IDO-mediated immune suppression and synergizing with NLG919/PI-FVIOs-mediated magnetothermodynamic (MTD) therapy-induced immunogenic cell death (ICD), resulting in effective HCC suppression. In vivo studies demonstrate that this combination therapy significantly inhibits tumor growth and metastasis by enhancing the accumulation of cytotoxic T lymphocytes and suppressing regulatory T cells within the tumor. Overall, our findings reveal that NLG919/PI-FVIOs can induce a potent antitumor immune response by disrupting the IDO pathway and activating the ICD, offering a promising therapeutic avenue for HCC treatment.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Animals
- Tumor Microenvironment/drug effects
- Mice
- Humans
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Hyperthermia, Induced
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/drug therapy
- Cell Line, Tumor
- Mice, Inbred BALB C
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Imidazoles
- Isoindoles
Collapse
Affiliation(s)
- Xun Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Shaanxi Lifegen Co., Ltd., Xi'an, Shaanxi 712000, China
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hugang Li
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianlan Yuan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingyi Guo
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Penggao Dai
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Shaanxi Lifegen Co., Ltd., Xi'an, Shaanxi 712000, China
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
6
|
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A, Parenti A. Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process. Pharmaceuticals (Basel) 2024; 17:558. [PMID: 38794128 PMCID: PMC11124529 DOI: 10.3390/ph17050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Aurora Chinnici
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
7
|
Jin E, Yin Z, Zheng X, Yan C, Xu K, Eunice FY, Gao Y. Potential of Targeting TDO2 as the Lung Adenocarcinoma Treatment. J Proteome Res 2024; 23:1341-1350. [PMID: 38421152 DOI: 10.1021/acs.jproteome.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Tryptophan catabolism plays an important role in the metabolic reconnection in cancer cells to support special demands of tumor initiation and progression. The catabolic product of the tryptophan pathway, kynurenine, has the capability of suppressing the immune reactions of tumor cells. In this study, we conducted internal and external cohort studies to reveal the importance of tryptophan 2,3-dioxygenase (TDO) for lung adenocarcinoma (LUAD). Our study further demonstrated that the TDO2 expression was associated with the proliferation, survival, and invasion of LUAD cells, and targeting TDO2 for LUAD tumors could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Er Jin
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Zhidong Yin
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 Zhejiang Province, China
| | - Xiuxiu Zheng
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Chenhong Yan
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Kai Xu
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Fouejio Yemele Eunice
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310002 Zhejiang Province, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Major Chronic Disease in the Elderly, Hangzhou 310006 Zhejiang Province, China
| |
Collapse
|
8
|
Samanta S, Sengupta S, Biswas S, Ghosh S, Barman S, Dey A. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity. J Am Chem Soc 2023; 145:26477-26486. [PMID: 37993986 DOI: 10.1021/jacs.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Heme dioxygenases oxidize the indole ring of tryptophan to kynurenine which is the first step in the biosynthesis of several important biomolecules like NAD, xanthurenic acid, and picolinic acid. A ferrous heme dioxygen adduct (or FeIII-O2•-) is the oxidant, and both the atoms of O2 are inserted in the product and its catalytic function has been difficult to emulate as it is complicated by competing rapid reactions like auto-oxidation and/or formation of the μ-oxo dimer. In situ resonance Raman spectroscopy technique, SERRS-RDE, is used to probe the species accumulated during electrochemical ORR catalyzed by site-isolated imidazole-bound iron porphyrin installed on a self-assembled monolayer covered electrode. These in situ SERRS-RDE data using labeled O2 show that indeed a FeIII-O2•- species accumulate on the electrode during ORR between -0.05 and -0.30 V versus Ag/AgCl (satd. KCl) and is reduced by proton coupled electron transfer to a FeIII-OOH species which, on the other hand, builds up on the electrode between -0.20 and -0.40 V versus Ag/AgCl (satd. KCl). This FeIII-OOH species then gives way to a FeIV═O species, which accumulates at -0.50 V versus Ag/AgCl (satd. KCl). When 2,3-dimethylindole is present in the solution and the applied potential is held in the range where FeIII-O2•- species accumulate, it gets oxidized to N-(2-acetylphenyl)acetamide retaining both the oxygens from O2 mimicking the reaction of heme dioxygenases. Turnover numbers more than 104 are recorded, establishing this imidazole-bound ferrous porphyrin as a functional model of heme dioxygenases.
