1
|
Fu H, Chen DY, Zhang CL, Ju XJ, Xie R, Wang W, Liu Z, Pan DW, Chu LY. Hydrogel Grating Sensors with Boron Affinity and Molecular Imprinting Effects for Rapid and Sensitive Detection of Tumor Marker Sialic Acid. Anal Chem 2024; 96:16910-16916. [PMID: 39395064 DOI: 10.1021/acs.analchem.4c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Rapid and sensitive detection of the concentration of sialic acid (SA) in serum is crucial for early tumor screening and prognostic assessment; however, it still remains challenging. Here, we propose a novel kind of hydrogel grating sensor with boron affinity and molecular imprinting effects (B-MIP) for the rapid and sensitive detection of SA concentration in serum. The hydrogel gratings feature uniform surface relief microstructures and incorporate highly specific recognition binding sites into SA molecules provided by boron affinity and molecular imprinting. The periodic nanoridges of hydrogel gratings increase the specific surface area contacting the environmental solution; therefore, fast detection can be achieved within 2 min. Upon recognition of SA molecules, the height of hydrogel gratings changes at the nanoscale, causing a change in the diffraction efficiency of the hydrogel gratings. The B-MIP hydrogel grating sensors have highly specific binding sites to SA molecules distributed throughout the whole hydrogel and can preferentially and selectively recognize and respond to the SA molecules even in the presence of interference substances glucose and fructose with high concentrations. The B-MIP hydrogel grating sensors are effectively applicable for the rapid and sensitive detection of SA concentrations in real serum samples with satisfactory accuracy and precision. Our approach provides an excellent strategy to address the current challenges in SA detection and provides new insights into the detection of tumor markers in serum, thereby opening up new ways to accurately detect complex biological samples in analytical science.
Collapse
Affiliation(s)
- Han Fu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dong-Yan Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chun-Li Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Wolters-Eisfeld G, Oliveira-Ferrer L. Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Semin Immunopathol 2024; 46:16. [PMID: 39432076 PMCID: PMC11493797 DOI: 10.1007/s00281-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Ovarian cancer remains a formidable challenge in oncology due to its late-stage diagnosis and limited treatment options. Recent research has revealed the intricate interplay between glycan diversity and the immune microenvironment within ovarian tumors, shedding new light on potential therapeutic strategies. This review seeks to investigate the complex role of glycans in ovarian cancer and their impact on the immune response. Glycans, complex sugar molecules decorating cell surfaces and secreted proteins, have emerged as key regulators of immune surveillance in ovarian cancer. Aberrant glycosylation patterns can promote immune evasion by shielding tumor cells from immune recognition, enabling disease progression. Conversely, certain glycan structures can modulate the immune response, leading to either antitumor immunity or immune tolerance. Understanding the intricate relationship between glycan diversity and immune interactions in ovarian cancer holds promise for the development of innovative therapeutic approaches. Immunotherapies that target glycan-mediated immune evasion, such as glycan-based vaccines or checkpoint inhibitors, are under investigation. Additionally, glycan profiling may serve as a diagnostic tool for patient stratification and treatment selection. This review underscores the emerging importance of glycan diversity in ovarian cancer, emphasizing the potential for unraveling immune interplay and advancing tailored therapeutic prospects for this devastating disease.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
3
|
Mantuano NR, Läubli H. Sialic acid and Siglec receptors in tumor immunity and immunotherapy. Semin Immunol 2024; 74-75:101893. [PMID: 39427573 DOI: 10.1016/j.smim.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Immunotherapy, including immune checkpoint inhibition, has transformed cancer therapy in recent years, providing new and potentially curative options for patients with even advanced disease. However, only a minority of patients achieve long-lasting remissions, and resistance to immune checkpoint inhibition is common. Recently, the sialic acid-Siglec axis has been proposed as a new immune checkpoint that could overcome resistance to current immunotherapy options. In this review, we summarize the current preclinical knowledge about the role of the sialic acid-Siglec interaction in immune suppression in cancer and discuss potential approaches to block this inhibitory pathway to enhance anti-cancer immunity.
