1
|
Krauzlis RJ, Bogadhi AR, Herman JP, Bollimunta A. Selective attention without a neocortex. Cortex 2018; 102:161-175. [PMID: 28958417 PMCID: PMC5832524 DOI: 10.1016/j.cortex.2017.08.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.
| | | | - James P Herman
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| |
Collapse
|
2
|
Ruhl T, Hanslian S, Dicke U. Lesions of the dorsal striatum impair orienting behaviour of salamanders without affecting visual processing in the tectum. Eur J Neurosci 2016; 44:2581-2592. [PMID: 27545109 DOI: 10.1111/ejn.13375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
Abstract
In amphibians, visual information in the midbrain tectum is relayed via the thalamus to telencephalic centres. Lesions of the dorsal thalamus of the salamander Plethodon shermani result in impairment of orienting behaviour and in modulation of spike pattern of tectal neurons. These effects may be induced by an interruption of a tectum-thalamus-telencephalon-tectum feedback loop enabling spatial attention and selection of visual objects. The striatum is a potential candidate for involvement in this pathway; accordingly, we investigated the effects of lesioning the dorsal striatum. Compared to controls and sham lesioned salamanders, striatum-lesioned animals exhibited a significantly lower number of orienting responses toward one of two competing prey stimuli. Orienting towards stimuli was impaired, while the spike pattern of tectal cells was unaffected, because both in controls and striatum-lesioned salamanders the spike number significantly decreased at presentation of one prey stimulus inside the excitatory receptive field and another one in the surround compared to that at single presentation inside the excitatory receptive field. We conclude that the dorsal striatum contributes to orienting behaviour, but not to an inhibitory feedback signal onto tectal neurons. The brain area engaged in the feedback loop during visual object discrimination and selection has yet to be identified. Information processing in the amphibian striatum includes multisensory integration; the striatum generates behavioural patterns that influence (pre)motor processing in the brainstem. This situation resembles the situation found in rats, in which the dorsolateral striatum is involved in stimulus-response learning regardless of the sensory modality, as well as in habit formation.
Collapse
Affiliation(s)
- Tim Ruhl
- Brain Research Institute, University of Bremen, 28334, Bremen, Germany
| | - Sabrina Hanslian
- Brain Research Institute, University of Bremen, 28334, Bremen, Germany
| | - Ursula Dicke
- Brain Research Institute, University of Bremen, 28334, Bremen, Germany.
| |
Collapse
|
3
|
Rosa Salva O, Mayer U, Vallortigara G. Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neurosci Biobehav Rev 2015; 50:150-68. [DOI: 10.1016/j.neubiorev.2014.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
4
|
Abstract
Foraging- and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor behavior and cognition and reveal an evolutionary progression toward increasing internal connections between prefrontal cortex and striatum in moving from amphibian to primate. The basal ganglia in higher vertebrates show the ability to transfer dopaminergic activity from unconditioned stimuli to conditioned stimuli. The evolutionary role of dopamine in the modulation of goal-directed behavior and cognition is further supported by pathologies of human goal-directed cognition, which have motor and cognitive dysfunction and organize themselves, with respect to dopaminergic activity, along the gradient described by ARS, from perseverative to unfocused. The evidence strongly supports the evolution of goal-directed cognition out of mechanisms initially in control of spatial foraging but, through increasing cortical connections, eventually used to forage for information.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychological and Brain Sciences, Indiana University
| |
Collapse
|
5
|
Ruhl T, Dicke U. The role of the dorsal thalamus in visual processing and object selection: a case of an attentional system in amphibians. Eur J Neurosci 2012; 36:3459-70. [PMID: 22934985 DOI: 10.1111/j.1460-9568.2012.08271.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In amphibians, the midbrain tectum is regarded as the visual centre for object recognition but the functional role of forebrain centres in visual information processing is less clear. In order to address this question, the dorsal thalamus was lesioned in the salamander Plethodon shermani, and the effects on orienting behaviour or on visual processing in the tectum were investigated. In a two-alternative-choice task, the average number of orienting responses toward one of two competing prey or simple configural stimuli was significantly decreased in lesioned animals compared to that of controls and sham-lesioned animals. When stimuli were presented during recording from tectal neurons, the number of spikes on presentation of a stimulus in the excitatory receptive field and a second salient stimulus in the surround was significantly reduced in controls and sham-lesioned salamanders compared to single presentation of the stimulus in the excitatory receptive field, while this inhibitory effect on the number of spikes of tectal neurons was absent in thalamus-lesioned animals. In amphibians, the dorsal thalamus is part of the second visual pathway which extends from the tectum via the thalamus to the telencephalon. A feedback loop to the tectum is assumed to modulate visual processing in the tectum and to ensure orienting behaviour toward visual objects. It is concluded that the tectum-thalamus-telencephalon pathway contributes to the recognition and evaluation of objects and enables spatial attention in object selection. This attentional system in amphibians resembles that found in mammals and illustrates the essential role of attention for goal-directed visuomotor action.