Collapse
Affiliation(s)
- Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Srijan Sengupta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Saptarshi Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sucheta Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
9
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Sakai D, Konishi Y, Nishiyama T. Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells 2023; 12:1087. [PMID: 37048160 PMCID: PMC10093447 DOI: 10.3390/cells12071087] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies show that genetic and environmental factors contribute to the onset and progression of neurodevelopmental disorders. Maternal immune activation (MIA) during gestation is considered one of the major environmental factors driving this process. The kynurenine pathway (KP) is a major route of the essential amino acid L-tryptophan (Trp) catabolism in mammalian cells. Activation of the KP following neuro-inflammation can generate various endogenous neuroactive metabolites that may impact brain functions and behaviors. Additionally, neurotoxic metabolites and excitotoxicity cause long-term changes in the trophic support, glutamatergic system, and synaptic function following KP activation. Therefore, investigating the role of KP metabolites during neurodevelopment will likely promote further understanding of additional pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). In this review, we describe the changes in KP metabolism in the brain during pregnancy and represent how maternal inflammation and genetic factors influence the KP during development. We overview the patients with ASD clinical data and animal models designed to verify the role of perinatal KP elevation in long-lasting biochemical, neuropathological, and behavioral deficits later in life. Our review will help shed light on new therapeutic strategies and interventions targeting the KP for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yukio Imamura
- Department of Architecture and Architectual Systems Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyotanabe 619-0225, Japan
- Healthcare and Medical Data Multi-Level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
10
|
Grobben Y, den Ouden JE, Aguado C, van Altena AM, Kraneveld AD, Zaman GJR. Amino Acid-Metabolizing Enzymes in Advanced High-Grade Serous Ovarian Cancer Patients: Value of Ascites as Biomarker Source and Role for IL4I1 and IDO1. Cancers (Basel) 2023; 15:cancers15030893. [PMID: 36765849 PMCID: PMC9913486 DOI: 10.3390/cancers15030893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanisms contributing to immune suppression in ovarian cancer are not well understood, hampering the successful application of immunotherapy. Amino acid-metabolizing enzymes are known to contribute to the immune-hostile environment of various tumors through depletion of amino acids and production of immunosuppressive metabolites. We aimed to collectively evaluate the activity of these enzymes in high-grade serous ovarian cancer patients by performing targeted metabolomics on plasma and ascites samples. Whereas no indication was found for enhanced l-arginine or l-glutamine metabolism by immunosuppressive enzymes in ovarian cancer patients, metabolism of l-tryptophan by indoleamine 2,3-dioxygenase 1 (IDO1) was significantly elevated compared to healthy controls. Moreover, high levels of l-phenylalanine- and l-tyrosine-derived metabolites associated with interleukin 4 induced 1 (IL4I1) activity were found in ovarian cancer ascites samples. While l-tryptophan is a major substrate of both IDO1 and IL4I1, only its enhanced conversion into l-kynurenine by IDO1 could be detected, despite the observed activity of IL4I1 on its other substrates. In ascites of ovarian cancer patients, metabolite levels were higher compared to those in plasma, demonstrating the value of utilizing this fluid for biomarker identification. Finally, elevated metabolism of l-phenylalanine and l-tyrosine by IL4I1 correlated with disease stage, pointing towards a potential role for IL4I1 in ovarian cancer progression.
Collapse
Affiliation(s)
| | - Judith E. den Ouden
- Radboud Institute for Health Sciences, Radboud University Medical Center, Obstetrics and Gynecology, 6525 GA Nijmegen, The Netherlands
| | - Cristina Aguado
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | - Anne M. van Altena
- Radboud Institute for Health Sciences, Radboud University Medical Center, Obstetrics and Gynecology, 6525 GA Nijmegen, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Guido J. R. Zaman
- Oncolines B.V., 5349 AB Oss, The Netherlands
- Correspondence: ; Tel.: +31-412-700501
| |
Collapse
|
11
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
12
|
Badawy AB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep 2022; 42:BSR20221682. [PMID: 36286592 PMCID: PMC9653095 DOI: 10.1042/bsr20221682] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Tumours utilise tryptophan (Trp) and its metabolites to promote their growth and evade host defences. They recruit Trp through up-regulation of Trp transporters, and up-regulate key enzymes of Trp degradation and down-regulate others. Thus, Trp 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase 1 (IDO1), IDO2, N'-formylkynurenine formamidase (FAMID) and Kyn aminotransferase 1 (KAT1) are all up-regulated in many cancer types, whereas Kyn monooxygenase (KMO), kynureninase (KYNU), 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD) and quinolinate phosphoribosyltransferase (QPRT) are up-regulated in a few, but down-regulated in many, cancers. This results in accumulation of the aryl hydrocarbon receptor (AhR) ligand kynurenic acid and in depriving the host of NAD+ by blocking its synthesis from quinolinic acid. The host loses more NAD+ by up-regulation of the NAD+-consuming poly (ADP-ribose) polymerases (PARPs) and the protein acetylaters SIRTs. The nicotinamide arising from PARP and SIRT activation can be recycled in tumours to NAD+ by the up-regulated key enzymes of the salvage pathway. Up-regulation of the Trp transporters SLC1A5 and SLC7A5 is associated mostly with that of TDO2 = FAMID > KAT1 > IDO2 > IDO1. Tumours down-regulate enzymes of serotonin synthesis, thereby removing competition for Trp from the serotonin pathway. Strategies for combating tumoral immune escape could involve inhibition of Trp transport into tumours, inhibition of TDO and IDOs, inhibition of FAMID, inhibition of KAT and KYNU, inhibition of NMPRT and NMNAT, inhibition of the AhR, IL-4I1, PARPs and SIRTs, and by decreasing plasma free Trp availability to tumours by albumin infusion or antilipolytic agents and inhibition of glucocorticoid induction of TDO by glucocorticoid antagonism.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
13
|