Collapse
Affiliation(s)
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
4
|
Sojitra M, Schmidt EN, Lima GM, Carpenter EJ, McCord KA, Atrazhev A, Macauley MS, Derda R. Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA). Nat Protoc 2024:10.1038/s41596-024-01070-3. [PMID: 39415074 DOI: 10.1038/s41596-024-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing. LiGA is a library of DNA-barcoded bacteriophages, where each clonal bacteriophage displays 5-1,500 copies of a glycan and the distinct DNA barcode inside each bacteriophage clone encodes the structure and density of the displayed glycans. Deep sequencing of the glycophages associated with live cells yields a glycan-binding profile of GBPs expressed on the surface of cells. This protocol provides detailed instructions for how to use LiGA to probe cell surface receptors and includes information on the preparation of glycophages, analysis by MALDI-TOF mass spectrometry, the assembly of a LiGA library and its deep sequencing. Using this protocol, we measure glycan-binding profiles of the immunomodulatory sialic acid-binding immunoglobulin-like lectins‑1, -2, -6, -7 and -9 expressed on the surface of different cell types. Compared with existing methods that require complex specialist equipment, this method allows users with basic molecular biology expertise to measure the precise glycan-binding profile of GBPs on the surface of any cell type expressing exogenous GBP within 2-3 d.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Ahmad MS, Braoudaki M, Siddiqui SS. Differential expression of ST6GALNAC1 and ST6GALNAC2 and their clinical relevance to colorectal cancer progression. PLoS One 2024; 19:e0311212. [PMID: 39348343 PMCID: PMC11441655 DOI: 10.1371/journal.pone.0311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Colorectal cancer (CRC) has become a significant global health concern and ranks among the leading causes of morbidity and mortality worldwide. Due to its malignant nature, current immunotherapeutic treatments are used to tackle this issue. However, not all patients respond positively to treatment, thereby limiting clinical effectiveness and requiring the identification of novel therapeutic targets to optimise current strategies. The putative ligand of Siglec-15, Sialyl-Tn (STn), is associated with tumour progression and is synthesised by the sialyltransferases ST6GALNAC1 and ST6GALNAC2. However, the deregulation of both sialyltransferases within the literature remain limited, and the involvement of microRNAs (miRNAs) in STn production require further elucidation. Here, we identified miRNAs involved in the regulation of ST6GALNAC1 via a computational approach and further analysis of miRNA binding sites were determined. In silico tools predicted miR-21, miR-30e and miR-26b to regulate the ST6GALNAC1 gene, all of which had shown significant upregulated expression in the tumour cohort. Moreover, each miRNA displayed a high binding affinity towards the seed region of ST6GALNAC1. Additionally, enrichment analysis outlined pathways associated with several cancer hallmarks, including epithelial to mesenchymal transition (EMT) and MYC targets associated with tumour progression. Furthermore, our in silico findings demonstrated that the ST6GALNAC1 expression profile was significantly downregulated in CRC tumours, and its low expression correlated with poor survival outcomes when compared with patient survival data. In comparison to its counterpart, there were no significant differences in the expression of ST6GALNAC2 between normal and malignant tissues, which was further evidenced in our immunohistochemistry analysis. Immunohistochemistry staining highlighted significantly higher expression was more prevalent in normal human tissues with regard to ST6GALNAC1. In conclusion, the integrated in silico analysis highlighted that STn production is not reliant on deregulated sialyltransferase expression in CRC, and ST6GALNAC1 expression is regulated by several oncomirs. We proposed the involvement of other sialyltransferases in the production of the STn antigen and CRC progression via the Siglec-15/Sia axis.
Collapse
Affiliation(s)
- Mohammed Saqif Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
6
|
Ideo H, Tsuchida A, Takada Y. Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease. Int J Mol Sci 2024; 25:10231. [PMID: 39337716 PMCID: PMC11432504 DOI: 10.3390/ijms251810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | | | | |
Collapse
|
7
|
Guerreiro A, Compañón I, Lazaris FS, Labão-Almeida C, Oroz P, Ghirardello M, Marques MC, Corzana F, Bernardes GJL. Non-Natural MUC1 Glycopeptide Homogeneous Cancer Vaccine with Enhanced Immunogenicity and Therapeutic Activity. Angew Chem Int Ed Engl 2024:e202411009. [PMID: 39275921 DOI: 10.1002/anie.202411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide. This engineered antigen contains two non-natural amino acids and has an α-S-glycosidic bond, where sulfur replaces the conventional oxygen atom linking the peptide backbone to the sugar N-acetylgalactosamine. The glycopeptide is then specifically conjugated to the immunogenic protein carrier CRM197 (Cross-Reactive Material 197), a protein approved for human use. Conjugation involves selective reduction and re-bridging of a disulfide in CRM197, allowing the attachment of a single copy of MUC1. This strategy results in a chemically defined vaccine while maintaining both the structural integrity and immunogenicity of the protein carrier. The vaccine elicits a robust Th1-like immune response in mice and generates antibodies capable of recognizing human cancer cells expressing tumor-associated MUC1. When tested in mouse models of colon adenocarcinoma and pancreatic cancer, the vaccine is effective both as a prophylactic and therapeutic use, significantly delaying tumor growth. In therapeutic applications, improved outcomes were observed when the vaccine was combined with an anti-programmed cell death protein 1 (anti-PD-1) checkpoint inhibitor. Our strategy reduces batch-to-batch variability and enhances both immunogenicity and therapeutic potential. This site-specific approach disputes a prevailing dogma where glycoconjugate vaccines require multivalent display of antigens.
