1
|
Xu X, Yu Y, Zhang W, Ma W, He C, Qiu G, Wang X, Liu Q, Zhao M, Xie J, Tao F, Perry JM, Liu Q, Rao S, Kang X, Zhao M, Jiang L. SHP-1 inhibition targets leukaemia stem cells to restore immunosurveillance and enhance chemosensitivity by metabolic reprogramming. Nat Cell Biol 2024; 26:464-477. [PMID: 38321204 DOI: 10.1038/s41556-024-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-β-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.
Collapse
Affiliation(s)
- Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wenwen Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Ma
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guo Qiu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiong Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiayi Xie
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fang Tao
- Children's Mercy Hospital, University of Kansas Medical Center, University of Missouri, Kansas City, MO, USA
| | - John M Perry
- Children's Mercy Hospital, University of Kansas Medical Center, University of Missouri, Kansas City, MO, USA
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, USA.
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, Guangdong, China.
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wang B, Reville PK, Yassouf MY, Jelloul FZ, Ly C, Desai PN, Wang Z, Borges P, Veletic I, Dasdemir E, Burks JK, Tang G, Guo S, Garza AI, Nasnas C, Vaughn NR, Baran N, Deng Q, Matthews J, Gunaratne PH, Antunes DA, Ekmekcioglu S, Sasaki K, Garcia MB, Cuglievan B, Hao D, Daver N, Green MR, Konopleva M, Futreal A, Post SM, Abbas HA. Comprehensive characterization of IFNγ signaling in acute myeloid leukemia reveals prognostic and therapeutic strategies. Nat Commun 2024; 15:1821. [PMID: 38418901 PMCID: PMC10902356 DOI: 10.1038/s41467-024-45916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.
Collapse
Affiliation(s)
- Bofei Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mhd Yousuf Yassouf
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Z Jelloul
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Ly
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poonam N Desai
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamella Borges
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enes Dasdemir
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Araceli Isabella Garza
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cedric Nasnas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole R Vaughn
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jairo Matthews
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam B Garcia
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Pagliuca S, Ferraro F. Immune-driven clonal cell selection at the intersection among cancer, infections, autoimmunity and senescence. Semin Hematol 2024; 61:22-34. [PMID: 38341340 DOI: 10.1053/j.seminhematol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology Department, Nancy University Hospital and UMR7365, IMoPA, University of Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Francesca Ferraro
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
4
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
5
|
Li SQ, Chen M, Huang XY, Wang H, Chang YJ. Challenges facing minimal residual disease testing for acute myeloid leukemia and promising strategies to overcome them. Expert Rev Hematol 2023; 16:981-990. [PMID: 37978882 DOI: 10.1080/17474086.2023.2285985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Minimal residual disease (MRD) has been an important biomarker for relapse prediction and treatment choice in patients with acute myeloid leukemia (AML). False-positive or false-negative MRD results due to the low specificity and sensitivity of techniques such as multiparameter flow cytometry (MFC), real-time quantitative polymerase chain reaction, and next-generation sequencing, as well as the biological characteristics of residual leukemia cells, including antigen shift, clone involution, heterogeneous genome of the blast cells, and lack of specific targets, all restrict the clinical use of MRD. AREAS COVERED We summarized the challenges of the techniques for MRD detection, and their application in the clinical setting. We also discussed strategies to overcome these challenges, such as the MFC MRD method based on leukemia stem cells, single-cell DNA sequencing or single-cell RNA sequencing for the investigation of biological characteristics of residual leukemia cells, and the potential of omics techniques for MRD detection. We further noted out that prospective clinical trials are needed to answer clinical questions related to MRD in patients with AML. EXPERT OPINION MRD is an important biomarker for individual therapy of patients with AML. In the future, it is important to increase the specificity and sensitivity of the detection techniques.
Collapse
Affiliation(s)
- Si-Qi Li
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| | - Man Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Xi-Yi Huang
- Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, P.R.C
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Ying-Jun Chang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| |
Collapse
|
6
|
Ryland GL, Umeda M, Holmfeldt L, Lehmann S, Herlin MK, Ma J, Khanlari M, Rubnitz JE, Ries RE, Kosasih HJ, Ekert PG, Goh HN, Tiong IS, Grimmond SM, Haferlach C, Day RB, Ley TJ, Meshinchi S, Ma X, Blombery P, Klco JM. Description of a novel subtype of acute myeloid leukemia defined by recurrent CBFB insertions. Blood 2023; 141:800-805. [PMID: 36179268 PMCID: PMC10273080 DOI: 10.1182/blood.2022017874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Georgina L. Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Linda Holmfeldt
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- The Beijer Laboratory, Uppsala, Sweden
| | - Sören Lehmann
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul G. Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Hwee Ngee Goh
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ing S. Tiong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | | | - Ryan B. Day
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
7
|
Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia 2023; 37:308-325. [PMID: 36543880 PMCID: PMC9898038 DOI: 10.1038/s41375-022-01789-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.