Hu Y, Liu Z, Tang H. Tryptophan 2,3-dioxygenase may be a potential prognostic biomarker and immunotherapy target in cancer: A meta-analysis and bioinformatics analysis. Front Oncol 2022; 12:977640. [PMID: 36263228 PMCID: PMC9574363 DOI: 10.3389/fonc.2022.977640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tryptophan 2,3-dioxygenase (TDO2) is one of the emerging immune checkpoints. Meanwhile, TDO2 is also a key enzyme in the tryptophan (Trp)–kynurenine (Kyn) signaling pathway. Many studies have evaluated that TDO2 is highly expressed in various malignant tumor patients and plays a prognostic role. However, the sample size of a single prognostic study was small, and the results were still controversial. Methods We used Stata software and referenced the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement to conduct a meta-analysis on TDO2 and its clinical features and prognosis. We searched the PubMed, Cochrane Library, and Web of Science databases to find publications concerning TDO2 expression in malignant tumor patients up to June 2021. We used the Newcastle–Ottawa Scale (NOS) to evaluate the bias risk of the included literature. Risk ratios (RRs) and hazard ratios (HRs) were used for clinical outcomes, specifically overall survival (OS) and progression-free survival (PFS). In addition, we used data from The Cancer Genome Atlas (TCGA) to verify our conclusions. Results Nine studies including 667 patients with malignant tumors were identified. Our results suggested that overexpression of TDO2 was statistically correlated with poor OS and poor PFS (HR = 2.58, 95% CI = 1.52–4.40, p = 0.0005; HR = 2.38, 95% CI = 0.99–5.73, p = 0.05). In terms of clinicopathological characteristics, the overexpression level of TDO2 was statistically correlated with TNM (tumor–node–metastasis) stage (RR = 0.65, 95% CI = 0.48–0.89, p = 0.002) and regional lymph node metastasis (RR = 0.76, 95% CI = 0.59–0.99, p = 0.04). Subgroup analysis revealed the potential sources of heterogeneity. In addition, bioinformatics studies suggested that the level of TDO2 was high in malignant tumors and higher in cancer tissue than in matched paracarcinoma tissue. Gene enrichment analysis showed that TDO2 was closely related to immune response. Conclusion Overall, TDO2 may be a biomarker for the survival and prognosis of patients with malignant tumors and a potential therapeutic target in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=260442, identifier (CRD42021260442)
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Hui Tang,
| |
Collapse
|
14
|
Pallotta MT, Rossini S, Suvieri C, Coletti A, Orabona C, Macchiarulo A, Volpi C, Grohmann U. Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J 2022; 289:6099-6118. [PMID: 34145969 PMCID: PMC9786828 DOI: 10.1111/febs.16086] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T-cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information-including structural, biological, and functional evidence-on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells toward a highly immunoregulatory phenotype. With this state-of-the-art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.
Collapse
Affiliation(s)
| | - Sofia Rossini
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Chiara Suvieri
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Alice Coletti
- Department of Pharmaceutical SciencesUniversity of PerugiaItaly
| | - Ciriana Orabona
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | | | - Claudia Volpi
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Ursula Grohmann
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| |
Collapse
|
15
|
Qian M, Xia Y, Zhang G, Yu H, Cui Y. Research progress on microRNA-1258 in the development of human cancer. Front Oncol 2022; 12:1024234. [PMID: 36249037 PMCID: PMC9556982 DOI: 10.3389/fonc.2022.1024234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
microRNAs (miRNAs) are small endogenous RNAs composed of 20-22 nucleotides that do not encode proteins, which regulate the expression of downstream genes by targeting the 3' untranslated region of mRNA. Plentiful research has demonstrated that miRNAs participate in the initiation and development of diverse diseases and malignant tumors. miR-1258 exerts great influence on tumors, including tumor growth, distant metastasis, migration, invasion, chemosensitivity, cell glycolysis, apoptosis, and stemness. Interestingly, miR-1258 is a miRNA with explicit functions and has been investigated to act as a tumor suppressor in studies on various types of tumors. With accumulating research on miR-1258, it has been found to be used as a biomarker in the early diagnosis and prognosis prediction of tumor patients. In this review, we outline the development of miR-1258 research, describe its regulatory network, and discuss its roles in cancer. Additionally, we generalize the potential clinical applications of miR-1258. This review offers emerging perspectives and orientations for further comprehending the function of miR-1258 as a diagnostic and prognostic biomarker and potent therapeutic target in cancer.
Collapse
|
16
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
17
|
Nabeta R, Katselis GS, Chumala P, Dickinson R, Fernandez NJ, Meachem MD. Identification of potential plasma protein biomarkers for feline pancreatic carcinoma by liquid chromatography tandem mass spectrometry. Vet Comp Oncol 2022; 20:720-731. [PMID: 35514180 DOI: 10.1111/vco.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
In both humans and cats, pancreatic carcinoma is an aggressive cancer with a grave prognosis. Proteomics techniques have successfully identified several blood-based biomarkers of human pancreatic neoplasia. Thus, this study aims to investigate whether similar biomarkers can be identified in the plasma of cats with FePAC by using liquid chromatography tandem mass spectrometry (LC-MS/MS). To facilitate evaluation of the low abundance plasma proteome, a human-based immunodepletion device (MARS-2) was first validated for use with feline plasma. Marked reduction and/or complete removal of albumin and immunoglobulins was confirmed by analysis of electrophoretograms and mass spectral data. Subsequently, plasma collected from 9 cats with pancreatic carcinoma (FePAC), 10 cats with symptomatic pancreatitis, and 10 healthy control cats was immunodepleted and subjected to LC-MS/MS. Thirty-seven plasma proteins were found to be differentially expressed (p < .05 in one-way ANOVA, FC >2 in fold change analysis). Among these proteins, ETS variant transcription factor 4 (p < .05) was overexpressed, while gelsolin (p < .01), tryptophan 2,3-dioxygenase (p < .05), serpin family F member 1 (p < .01), apolipoprotein A-IV (p < .01) and phosphatidylinositol-glycan-specific phospholipase D (p < .05) were down-regulated in cats with FePAC. Further studies on these potential biomarkers are needed to investigate their diagnostic value.