Collapse
Affiliation(s)
- Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
| | - Ismael Compañón
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Foivos S Lazaris
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Paula Oroz
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Marta C Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
8
|
Bao S, Shen T, Shabahang MH, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024:e202411863. [PMID: 39223086 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad Hossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
10
|
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol 2024; 81:102502. [PMID: 39029379 DOI: 10.1016/j.cbpa.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - M S Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - A Serrano
- Francisco de Vitoria University, Ctra. M-515 Pozuelo-Majadahonda, Km. 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain. https://twitter.com/Antonation2002
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
11
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
12
|
Cuello HA, Sinha S, Verhagen AL, Varki N, Varki A, Ghosh P. Human-specific elimination of epithelial Siglec-XII suppresses the risk of inflammation-driven colorectal cancers. JCI Insight 2024; 9:e181539. [PMID: 38990656 PMCID: PMC11343606 DOI: 10.1172/jci.insight.181539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Carcinomas are common in humans but rare among closely related "great apes." Plausible explanations, including human-specific genomic alterations affecting the biology of sialic acids, are proposed, but causality remains unproven. Here, an integrated evolutionary genetics-phenome-transcriptome approach studied the role of SIGLEC12 gene (encoding Siglec-XII) in epithelial transformation and cancer. Exogenous expression of the protein in cell lines and genetically engineered mice recapitulated approximately 30% of the human population in whom the protein is expressed in a form that cannot bind ligand because of a fixed, homozygous, human-universal missense mutation. Siglec-XII-null cells/mice recapitulated the remaining approximately 70% of the human population in whom an additional polymorphic frameshift mutation eliminates the entire protein. Siglec-XII expression drove several pro-oncogenic phenotypes in cell lines and increased tumor burden in mice challenged with chemical carcinogen and inflammation. Transcriptomic studies yielded a 29-gene signature of Siglec-XII-positive disease and when used as a computational tool for navigating human data sets, pinpointed with surprising precision that SIGLEC12 expression (model) recapitulates a very specific type of colorectal carcinomas (disease) that is associated with mismatch-repair defects and inflammation, disproportionately affects European Americans, and carries a favorable prognosis. They revealed a hitherto-unknown evolutionary genetic mechanism for an ethnic/environmental predisposition of carcinogenesis.
Collapse
Affiliation(s)
- Hector A. Cuello
- Department of Cellular & Molecular Medicine
- Glycobiology Research and Training Center
| | | | - Andrea L. Verhagen
- Department of Cellular & Molecular Medicine
- Glycobiology Research and Training Center
| | - Nissi Varki
- Glycobiology Research and Training Center
- Department of Pathology
| | - Ajit Varki
- Department of Cellular & Molecular Medicine
- Glycobiology Research and Training Center
- Department of Medicine
- Center for Academic Research and Training in Anthropogeny
| | - Pradipta Ghosh
- Department of Cellular & Molecular Medicine
- Department of Medicine
- Moores Comprehensive Cancer Center, and
- HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
14
|
Lu Y, Cao N, Zhao M, Zhang G, Zhang Q, Wang L. Importance of CD8 Tex cell-associated gene signatures in the prognosis and immunology of osteosarcoma. Sci Rep 2024; 14:9769. [PMID: 38684858 PMCID: PMC11058769 DOI: 10.1038/s41598-024-60539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
As a highly aggressive bone malignancy, osteosarcoma poses a significant therapeutic challenge, especially in the setting of metastasis or recurrence. This study aimed to investigate the potential of CD8-Tex cell-associated genes as prognostic biomarkers to reveal the immunogenomic profile of osteosarcoma and guide therapeutic decisions. mRNA expression data and clinical details of osteosarcoma patients were obtained from the TCGA database (TARGET-OS dataset). The GSE21257 dataset (from the GEO database) was used as an external validation set to provide additional information on osteosarcoma specimens. 84 samples from the TARGET-OS dataset were used as the training set, and 53 samples from the GSE21257 dataset served as the external validation cohort. Univariate Cox regression analysis was utilized to identify CD8 Tex cell genes associated with prognosis. The LASSO algorithm was performed for 1000 iterations to select the best subset to form the CD8 Tex cell gene signature (TRS). Final genes were identified using the multivariate Cox regression model of the LASSO algorithm. Risk scores were calculated to categorize patients into high- and low-risk groups, and clinical differences were explored by Kaplan-Meier survival analysis to assess model performance. Prediction maps were constructed to estimate 1-, 3-, and 5 year survival rates for osteosarcoma patients, including risk scores for CD8 Texcell gene markers and clinicopathologic factors. The ssGSEA algorithm was used to assess the differences in immune function between TRS-defined high- and low-risk groups. TME and immune cell infiltration were further assessed using the ESTIMATE and CIBERSORT algorithms. To explore the relationship between immune checkpoint gene expression levels and the two risk-defined groups. A CD8 Tex cell-associated gene signature was extracted from the TISCH database and prognostic markers including two genes were developed. The high-risk group showed lower survival, and model performance was validated by ROC curves and C-index. Predictive plots were constructed to demonstrate survival estimates, combining CD8 Tex cell gene markers and clinical factors. This study provides valuable insights into the molecular and immune characteristics of osteosarcoma and offers potential avenues for advances in therapeutic approaches.