Collapse
|
8
|
Toh K, Saunders D, Verd B, Steventon B. Zebrafish neuromesodermal progenitors undergo a critical state transition in vivo. iScience 2022; 25:105216. [PMID: 36274939 PMCID: PMC9579027 DOI: 10.1016/j.isci.2022.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The transition state model of cell differentiation proposes that a transient window of gene expression stochasticity precedes entry into a differentiated state. Here, we assess this theoretical model in zebrafish neuromesodermal progenitors (NMps) in vivo during late somitogenesis stages. We observed an increase in gene expression variability at the 24 somite stage (24ss) before their differentiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss scRNA-seq dataset showed that the NMp population is noisier than its derivatives. By building in silico composite gene expression maps from image data, we assigned an 'NM index' to in silico NMps based on the expression of neural and mesodermal markers and demonstrated that cell population heterogeneity peaked at 24ss. Further examination revealed cells with gene expression profiles incongruent with their prospective fate. Taken together, our work supports the transition state model within an endogenous cell fate decision making event.
Collapse
Affiliation(s)
- Kane Toh
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
9
|
Eagle K, Harada T, Kalfon J, Perez MW, Heshmati Y, Ewers J, Koren JV, Dempster JM, Kugener G, Paralkar VR, Lin CY, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discov 2022; 3:394-409. [PMID: 35709529 PMCID: PMC9897290 DOI: 10.1158/2643-3230.bcd-21-0207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHCII) genes through unknown mechanisms. In this work, we developed CORENODE, a computational algorithm for genome-wide transcription network decomposition that identified a transcription factor (TF) tetrad consisting of IRF8, MYB, MEF2C, and MEIS1, regulating MHCII expression in AML cells. We show that reduced MHCII expression at relapse is transcriptionally driven by combinatorial changes in the expression of these TFs, where MYB and IRF8 play major opposing roles, acting independently of the IFNγ/CIITA pathway. Beyond the MHCII genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF abundance and silenced MHCII expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. SIGNIFICANCE Our findings point to an adaptive transcriptional mechanism of AML evolution after allogeneic transplantation whereby combinatorial fluctuations of TF expression under immune pressure result in the selection of cells with a silenced T-cell stimulation program. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Ken Eagle Consulting, Houston, Texas
| | - Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jérémie Kalfon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jošt Vrabič Koren
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Neekesh V. Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston, Massachusetts
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022; 21:166. [PMID: 35986270 PMCID: PMC9389773 DOI: 10.1186/s12943-022-01635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. Methods Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. Results scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. Conclusions In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01635-4.
Collapse
|
11
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, Del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022. [PMID: 35986270 DOI: 10.1186/s12943-022-01635-4.pmid:35986270;pmcid:pmc9389773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. METHODS Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. RESULTS scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. CONCLUSIONS In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.
Collapse
Affiliation(s)
- Yanan Zhai
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Prashant Singh
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Anna Dolnik
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Brazda
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, EO, Italy
| | - Joost Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Institute of Molecular Biology and Genetics, BIOGEM, Ariano Irpino, AV, Italy
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Lars Bullinger
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik G Stunnenberg
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Upadhyay P, Beales J, Shah NM, Gruszczynska A, Miller CA, Petti AA, Ramakrishnan SM, Link DC, Ley TJ, Welch JS. Recurrent transcriptional responses in AML and MDS patients treated with decitabine. Exp Hematol 2022; 111:50-65. [PMID: 35429619 PMCID: PMC9833843 DOI: 10.1016/j.exphem.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023]
Abstract
The molecular events responsible for decitabine responses in myelodysplastic syndrome and acute myeloid leukemia patients are poorly understood. Decitabine has a short serum half-life and limited stability in tissue culture. Therefore, theoretical pharmacologic differences may exist between patient molecular changes in vitro and the consequences of in vivo treatment. To systematically identify the global genomic and transcriptomic alterations induced by decitabine in vivo, we evaluated primary bone marrow samples that were collected during patient treatment and applied whole-genome bisulfite sequencing, RNA-sequencing, and single-cell RNA sequencing. Decitabine induced global, reversible hypomethylation after 10 days of therapy in all patients, which was associated with induction of interferon-induced pathways, the expression of endogenous retroviral elements, and inhibition of erythroid-related transcripts, recapitulating many effects seen previously in in vitro studies. However, at relapse after decitabine treatment, interferon-induced transcripts remained elevated relative to day 0, but erythroid-related transcripts now were more highly expressed than at day 0. Clinical responses were not correlated with epigenetic or transcriptional signatures, although sample size and interpatient variance restricted the statistical power required for capturing smaller effects. Collectively, these data define global hypomethylation by decitabine and find that erythroid-related pathways may be relevant because they are inhibited by therapy and reverse at relapse.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeremy Beales
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nakul M. Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A. Petti
- Department of Neuro-logical Surgery, Washington University School of Medicine, St. Louis, MO
| | - Sai Mukund Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John S. Welch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|