Collapse
Affiliation(s)
- Rina Nabeta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan Dickinson
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole J Fernandez
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melissa D Meachem
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
19
|
Trézéguet V, Fatrouni H, Merched AJ. Immuno-Metabolic Modulation of Liver Oncogenesis by the Tryptophan Metabolism. Cells 2021; 10:cells10123469. [PMID: 34943977 PMCID: PMC8700200 DOI: 10.3390/cells10123469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic rewiring in tumor cells is a major hallmark of oncogenesis. Some of the oncometabolites drive suppressive and tolerogenic signals from the immune system, which becomes complicit to the advent and the survival of neoplasia. Tryptophan (TRP) catabolism through the kynurenine (KYN) pathway was reported to play immunosuppressive actions across many types of cancer. Extensive debate of whether the culprit of immunosuppression was the depletion of TRP or rather KYN accumulation in the tumor microenvironment has been ongoing for years. Results from clinical trials assessing the benefit of inhibiting key limiting enzymes of this pathway such as indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO2) failed to meet the expectations. Bearing in mind the complexity of the tumoral terrain and the existence of different cancers with IDO1/TDO2 expressing and non-expressing tumoral cells, here we present a comprehensive analysis of the TRP global metabolic hub and the driving potential of the process of oncogenesis with the main focus on liver cancers.
Collapse
|
20
|
Panitz V, Končarević S, Sadik A, Friedel D, Bausbacher T, Trump S, Farztdinov V, Schulz S, Sievers P, Schmidt S, Jürgenson I, Jung S, Kuhn K, Pflüger I, Sharma S, Wick A, Pfänder P, Selzer S, Vollmuth P, Sahm F, von Deimling A, Heiland I, Hopf C, Schulz-Knappe P, Pike I, Platten M, Wick W, Opitz CA. Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Am J Cancer Res 2021; 11:9217-9233. [PMID: 34646367 PMCID: PMC8490504 DOI: 10.7150/thno.60679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tryptophan (Trp)-catabolic enzymes (TCEs) produce metabolites that activate the aryl hydrocarbon receptor (AHR) and promote tumor progression and immunosuppression in glioblastoma. As therapies targeting TCEs or AHR become available, a better understanding of Trp metabolism is required. Methods: The combination of LC-MS/MS with chemical isobaric labeling enabled the simultaneous quantitative comparison of Trp and its amino group-bearing metabolites in multiple samples. We applied this method to the sera of a cohort of 43 recurrent glioblastoma patients and 43 age- and sex-matched healthy controls. Tumor volumes were measured in MRI data using an artificial neural network-based approach. MALDI MSI visualized Trp and its direct metabolite N-formylkynurenine (FK) in glioblastoma tissue. Analysis of scRNA-seq data was used to detect the presence of Trp metabolism and AHR activity in different cell types in glioblastoma. Results: Compared to healthy controls, glioblastoma patients showed decreased serum Trp levels. Surprisingly, the levels of Trp metabolites were also reduced. The decrease became smaller with more enzymatic steps between Trp and its metabolites, suggesting that Trp availability controls the levels of its systemic metabolites. High tumor volume associated with low systemic metabolite levels and low systemic kynurenine levels associated with worse overall survival. MALDI MSI demonstrated heterogeneity of Trp catabolism across glioblastoma tissues. Analysis of scRNA-seq data revealed that genes involved in Trp metabolism were expressed in almost all the cell types in glioblastoma and that most cell types, in particular macrophages and T cells, exhibited AHR activation. Moreover, high AHR activity associated with reduced overall survival in the glioblastoma TCGA dataset. Conclusion: The novel techniques we developed could support the identification of patients that may benefit from therapies targeting TCEs or AHR activation.
Collapse
|
21
|
Involvement of Kynurenine Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13205180. [PMID: 34680327 PMCID: PMC8533819 DOI: 10.3390/cancers13205180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The kynurenine pathway (KP) is a biochemical pathway that synthesizes the vital coenzyme, nicotinamide adenine dinucleotide (NAD+). In cancer, the KP is significantly activated, leading to tryptophan depletion and the production of downstream metabolites, which skews the immune response towards tumour tolerance. More specifically, advanced stage cancers that readily metastasize evidence the most dysregulation in KP enzymes, providing a clear link between the KP and cancer morbidity. Consequently, this provides the rationale for an attractive new drug discovery opportunity for adjuvant therapeutics targeting KP-mediated immune tolerance, which would greatly complement current pharmacological interventions. In this review, we summarize recent developments in the roles of the KP and clinical trials examining KP inhibition in liver cancer. Abstract As the second and third leading cancer-related death in men and the world, respectively, primary liver cancer remains a major concern to human health. Despite advances in diagnostic technology, patients with primary liver cancer are often diagnosed at an advanced stage. Treatment options for patients with advanced hepatocarcinoma (HCC) are limited to systemic treatment with multikinase inhibitors and immunotherapy. Furthermore, the 5-year survival rate for these late-stage HCC patients is approximately 12% worldwide. There is an unmet need to identify novel treatment options and/or sensitive blood-based biomarker(s) to detect this cancer at an early stage. Given that the liver harbours the largest proportion of immune cells in the human body, understanding the tumour–immune microenvironment has gained increasing attention as a potential target to treat cancer. The kynurenine pathway (KP) has been proposed to be one of the key mechanisms used by the tumour cells to escape immune surveillance for proliferation and metastasis. In an inflammatory environment such as cancer, the KP is elevated, suppressing local immune cell populations and enhancing tumour growth. In this review, we collectively describe the roles of the KP in cancer and provide information on the latest research into the KP in primary liver cancer.
Collapse
|
22
|
Kozlova A, Thabault L, Dauguet N, Deskeuvre M, Stroobant V, Pilotte L, Liberelle M, Van den Eynde B, Frédérick R. Investigation of chalcogen bioisosteric replacement in a series of heterocyclic inhibitors of tryptophan 2,3-dioxygenase. Eur J Med Chem 2021; 227:113892. [PMID: 34678572 DOI: 10.1016/j.ejmech.2021.113892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.