Collapse
Affiliation(s)
- Yining Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Nana Cao
- Blood Transfusion Department of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ming Zhao
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guochuan Zhang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Qi Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Zhao C, Wang X, Wu J, Hu Y, Zhang Q, Zheng Q. Analysis of O-acetylated sialic acids by 3-nitrophenylhydrazine derivatization combined with LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2472-2477. [PMID: 38606501 DOI: 10.1039/d4ay00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sialic acids are a family of monosaccharides that share a nine-carbon backbone and a carboxyl group. A recent derivatization method based on 3-nitrophenylhydrazine (3-NPH) provides a mild chemical labeling technique for biomolecules containing carbonyl or carboxyl groups. In this study, we utilized 3-NPH to label sialic acids via a two-step derivatization process. The derivatized species can produce a common reporter ion corresponding to C1-C3 with two labels, and a fragment differentiating between Neu5Ac, Neu5Gc, and KDN. This method is compatible with O-acetylated sialic acids and provides high sensitivity to Neu5Gc and KDN, and since the utilization of dual labeling significantly enhances the hydrophobicity of derivatives, it can effectively mitigate matrix effects when combined with parallel reaction monitoring technology. Negative-ion tandem mass spectrometry (MS/MS) analysis reveals a distinctive fragmentation profile for the 4-O-acetylated species, while the other sialic acids yield similar MS/MS spectra with a high abundance of reporter ions. Using the reporter ion as a transition, this analytical strategy is effective for analyzing complex biological samples. For example, it was successfully employed to quantify sialic acids in the intestinal tissues of several carp species, demonstrating its potential in sialylation research.
Collapse
Affiliation(s)
- Chenhao Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Xingdan Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Jing Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
16
|
Ren X, Lin S, Guan F, Kang H. Glycosylation Targeting: A Paradigm Shift in Cancer Immunotherapy. Int J Biol Sci 2024; 20:2607-2621. [PMID: 38725856 PMCID: PMC11077373 DOI: 10.7150/ijbs.93806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Immunotherapy has shown great potential in cancer treatment. However, even with the intervention of techniques such as immune checkpoint inhibitor therapy, tumors can still achieve immune escape, leading to a low response rate. Abnormal glycosylation is a widely recognized hallmark of cancer. The development of a complex "glyco-code" on the surface of tumor cells can potentially influence the immune system's ability to monitor tumors and can impact the anti-tumor immune response. Therefore, abnormal glycosylation has emerged as a promising target for immunotherapy. Many recent studies have shown that targeted glycosylation can reshape the tumor microenvironment (TME) and promote the immune response, thereby improving the response to immunotherapy. This review summarizes how glycosylation affects anti-tumor immune function in the TME and synthesizes the latest research progress on targeted glycosylation in immunotherapy. It is hoped that by elucidating the basic laws and biological connotations of glycosylation, this review will enable researcher to thoroughly analyze the mechanism of its influence on the immune metabolic regulation network, which will provide a theoretical tool for promoting the clinical application of glycosylation codes.
Collapse
Affiliation(s)
- Xueting Ren
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuai Lin
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Huafeng Kang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Li T, Yao J. Unveiling the hub genes in the SIGLECs family in colon adenocarcinoma with machine learning. Front Genet 2024; 15:1375100. [PMID: 38650859 PMCID: PMC11033367 DOI: 10.3389/fgene.2024.1375100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background Despite the recognized roles of Sialic acid-binding Ig-like lectins (SIGLECs) in endocytosis and immune regulation across cancers, their molecular intricacies in colon adenocarcinoma (COAD) are underexplored. Meanwhile, the complicated interactions between different SIGLECs are also crucial but open questions. Methods We investigate the correlation between SIGLECs and various properties, including cancer status, prognosis, clinical features, functional enrichment, immune cell abundances, immune checkpoints, pathways, etc. To fully understand the behavior of multiple SIGLECs' co-evolution and subtract its leading effect, we additionally apply three unsupervised machine learning algorithms, namely, Principal Component Analysis (PCA), Self-Organizing Maps (SOM), K-means, and two supervised learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO) and neural network (NN). Results We find significantly lower expression levels in COAD samples, together with a systematic enhancement in the correlations between distinct SIGLECs. We demonstrate SIGLEC14 significantly affects the Overall Survival (OS) according to the Hazzard ratio, while using PCA further enhances the sensitivity to both OS and Disease Free Interval (DFI). We find any single SIGLEC is uncorrelated to the cancer stages, which can be significantly improved by using PCA. We further identify SIGLEC-1,15 and CD22 as hub genes in COAD through Differentially Expressed Genes (DEGs), which is consistent with our PCA-identified key components PC-1,2,5 considering both the correlation with cancer status and immune cell abundance. As an extension, we use SOM for the visualization of the SIGLECs and show the similarities and differences between COAD patients. SOM can also help us define subsamples according to the SIGLECs status, with corresponding changes in both immune cells and cancer T-stage, for instance. Conclusion We conclude SIGLEC-1,15 and CD22 as the most promising hub genes in the SIGLECs family in treating COAD. PCA offers significant enhancement in the prognosis and clinical analyses, while using SOM further unveils the transition phases or potential subtypes of COAD.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Yao
- Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Astronomical Observatory, Shanghai, China
| |
Collapse
|
18
|
Sun W, Han C, Ge R, Jiang X, Wang Y, Han Y, Wang N, Song Y, Yang M, Chen G, Deng Y. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Mol Pharm 2024; 21:1625-1638. [PMID: 38403951 DOI: 10.1021/acs.molpharmaceut.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaotong Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingchao Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Ning Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
19
|
Chang J, Feng Q, Mao Y, Zhang Z, Xu Y, Chen Y, Zheng P, Lin S, Shen F, Zhang Z, Zhang Z, He G, Xu J, Wei Y. Siglec9 + tumor-associated macrophages predict prognosis and therapeutic vulnerability in patients with colon cancer. Int Immunopharmacol 2024; 130:111771. [PMID: 38430807 DOI: 10.1016/j.intimp.2024.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Siglec9 has been identified as an immune checkpoint molecule on tumor-associated macrophages (TAMs). Nevertheless, the expression profile and clinical significance of Siglec9 + TAMs in colon cancer (CC) are still not fully understood. METHODS Two clinical cohorts from distinct medical centers were retrospectively enrolled. Immunohistochemistry and immunofluorescence were conducted to evaluate the infiltration of immune cells. Single-cell RNA sequencing and flow cytometry were utilized to identify the impact of Siglec9 + TAMs on the tumor immune environment, which was subsequently validated through bioinformatics analysis of the TCGA database. Prognosis and the benefit of adjuvant chemotherapy (ACT) were also evaluated using Cox regression analysis and the Kaplan-Meier method. RESULTS High infiltration of Siglec9 + TAMs was associated with worse prognosis and better benefit from 6-month ACT. Siglec9 + TAMs contributed to immunoevasion by promoting the infiltration of immunosuppressive cells and the dysfunction process of CD8 + T cells. Additionally, high infiltration of Siglec9 + TAMs was associated with the mesenchymal-featured subtype and overexpression of the VEGF signaling pathway, which was validated by the strongest communication between Siglec9 + TAMs and vascular endothelial cells. CONCLUSIONS Siglec9 + TAMs may serve as a biomarker for prognosis and response to ACT in CC. Furthermore, the immunoevasive contexture and angiogenesis stimulated by Siglec9 + TAMs suggest potential treatment combinations for CC patients.