Collapse
Affiliation(s)
- Tim Ruhl
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany
| | | |
Collapse
|
6
|
Horowitz SS, Simmons AM. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). BRAIN, BEHAVIOR AND EVOLUTION 2011; 76:226-47. [PMID: 21266803 DOI: 10.1159/000322550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
In the bullfrog (Rana catesbeiana), the process of metamorphosis culminates in the appearance of new visual and visuomotor behaviors reflective of the emergence of binocular vision and visually-guided prey capture behaviors as the animal transitions to life on land. Using several different neuroanatomical tracers, we examined the substrates that may underlie these behavioral changes by tracing the afferent and efferent connectivity of the midbrain optic tectum across metamorphic development. Intratectal, tectotoral, tectotegmental, tectobulbar, and tecto-thalamic tracts exhibit similar trajectories of neurobiotin fiber label across the developmental span from early larval tadpoles to adults. Developmental variability was apparent primarily in intensity and distribution of cell and puncta label in target nuclei. Combined injections of cholera toxin subunit β and Phaseolus vulgaris leucoagglutinin consistently label cell bodies, puncta, or fiber segments bilaterally in midbrain targets including the pretectal gray, laminar nucleus of the torus semicircularis, and the nucleus of the medial longitudinal fasciculus. Developmentally stable label was observed bilaterally in medullary targets including the medial vestibular nucleus, lateral vestibular nucleus, and reticular gray, and in forebrain targets including the posterior and ventromedial nuclei of the thalamus. The nucleus isthmi, cerebellum, lateral line nuclei, medial septum, ventral striatum, and medial pallium show more developmentally variable patterns of connectivity. Our results suggest that even during larval development, the optic tectum contains substrates for integration of visual with auditory, vestibular, and somatosensory cues, as well as for guidance of motivated behaviors.
Collapse
Affiliation(s)
- Seth S Horowitz
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | | |
Collapse
|
7
|
Hoke KL, Ryan MJ, Wilczynski W. Functional coupling between substantia nigra and basal ganglia homologues in amphibians. Behav Neurosci 2008; 121:1393-9. [PMID: 18085893 DOI: 10.1037/0735-7044.121.6.1393] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroanatomical and pharmacological experiments support the existence of a homologue of the mammalian substantia nigra-basal ganglia circuit in the amphibian brain. Demarcation of borders between the striatum and pallidum in frogs, however, has been contentious, and direct evidence of functional coupling between the putative nigral and striatal homologues is lacking. To clarify basal ganglia function in anurans, the authors used expression of immediate-early gene egr-1 as a marker of neural activation in the basal ganglia of túngara frogs (Physalaemus pustulosus). Regional variation in egr-1 mRNA levels distinguished striatal and pallidal portions of the basal ganglia and supported the grouping of the striatopallidal transition zone with the dorsal pallidum. As further evidence for a functional coupling between the dopaminergic cells in the posterior tuberculum (the putative substantia nigra homologue) and the basal ganglia, a positive relationship was demonstrated between the size of the dopaminergic cell population and the neural activation levels within the dorsal pallidum.