Collapse
Affiliation(s)
- Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | | | - Marine Deskeuvre
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium; Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; de Duve Institute, UCLouvain, Brussels B-1200, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium.
| |
Collapse
|
23
|
Yu C, Rao D, Zhu H, Liu Q, Huang W, Zhang L, Liang H, Song J, Ding Z. TDO2 Was Downregulated in Hepatocellular Carcinoma and Inhibited Cell Proliferation by Upregulating the Expression of p21 and p27. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4708439. [PMID: 34423034 PMCID: PMC8378971 DOI: 10.1155/2021/4708439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tryptophan-2,3-dioxygenase (TDO2) converts tryptophan into kynurenine in the initial limiting step of the kynurenine pathway. During the past decade, the overexpression of TDO2 has been found in various human tumors. However, the role of TDO2 in hepatocellular carcinoma is controversial, and we sought to clarify it in this study. METHODS Western blot analysis and immunochemistry were used to detect the expression of TDO2 in human tissue specimens. The effect of TDO2 on cell proliferation in vitro was assessed using CCK8 and colony formation assays, and a xenograft mouse model was used to detect the effect of TDO2 on tumor growth in vivo. Flow cytometry was used to assess the cell cycle status. RESULTS Low TDO2 expression was found in HCC and was associated with poor prognosis and adverse clinical outcomes. Conversely, TDO2 could restrain the proliferation of HCC cells in vivo and in vitro. Furthermore, TDO2 upregulated the expression of p21 and p27, inducing cell-cycle arrest. CONCLUSIONS The loss of TDO2 expression in HCC was correlated with a poor prognosis and adverse clinical outcomes. At the same time, TDO2 could restrain the growth of HCC in vivo and in vitro. The results indicate that TDO2 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepato-Pancreato-Biliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated of Nanchang University), Ganzhou Jiangxi 431000, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Kozlova A, Thabault L, Liberelle M, Klaessens S, Prévost JRC, Mathieu C, Pilotte L, Stroobant V, Van den Eynde B, Frédérick R. Rational Design of Original Fused-Cycle Selective Inhibitors of Tryptophan 2,3-Dioxygenase. J Med Chem 2021; 64:10967-10980. [PMID: 34338527 DOI: 10.1021/acs.jmedchem.1c00323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO2) is a heme-containing enzyme constitutively expressed at high concentrations in the liver and responsible for l-tryptophan (l-Trp) homeostasis. Expression of TDO2 in cancer cells results in the inhibition of immune-mediated tumor rejection due to an enhancement of l-Trp catabolism via the kynurenine pathway. In the study herein, we disclose a new 6-(1H-indol-3-yl)-benzotriazole scaffold of TDO2 inhibitors developed through rational design, starting from existing inhibitors. Rigidification of the initial scaffold led to the synthesis of stable compounds displaying a nanomolar cellular potency and a better understanding of the structural modulations that can be accommodated inside the active site of hTDO2.
Collapse
Affiliation(s)
- Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Julien R C Prévost
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Caroline Mathieu
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| |
Collapse
|
25
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Pham QT, Taniyama D, Akabane S, Harada K, Babasaki T, Sekino Y, Hayashi T, Sakamoto N, Sentani K, Oue N, Yasui W. TDO2 overexpression correlates with poor prognosis, cancer stemness, and resistance to cetuximab in bladder cancer. Cancer Rep (Hoboken) 2021; 4:e1417. [PMID: 34101386 PMCID: PMC8714553 DOI: 10.1002/cnr2.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Background Bladder cancer (BC) is the 10th most common cancer in the world. BC with muscle invasion results in a poor prognosis and is usually fatal. Cancer cell metabolism has an essential role in the development and progression of tumors. Expression of tryptophan 2,3‐dioxygenase (TDO2) is associated with tumor progression and worse survival in some other cancers. However, no studies have been performed to uncover the biofunctional roles of TDO2 in BC. Aim This study aim to investigate the clinicopathologic significance of TDO2 in BC. Methods and results TDO2 expression was evaluated by qRT‐PCR and immunohistochemistry in an integrated analysis with the Cancer Genome Atlas (TCGA) and other published datasets. TDO2 overexpression was significantly associated with T classification, N classification, and M classification, tumor stage, recurrence, and basal type, and with the expression of CD44 and aldehyde dehydrogenase 1 (ALDH1) in BC. High TDO2 expression correlated with poor outcome of BC patients. Using BC cell lines with knockdown and forced expression of TDO2, we found that TDO2 was involved in the growth, migration, and invasiveness of BC cells. Moreover, TDO2 was found to be crucial for spheroid formation in BC cells. Importantly, TDO2 promoted BC cells resistance to cetuximab through integration of the EGFR pathway. Conclusion Our results indicate that TDO2 might take an essential part in BC progression and could be a potential marker for targeted therapy in BC.
Collapse
Affiliation(s)
- Quoc Thang Pham
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Daiki Taniyama
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shintaro Akabane
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenji Harada
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuraro Hayashi
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
27
|
Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2021; 118:2022447118. [PMID: 34074763 DOI: 10.1073/pnas.2022447118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.