Collapse
Affiliation(s)
- Jiang Chang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China
| | - Yihao Mao
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiu Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijiao Chen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Songbin Lin
- General Surgery Department, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, Fujian Province, China
| | - Feifan Shen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuojian Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqi Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Jianmin Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Ye Wei
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
21
|
Chen Z, Wu G, Lin X, Huang X, Zhang S, Chen K, Liang Z, Zhu X. The Prognostic Value of Serum Sialic Acid in Patients with Nasopharyngeal Carcinoma: A Propensity Score Matching Study. Cancer Manag Res 2024; 16:215-224. [PMID: 38525372 PMCID: PMC10961078 DOI: 10.2147/cmar.s448238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Elevated serum sialic acid (SA) is one of the indicators of poor prognosis in various malignant tumors. This study intends to determine the relationship between serum SA levels and survival prognosis in nasopharyngeal carcinoma (NPC). Patients and Methods From 2014 to 2016, NPC patients with no distance metastasis undergoing intensity-modulated radiotherapy (IMRT) were retrospectively analyzed. The serum SA levels before initial treatment were measured, and an optimal cut-off level was determined by X-tile software. A propensity score matching (PSM) technique was applied to reduce intergroup differences between the low serum SA level group and the high serum SA level group. Chi-square tests were utilized for comparing intergroup differences, Kaplan-Meier approach was utilized for plotting survival curves, and univariate and multivariate Cox proportional hazards regression models were employed for analyzing prognostic factors. Results Overall, 293 NPC patients with no distance metastasis were included. The optimal cut-off level of serum SA was 65.10 mg/dl. The baseline levels after PSM were more balanced compared to those before PSM. Survival analysis showed that the locoregional relapse-free survival (LRRFS, p=0.010), distant metastasis-free survival (DMFS, p=0.014), progression-free survival (PFS, p=0.009), and overall survival (OS, p=0.015) survival curves of the low serum SA level group and high serum SA level group were statistically significant differences. Univariate analysis showed that American Joint Committee on Cancer (AJCC) stage, T stage, N stage, neoadjuvant chemotherapy (NC), and serum SA expression level were factors influencing the prognosis of NPC patients. Multivariate analysis showed that high serum SA expression level was related to worse PFS and OS in NPC patients with no distance metastasis. Conclusion High serum SA level (SA > 65.10 mg/dl) before treatment is associated to poor survival outcomes in NPC and is an independent adverse prognostic factor in NPC patients with no distance metastasis.