Collapse
|
28
|
Capochiani de Iudicibus R, Tomek P, Palmer BD, Tijono SM, Flanagan JU, Ching LM. Parallel discovery of selective and dual inhibitors of tryptophan dioxygenases IDO1 and TDO2 with a newly-modified enzymatic assay. Bioorg Med Chem 2021; 39:116160. [PMID: 33901770 DOI: 10.1016/j.bmc.2021.116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2. To expedite the discovery of novel TDO2-specific and dual inhibitors, an assay that enabled the efficient and accurate measurement of the inhibitory activity of compounds against both IDO1 and TDO2 enzymes, concurrently in the same experiment was established to screen 5,682 compounds that included the National Cancer Institute Diversity set 5, for inhibition of IDO1 and TDO2 activity. This screen identified 82 compounds that inhibited either IDO1, TDO2 or both enzymes > 50% at 20 µM. Thirty Pan Assay Interference compounds were removed from the list and the IC50 of the remaining 52 compounds against IDO1 and TDO2 was subsequently determined using the newly-developed concurrent assay. Ten compounds were confirmed as dual IDO1/TDO2 inhibitors having IC50 values under 50 µM against both enzymes and within 2-fold of each other. Six compounds with IC50 values between 1.39 and 8.41 µM were identified as potential TDO2-selective leads. The use of this concurrent protocol is anticipated to expedite the discovery of novel leads for dual and selective inhibitors against IDO1 and or TDO2 and speed the evaluation of novel analogues that will ensue.
Collapse
Affiliation(s)
- Rossella Capochiani de Iudicibus
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Sofian M Tijono
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Jack U Flanagan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol 2021; 12:636081. [PMID: 33708223 PMCID: PMC7940516 DOI: 10.3389/fimmu.2021.636081] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.
Collapse
Affiliation(s)
- Minah Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Yao Y, Liang H, Fang X, Zhang S, Xing Z, Shi L, Kuang C, Seliger B, Yang Q. What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:60. [PMID: 33557876 PMCID: PMC7869231 DOI: 10.1186/s13046-021-01847-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric heme-containing enzyme, catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan metabolism, which plays an important role in immunity and neuronal function. Its implication in different pathophysiologic processes including cancer and neurodegenerative diseases has inspired the development of IDO1 inhibitors in the past decades. However, the negative results of the phase III clinical trial of the would-be first-in-class IDO1 inhibitor (epacadostat) in combination with an anti-PD1 antibody (pembrolizumab) in patients with advanced malignant melanoma call for a better understanding of the role of IDO1 inhibition. In this review, the current status of the clinical development of IDO1 inhibitors will be introduced and the key pre-clinical and clinical data of epacadostat will be summarized. Moreover, based on the cautionary notes obtained from the clinical readout of epacadostat, strategies for the identification of reliable predictive biomarkers and pharmacodynamic markers as well as for the selection of the tumor types to be treated with IDO1inhibitors will be discussed.
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06112, Halle (Saale), Germany
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China.
| |
Collapse
|
31
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
32
|
Grobben Y, de Man J, van Doornmalen AM, Muller M, Willemsen-Seegers N, Vu-Pham D, Mulder WR, Prinsen MBW, de Wit J, Sterrenburg JG, van Cauter F, den Ouden JE, van Altena AM, Massuger LF, Uitdehaag JCM, Buijsman RC, Zaman GJR. Targeting Indoleamine 2,3-Dioxygenase in Cancer Models Using the Novel Small Molecule Inhibitor NTRC 3883-0. Front Immunol 2021; 11:609490. [PMID: 33584686 PMCID: PMC7876453 DOI: 10.3389/fimmu.2020.609490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a key regulator of immune suppression by catalyzing the oxidation of L-tryptophan. IDO1 expression has been related to poor prognosis in several cancers and to resistance to checkpoint immunotherapies. We describe the characterization of a novel small molecule IDO1 inhibitor, NTRC 3883-0, in a panel of biochemical and cell-based assays, and various cancer models. NTRC 3883-0 released the inhibitory effect of IDO1 on CD8-positive T cell proliferation in co-cultures of IDO1-overexpressing cells with healthy donor lymphocytes, demonstrating its immune modulatory activity. In a syngeneic mouse model using IDO1-overexpressing B16F10 melanoma cells, NTRC 3883-0 effectively counteracted the IDO1-induced modulation of L-tryptophan and L-kynurenine levels, demonstrating its in vivo target modulation. Finally, we studied the expression and activity of IDO1 in primary cell cultures established from the malignant ascites of ovarian cancer patients. In these cultures, IDO1 expression was induced upon stimulation with IFNγ, and its activity could be inhibited by NTRC 3883-0. Based on these results, we propose the use of ascites cell-based functional assays for future patient stratification. Our results are discussed in light of the recent discontinuation of clinical trials of more advanced IDO1 inhibitors and the reconsideration of IDO1 as a valid drug target.
Collapse
Affiliation(s)
- Yvonne Grobben
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Michelle Muller
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Diep Vu-Pham
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | | | - Joeri de Wit
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Judith E. den Ouden
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
33
|
Sumitomo M, Takahara K, Zennami K, Nagakawa T, Maeda Y, Shiogama K, Yamamoto Y, Muto Y, Nukaya T, Takenaka M, Fukaya K, Ichino M, Sasaki H, Saito K, Shiroki R. Tryptophan 2,3-dioxygenase in tumor cells is associated with resistance to immunotherapy in renal cell carcinoma. Cancer Sci 2021; 112:1038-1047. [PMID: 33410234 PMCID: PMC7935775 DOI: 10.1111/cas.14797] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023] Open
Abstract
Indoleamine 2,3‐dioxygenase 1 (IDO1) is a key enzyme associated with immunomodulation through its regulation of the tryptophan‐kynurenine (Kyn) pathway in advanced cancers, including metastatic renal cell carcinoma (mRCC). However, the failure of IDO1 inhibitors when used in combination with immune checkpoint inhibitors (ICIs), as observed in clinical trials, raises a number of questions. This study aimed to investigate the association of tryptophan 2,3‐dioxygenase (TDO) and IDO1 with cancer development and resistance to immunotherapy in patients with RCC. In our analysis of RCC tissue samples, tissue Kyn levels were elevated in advanced‐stage RCC and correlated well with TDO expression levels in RCC tumor cells. In patients with mRCC, TDO rather than IDO1 was expressed in RCC tumor cells, showing a strong association with Kyn expression. Furthermore, immunohistochemical staining of TDO was strongly associated with the staining intensity of forkhead box P3, as well as ICI therapy response and survival in patients with mRCC. Our study is the first to show that TDO expression in tumor tissues is associated with progression and survival, confirming its potential as a predictive biomarker of primary resistance to immunotherapy in patients with mRCC. Our findings suggest that strategies aimed at inhibiting TDO, rather than IDO1, in combination with ICI therapy may aid in the control of mRCC progression.
Collapse
Affiliation(s)
- Makoto Sumitomo
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan.,Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kiyoshi Takahara
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kenji Zennami
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomomi Nagakawa
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuhiro Maeda
- Research Promotion and Support Headquarters, Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
| | - Kazuya Shiogama
- Department of Pathology, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Japan
| | - Yoshinari Muto
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Takuhisa Nukaya
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Masashi Takenaka
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kosuke Fukaya
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Manabu Ichino
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hitomi Sasaki
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
34
|
Hoffmann D, Dvorakova T, Schramme F, Stroobant V, Van den Eynde BJ. Tryptophan 2,3-Dioxygenase Expression Identified in Murine Decidual Stromal Cells Is Not Essential for Feto-Maternal Tolerance. Front Immunol 2020; 11:601759. [PMID: 33363543 PMCID: PMC7752949 DOI: 10.3389/fimmu.2020.601759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) catalyze the rate-limiting step of tryptophan catabolism along the kynurenine pathway, which has important immuno suppressive properties, particularly in tumor cells and dendritic cells. The prominent expression of IDO1 in the placenta also suggested a role in preventing immune rejection of fetal tissues, and pharmacological inhibition of IDO1 induced abortion of allogeneic fetuses in mice. However, this was later challenged by the lack of rejection of allogeneic fetuses in IDO1-KO mice, suggesting that other mechanisms may compensate for IDO1 deficiency. Here we investigated whether TDO could contribute to feto-maternal tolerance and compensate for IDO1 deficiency in IDO1-KO mice. Expression of TDO mRNA was previously detected in placental tissues. We developed a new chimeric rabbit anti-TDO antibody to confirm TDO expression at the protein level and identify the positive cell type by immunohistochemistry in murine placenta. We observed massive TDO expression in decidual stromal cells, starting at day E3.5, peaking at day E6.5 then declining rapidly while remaining detectable until gestation end. IDO1 was also induced in decidual stromal cells, but only at a later stage of gestation when TDO expression declined. To determine whether TDO contributed to feto-maternal tolerance, we mated TDO-KO and double IDO1-TDO-KO females with allogeneic males. However, we did not observe reduced fertility. These results suggest that, despite its expression in decidual stromal cells, TDO is not a dominant mechanism of feto-maternal tolerance able to compensate for the absence of IDO1. Redundant additional mechanisms of immunosuppression likely take over in these KO mice. The massive expression of TDO during decidualization might suggest a role of TDO in angiogenesis or vessel tonicity, as previously described for IDO1.
Collapse
Affiliation(s)
- Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Tereza Dvorakova
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Florence Schramme
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
35
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
36
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Paccosi S, Cecchi M, Silvano A, Fabbri S, Parenti A. Different effects of tryptophan 2,3-dioxygenase inhibition on SK-Mel-28 and HCT-8 cancer cell lines. J Cancer Res Clin Oncol 2020; 146:3155-3163. [PMID: 32776284 PMCID: PMC7679327 DOI: 10.1007/s00432-020-03351-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Purpose Indoleamine 2,3-dioxygenase-1 (IDO1) and more recently, tryptophan 2,3-dioxygenase (TDO), are tryptophan-catabolizing enzymes with immunoregulatory properties in cancer. IDO1 is more expressed than TDO in many tumours including melanomas; however, IDO inhibitors did not give expected results in clinical trials, highlighting the need to consider TDO. We aimed to characterize both TDO expression and function in a melanoma cell line, named SK-Mel-28, with the purpose to compare it with a colon cancer cell line, HCT-8, and with a human endothelial cell line (HUVEC). Methods TDO expression was assessed as real time-PCR and western blot, for mRNA and protein expression, respectively. While cell proliferation was assessed as cell duplication, cell apoptosis and cell cycle were analysed by means of flow cytometry. Results SK-Mel-28 cells showed higher TDO levels compared to HCT-8 and to HUVEC cells. A selective TDO inhibitor, 680C91, significantly impaired cell proliferation in a concentration-dependent manner, by inducing cell arrest during the G2 phase for SK-Mel-28 and HUVEC cells, while an early apoptosis was increasing in HCT-8 cells. No toxic effects were observed. These data demonstrated that TDO is highly expressed in SK-Mel-28 cells and may be involved in the regulation of their proliferation. Conclusion TDO may directly modulate cancer cell function rather than immune suppression and can be considered as a target for melanoma progression together with IDO1.