Collapse
Affiliation(s)
- Zetan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Gang Wu
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Xiangying Lin
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Xiaopeng Huang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
22
|
Huang Z, Guo Y, Li B, Shen M, Yi Y, Li L, Zhao X, Yang L. Siglec-15 on macrophages suppress the immune microenvironment in patients with PD-L1 negative non-metastasis lung adenocarcinoma. Cancer Gene Ther 2024; 31:427-438. [PMID: 38072971 PMCID: PMC10940158 DOI: 10.1038/s41417-023-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 03/16/2024]
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is an immune checkpoint molecule with sequence homology to programmed cell death ligand 1 (PD-L1), which is mainly expressed on macrophages and tumor cells. However, whether Siglec-15-induced immunosuppression and poor prognosis are independent of PD-L1 remains unclear. In this study, we collected samples of 135 non-small cell lung cancers and found that Siglec-15 and PD-L1 expression were independent in non-small cell lung cancer by multiple immunofluorescence staining. Siglec-15 on macrophages (Mφ-Siglec-15) was significantly associated with DFS (p < 0.05) in PD-L1- patients with non-metastasis lung adenocarcinoma, not in PD-L1+ or lung squamous cell carcinoma patients. Moreover, stromal Siglec-15+ macrophages of Mφ-Siglec-15+PD-L1- patients were significantly more than those of Mφ-Siglec-15-PD-L1- patients (p = 0.002). We further found that Siglec-15+ macrophages polarized toward M2 and produced more IL-10, negatively associated with inflamed immunophenotype in PD-L1- patients and may inhibit CD8+T cells infiltration. In conclusion, PD-L1-independent Siglec-15+ macrophages contribute to the formation of an immunosuppressive microenvironment in non-metastasis lung adenocarcinoma patients, which may cause a higher risk of recurrence. Siglec-15 could be a potential target for normalizing cancer immunotherapy, benefiting patients who fail to respond to anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yan Guo
- Department of Good Clinical Practice Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Baihui Li
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Li Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiaohe Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
23
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Läubli H. Unraveling the impact of a glyco-immune checkpoint in bone metastasis. Proc Natl Acad Sci U S A 2024; 121:e2400499121. [PMID: 38377217 PMCID: PMC10907264 DOI: 10.1073/pnas.2400499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Affiliation(s)
- Heinz Läubli
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel, Basel4031, Switzerland
| |
Collapse
|
25
|
Atxabal U, Nycholat C, Pröpster JM, Fernández A, Oyenarte I, Lenza MP, Franconetti A, Soares CO, Coelho H, Marcelo F, Schubert M, Paulson JC, Jiménez-Barbero J, Ereño-Orbea J. Unraveling Molecular Recognition of Glycan Ligands by Siglec-9 via NMR Spectroscopy and Molecular Dynamics Modeling. ACS Chem Biol 2024; 19:483-496. [PMID: 38321945 PMCID: PMC10877568 DOI: 10.1021/acschembio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G β-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Corwin Nycholat
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Johannes M. Pröpster
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Fernández
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Maria Pia Lenza
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Cátia O. Soares
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mario Schubert
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Department
of Biosciences and Molecular Biology, University
of Salzburg, Hellbrunnerstrasse
34, 5020 Salzburg, Austria
| | - James C. Paulson
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jesús Jiménez-Barbero
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de Investigacion Biomedica en Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5, Pabellón
11, Planta 0, 28029 Madrid, Spain
| | - June Ereño-Orbea
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
| |
Collapse
|
26
|
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (Lond) 2024; 19:431-453. [PMID: 38288611 DOI: 10.2217/nnm-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sahil Vij
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| | - Shubham Sharma
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| |
Collapse
|
27
|
Rhee K, Zhou X. Two in one: the emerging concept of bifunctional antibodies. Curr Opin Biotechnol 2024; 85:103050. [PMID: 38142645 PMCID: PMC10922881 DOI: 10.1016/j.copbio.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic antibodies have become indispensable for treating a wide range of diseases, and their significance in drug discovery has expanded considerably over the past few decades. Bifunctional antibodies are now emerging as a promising new drug modality to address previously unmet needs in antibody therapeutics. Distinct from traditional antibodies that operate through an 'occupancy-based' inhibition mechanism, these innovative molecules recruit the protein of interest to a 'biological effector,' initiating specific downstream consequences such as targeted protein degradation or posttranslational modifications. In this review, we emphasize the potential of bifunctional antibodies to tackle diverse biomedical challenges.
Collapse
Affiliation(s)
- Kaitlin Rhee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Parker J. Cancer's sweet spot: techniques to harness saccharides in tumor biology. Biotechniques 2024; 76:5-8. [PMID: 38047326 DOI: 10.2144/btn-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
All of the cells in our bodies are enveloped in sugar, this sweet coating plays a particularly interesting and crucial role in tumor biology. Here, we review the techniques being used to detect and exploit cancer's sweet spot. including click chemistry, glycoproteomic profiling and bioorthogonal chemistry.
Collapse
|
29
|
Boelaars K, Goossens-Kruijssen L, Wang D, de Winde CM, Rodriguez E, Lindijer D, Springer B, van der Haar Àvila I, de Haas A, Wehry L, Boon L, Mebius RE, van Montfoort N, Wuhrer M, den Haan JMM, van Vliet SJ, van Kooyk Y. Unraveling the impact of sialic acids on the immune landscape and immunotherapy efficacy in pancreatic cancer. J Immunother Cancer 2023; 11:e007805. [PMID: 37940346 PMCID: PMC10632901 DOI: 10.1136/jitc-2023-007805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded). Converting the TME to an immune-inflamed state, allowing T-cell infiltration, could increase the success of immunotherapy in PDAC. METHOD In this study, we use the KPC3 subcutaneous PDAC mouse model to investigate the role of tumor-derived sialic acids in shaping the tumor immune landscape. A sialic acid deficient KPC3 line was generated by genetic knock-out of the CMAS (cytidine monophosphate N-acetylneuraminic acid synthetase) enzyme, a critical enzyme in the synthesis of sialic acid-containing glycans. The effect of sialic acid-deficiency on immunotherapy efficacy was assessed by treatment with anti-programmed cell death protein 1 (PD-1) and agonistic CD40. RESULT The absence of sialic acids in KPC3 tumors resulted in increased numbers of CD4+ and CD8+ T cells in the TME, and reduced frequencies of CD4+ regulatory T cells (Tregs) within the T-cell population. Importantly, CD8+ T cells were able to infiltrate the tumor islands in sialic acid-deficient tumors. These favorable alterations in the immune landscape sensitized sialic acid-deficient tumors to immunotherapy, which was ineffective in sialic acid-expressing KPC3 tumors. In addition, high expression of sialylation-related genes in human pancreatic cancer correlated with decreased CD8+ T-cell infiltration, increased presence of Tregs, and poorer survival probability. CONCLUSION Our results demonstrate that tumor-derived sialic acids mediate T-cell exclusion within the PDAC TME, thereby impairing immunotherapy efficacy. Targeting sialic acids represents a potential strategy to enhance T-cell infiltration and improve immunotherapy outcomes in PDAC.