Collapse
Affiliation(s)
- Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6-50139, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6-50139, Florence, Italy
| | - Angela Silvano
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6-50139, Florence, Italy
| | - Sergio Fabbri
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6-50139, Florence, Italy.
| |
Collapse
|
38
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Li S, Li L, Wu J, Song F, Qin Z, Hou L, Xiao C, Weng J, Qin X, Xu J. TDO Promotes Hepatocellular Carcinoma Progression. Onco Targets Ther 2020; 13:5845-5855. [PMID: 32606795 PMCID: PMC7311207 DOI: 10.2147/ott.s252929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Tryptophan 2,3-dioxygenase (TDO), encoded by the gene TDO2, is an enzyme that catalyses the first and rate-limiting step of tryptophan (Try) degradation in the kynurenine (Kyn) pathway in the liver. Recently, TDO has been demonstrated to be expressed in various human tumours, especially hepatocellular carcinoma (HCC). However, the role of TDO in HCC is still not very clear. Here, we studied the role of TDO in HCC. Methods We demonstrated that TDO is overexpressed in human HCC tissues and is significantly correlated with malignant phenotype characteristics, including tumour size, tumour differentiation, vascular invasion, etc. Kaplan–Meier analysis showed a poor overall survival rate in patients with TDO-overexpressing tumours. In addition, the effects of TDO on HCC tumour growth and metastasis were detected both in vivo and in vitro. TDO overexpression facilitated HCC cell growth, invasion and migration. Conclusion Our results suggest that TDO positively regulates HCC proliferation and invasion and acts as a new prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Fangbin Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Lei Hou
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Pathology, Tulane National Primate Research Center, Health Sciences Campus, Covington, LA 70433, USA
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
40
|
Van den Eynde BJ, van Baren N, Baurain JF. Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma? ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033635] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Indoleamine-2,3 dioxygenase 1 (IDO1) contributes to tumor immunosuppression by enzymatically degrading tryptophan, which is required for T cell activity, and producing kynurenine. Small-molecule inhibitors, such as epacadostat, have been developed to block IDO1 activity. In preclinical models, they can restore antitumoral T cell immunity and synergize with immune checkpoint inhibitors or cancer vaccines. Based on encouraging clinical results in early phase trials, a randomized phase III study (ECHO-301/KN-252) was launched in metastatic melanoma to test the benefit of adding epacadostat to the reference pembrolizumab therapy. The result was negative. We briefly review the clinical trials that investigated epacadostat in cancer patients and discuss possible explanations for this negative result. We end by suggesting paths to resume clinical development of compounds targeting the IDO1 pathway, which in our view remains an attractive target for cancer immunotherapy.
Collapse
Affiliation(s)
- Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Nicolas van Baren
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Jean-François Baurain
- King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels B-1200, Belgium
- IREC (Institut de Recherche Expérimentale et Clinique), Université catholique de Louvain, Brussels B-1200, Belgium
| |
Collapse
|
41
|
Hoffmann D, Pilotte L, Stroobant V, Van den Eynde BJ. Induction of tryptophan 2,3-dioxygenase expression in human monocytic leukemia/lymphoma cell lines THP-1 and U937. Int J Tryptophan Res 2020; 12:1178646919891736. [PMID: 31903023 PMCID: PMC6933542 DOI: 10.1177/1178646919891736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages are immune cells with diverse functions in tumor development. Among other functions, they downregulate immune-mediated tumor rejection by depriving lymphocytes of nutrients. The essential amino acid tryptophan is metabolized by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase (TDO). Indoleamine 2,3-dioxygenase 1 is expressed in a large number of human tumors, and inhibitors are in development to improve immunotherapy. Tryptophan 2,3-dioxygenase was also found in human tumors and preclinical working models confirmed its immunosuppressive power. We explored a potential expression of TDO by macrophages. This enzyme could be induced in two human cell lines, THP-1 and U937, by incubation with phorbol myristate acetate, lipopolysaccharide, and interferon gamma. Phorbol-myristate-acetate-mediated induction was inhibited by rottlerin, a protein kinase C inhibitor. In contrast to these monocytic cell lines, other cell lines or fresh human monocytes isolated from peripheral blood mononuclear cells and differentiated into proinflammatory or anti-inflammatory macrophages could not be induced to express TDO. Our results suggest that TDO might play an immunosuppressive role in human monocytic leukemias but not in untransformed macrophages.
Collapse
Affiliation(s)
- Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
42
|
Schramme F, Crosignani S, Frederix K, Hoffmann D, Pilotte L, Stroobant V, Preillon J, Driessens G, Van den Eynde BJ. Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors. Cancer Immunol Res 2019; 8:32-45. [PMID: 31806638 DOI: 10.1158/2326-6066.cir-19-0041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO) is an enzyme that degrades tryptophan into kynurenine and thereby induces immunosuppression. Like indoleamine 2,3-dioxygenase (IDO1), TDO is considered as a relevant drug target to improve the efficacy of cancer immunotherapy. However, its role in various immunotherapy settings has not been fully characterized. Here, we described a new small-molecule inhibitor of TDO that can modulate kynurenine and tryptophan in plasma, liver, and tumor tissue upon oral administration. We showed that this compound improved the ability of anti-CTLA4 to induce rejection of CT26 tumors expressing TDO. To better characterize TDO as a therapeutic target, we used TDO-KO mice and found that anti-CTLA4 or anti-PD1 induced rejection of MC38 tumors in TDO-KO, but not in wild-type mice. As MC38 tumors did not express TDO, we related this result to the high systemic tryptophan levels in TDO-KO mice, which lack the hepatic TDO needed to contain blood tryptophan. The antitumor effectiveness of anti-PD1 was abolished in TDO-KO mice fed on a tryptophan-low diet that normalized their blood tryptophan level. MC38 tumors expressed IDO1, which could have limited the efficacy of anti-PD1 in wild-type mice and could have been overcome in TDO-KO mice due to the high levels of tryptophan. Accordingly, treatment of mice with an IDO1 inhibitor improved the efficacy of anti-PD1 in wild-type, but not in TDO-KO, mice. These results support the clinical development of TDO inhibitors to increase the efficacy of immunotherapy of TDO-expressing tumors and suggest their effectiveness even in the absence of tumoral TDO expression.See article by Hoffmann et al., p. 19.
Collapse
Affiliation(s)
- Florence Schramme
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|