Collapse
Affiliation(s)
- Kelly Boelaars
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Dimitri Lindijer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Babet Springer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Irene van der Haar Àvila
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Aram de Haas
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laetitia Wehry
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | | | - Reina E Mebius
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joke M M den Haan
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Hoeijmakers LL, Reijers ILM, Blank CU. Biomarker-Driven Personalization of Neoadjuvant Immunotherapy in Melanoma. Cancer Discov 2023; 13:2319-2338. [PMID: 37668337 DOI: 10.1158/2159-8290.cd-23-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The introduction of immunotherapy has ushered in a new era of anticancer therapy for many cancer types including melanoma. Given the increasing development of novel compounds and combinations and the investigation in earlier disease stages, the need grows for biomarker-based treatment personalization. Stage III melanoma is one of the front-runners in the neoadjuvant immunotherapy field, facilitating quick biomarker identification by its immunogenic capacity, homogeneous patient population, and reliable efficacy readout. In this review, we discuss potential biomarkers for response prediction to neoadjuvant immunotherapy, and how the neoadjuvant melanoma platform could pave the way for biomarker identification in other tumor types. SIGNIFICANCE In accordance with the increasing rate of therapy development, the need for biomarker-driven personalized treatments grows. The current landscape of neoadjuvant treatment and biomarker development in stage III melanoma can function as a poster child for these personalized treatments in other tumors, assisting in the development of new biomarker-based neoadjuvant trials. This will contribute to personalized benefit-risk predictions to identify the most beneficial treatment for each patient.
Collapse
Affiliation(s)
- Lotte L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| |
Collapse
|
31
|
Lv K, Sun M, Fang H, Wang J, Lin C, Liu H, Zhang H, Li H, He H, Gu Y, Li R, Shao F, Xu J. Targeting myeloid checkpoint Siglec-10 reactivates antitumor immunity and improves anti-programmed cell death 1 efficacy in gastric cancer. J Immunother Cancer 2023; 11:e007669. [PMID: 37935567 PMCID: PMC10649907 DOI: 10.1136/jitc-2023-007669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE Immunotherapy has not yielded satisfactory therapeutic responses in gastric cancer (GC). However, targeting myeloid checkpoints holds promise for expanding the potential of immunotherapy. This study aims to evaluate the critical role of Siglec-10+ tumor-associated macrophages (TAMs) in regulating antitumor immunity and to explore the potential of the myeloid checkpoint Siglec-10 as an interventional target. DESIGN Siglec-10+ TAMs were assessed based on immunohistochemistry on tumor microarrays and RNA-sequencing data. Flow cytometry, RNA sequencing, and single-cell RNA-sequencing analysis were employed to characterize the phenotypic and transcriptional features of Siglec-10+ TAMs and their impact on CD8+ T cell-mediated antitumor immunity. The effectiveness of Siglec-10 blockade, either alone or in combination with anti-programmed cell death 1 (PD-1), was evaluated using an ex vivo GC tumor fragment platform based on fresh tumor tissues. RESULTS Siglec-10 was predominantly expressed on TAMs in GC, and associated with tumor progression. In Zhongshan Hospital cohort, Siglec-10+ TAMs predicted unfavorable prognosis (n=446, p<0.001) and resistance to adjuvant chemotherapy (n=331, p<0.001), which were further validated in exogenous cohorts. In the Samsung Medical Center cohort, Siglec-10+ TAMs demonstrated inferior response to pembrolizumab in GC (n=45, p=0.008). Furthermore, Siglec-10+ TAMs exhibited an immunosuppressive phenotype and hindered T cell-mediated antitumor immune response. Finally, blocking Siglec-10 reinvigorated the antitumor immune response and synergistically enhances anti-PD-1 immunotherapy in an ex vivo GC tumor fragment platform. CONCLUSIONS In GC, the myeloid checkpoint Siglec-10 contributes to the regulation of immunosuppressive property of TAMs and promotes the depletion of CD8+ T cells, ultimately facilitating immune evasion. Targeting Siglec-10 represents a potential strategy for immunotherapy in GC.
Collapse
Affiliation(s)
- Kunpeng Lv
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanji Fang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
33
|
Huang C, Wang R, Wang Y, Liu H, Chen XT, Gu X, Wang HL. Sialic Acid Enhanced the Antistress Capability under Challenging Situations by Increasing Synaptic Transmission. J Nutr 2023; 153:2561-2570. [PMID: 37543214 DOI: 10.1016/j.tjnut.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND In early life, sialic acid (SA) plays a crucial role in neurodevelopment and neuronal function. However, it remains unclear whether and how SA supplementation in early life promotes behavioral response to stress in adolescence. OBJECTIVES This study aimed to examine the effects and mechanisms of SA on the antistress capability under challenging situations. METHODS In this study, C57BL/6 mice were daily supplemented with 1 μL SA solution/g body weight at the dose of 10 mg/kg/d from postnatal day (PND) 5-45. The antistress behaviors, including open field, elevated plus maze, forced swimming test, and tail suspension test, were performed at PND 46, PND 48, PND 50, and PND 52 to detect the antistress ability of SA, respectively. RESULTS Our results showed that SA-treated mice were more active in facing challenging situations. The fiber photometry experiment showed that SA promoted the excitatory neuronal response in the medial prefrontal cortex (mPFC), which was extensively interconnected to stress. Besides, electrophysiological results revealed SA enhanced synaptic transmission rather than neuronal excitability of mPFC excitatory neurons. It was also supported by the increasing spine density of mPFC excitatory neurons. At the molecular amount, the SA elevated the transmitter release-related proteins of mPFC, including Synapsin 1 and vesicular glutamate transporter 1 (VGlut 1). Furthermore, SA supplementation enhanced synaptic transmission mainly by altering the kinetics of synaptic transmission. CONCLUSIONS The SA supplementation enhanced the response capability to stress under challenging situations, and the enhanced synaptic transmission of mPFC excitatory neurons may be the neurological basis of active response under challenging situations. In general, our findings suggested that SA supplementation in early life can promote stress resistance in adolescence.
Collapse
Affiliation(s)
- Chengqing Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Rongrong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Yi Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haoyu Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
34
|
Wang Y, He M, Zhang C, Cao K, Zhang G, Yang M, Huang Y, Jiang W, Liu H. Siglec-9 + tumor-associated macrophages delineate an immunosuppressive subset with therapeutic vulnerability in patients with high-grade serous ovarian cancer. J Immunother Cancer 2023; 11:e007099. [PMID: 37709296 PMCID: PMC10503378 DOI: 10.1136/jitc-2023-007099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The potent immunosuppressive properties of sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on myeloid cells and lymphocytes provide a strong rationale for serving as a therapeutic target. However, the expression profile and critical role of Siglec-9 in high-grade serous ovarian cancer (HGSC) remain obscure. This study aimed to elucidate the prognostic significance of Siglec-9 expression and its predictive value for immunotherapy in HGSC. METHODS Study enrolled two cohorts, consisting of 120 tumor microarray specimens of HGSC for immunohistochemistry (IHC) and 40 fresh tumor specimens for flow cytometry (FCM). Expression profile of Siglec-9 in immune cells was analyzed by both bioinformatics analysis and FCM. Role of Siglec-9 was studied to identify that Siglec-9+TAMs linked with an immunosuppressive phenotype by IHC and FCM, and block Siglec-9 was sensitive to immunotherapy by ex vivo and in vitro assays. RESULTS Siglec-9 is predominantly expressed on tumor-associated macrophages (TAMs). High Siglec-9+TAMs were associated with inferior overall survival (OS). Both tumor-conditioned medium (TCM) and tumor ascites induced enrichment of Siglec-9+TAMs with protumorigenic phenotypes. Siglec-9+TAMs were associated with immunosuppressive tumor microenvironment (TME) characterized by exhausted CD8+T cells and increased immune checkpoint expression. Blockade of Siglec-9 suppressed phosphorylation of the inhibitory phosphatase SHP-1 and repolarized TAMs to antitumorigenic phenotype and retrieved cytotoxic activity of CD8+T cells in vitro and ex vivo. Responders toward antiprogrammed death receptor-1 (anti-PD-1) therapy present more Siglec-9+TAMs than non-responders. Furthermore, blockade Siglec-9 synergized with anti-PD-1 antibody to enhance the cytotoxic activity of CD8+T cells in tissues with higher Siglec-9+TAMs. CONCLUSIONS Siglec-9+TAMs may serve as an independent prognostic of poor survival but a predictive biomarker for anti-PD-1/antiprogrammed death ligand-1 immunotherapy in HGSC. In addition, the potential of immunosuppressive Siglec-9+TAMs as a therapeutic target is worth further exploration.
Collapse
Affiliation(s)
- Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Jiang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
35
|
Lustig M, Chan C, Jansen JHM, Bräutigam M, Kölling MA, Gehlert CL, Baumann N, Mester S, Foss S, Andersen JT, Bastian L, Sondermann P, Peipp M, Burger R, Leusen JHW, Valerius T. Disruption of the sialic acid/Siglec-9 axis improves antibody-mediated neutrophil cytotoxicity towards tumor cells. Front Immunol 2023; 14:1178817. [PMID: 37346044 PMCID: PMC10279866 DOI: 10.3389/fimmu.2023.1178817] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. H. Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Max A. Kölling
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Simone Mester
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
36
|
The Blessed Union of Glycobiology and Immunology: A Marriage That Worked. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10020015. [PMID: 36827215 PMCID: PMC9967969 DOI: 10.3390/medicines10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate-carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses.
Collapse
|