Collapse
Affiliation(s)
- Kim L Hoke
- Section of Integrative Biology, University of Texas at Austin, TX 78712, USA.
| | | | | |
Collapse
|
8
|
Wu GY, Wang SR. Postsynaptic potentials and axonal projections of tegmental neurons responding to electrical stimulation of the toad striatum. Neurosci Lett 2007; 429:111-4. [PMID: 17996369 DOI: 10.1016/j.neulet.2007.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/27/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
The amphibian telencephalic striatum as a major component of the basal ganglia receives multisensory information and projects to the tegmentum and other structures. However, how striatal neurons modulate tegmental activity remains unknown. Here, we show by using intracellular recording and staining in toads that electrical stimulation of the ipsilateral striatum evoked an inhibitory postsynaptic potential (IPSP) in presumably binocular tegmental neurons. Seventy-one neurons were intracellularly stained with Lucifer yellow or horseradish peroxidase. They were located in the anterodorsal tegmental nucleus, anteroventral tegmental nucleus, nucleus profundus mesencephali, and superficial isthmal reticular nucleus, with axons projecting to the tectum, nucleus isthmi, and spinal cord. It appears that the striatum can control visually guided behaviors through the striato-tegmento-spinal pathway and the tegmento-spinal pathway mediated by the tectum and nucleus isthmi.
Collapse
Affiliation(s)
- Gang-Yi Wu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
9
|
Ewert JP, Schwippert WW. Modulation of visual perception and action by forebrain structures and their interactions in amphibians. EXS 2006; 98:99-136. [PMID: 17019885 DOI: 10.1007/978-3-7643-7772-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiörg-Peter Ewert
- Department of Neurobiology, Faculty of Natural Sciences, University of Kassel, 34132 Kassel, Germany.
| | | |
Collapse
|
10
|
Sewards TV, Sewards MA. Innate visual object recognition in vertebrates: some proposed pathways and mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:861-91. [PMID: 12095868 DOI: 10.1016/s1095-6433(02)00119-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Almost all vertebrates are capable of recognizing biologically relevant stimuli at or shortly after birth, and in some phylogenetically ancient species visual object recognition is exclusively innate. Extensive and detailed studies of the anuran visual system have resulted in the determination of the neural structures and pathways involved in innate prey and predator recognition in these species [Behav. Brain Sci. 10 (1987) 337; Comp. Biochem. Physiol. A 128 (2001) 417]. The structures involved include the optic tectum, pretectal nuclei and an area within the mesencephalic tegmentum. Here we investigate the structures and pathways involved in innate stimulus recognition in avian, rodent and primate species. We discuss innate stimulus preferences in maternal imprinting in chicks and argue that these preferences are due to innate visual recognition of conspecifics, entirely mediated by subtelencephalic structures. In rodent species, brainstem structures largely homologous to the components of the anuran subcortical visual system mediate innate visual object recognition. The primary components of the mammalian subcortical visual system are the superior colliculus, nucleus of the optic tract, anterior and posterior pretectal nuclei, nucleus of the posterior commissure, and an area within the mesopontine reticular formation that includes parts of the cuneiform, subcuneiform and pedunculopontine nuclei. We argue that in rodent species the innate sensory recognition systems function throughout ontogeny, acting in parallel with cortical sensory and recognition systems. In primates the structures involved in innate stimulus recognition are essentially the same as those in rodents, but overt innate recognition is only present in very early ontogeny, and after a transition period gives way to learned object recognition mediated by cortical structures. After the transition period, primate subcortical sensory systems still function to provide implicit innate stimulus recognition, and this recognition can still generate orienting, neuroendocrine and emotional responses to biologically relevant stimuli.
Collapse
Affiliation(s)
- Terence V Sewards
- Sandia Research Center, 21 Perdiz Canyon Road, Placitas, NM 87043, USA.
| | | |
Collapse
|
11
|
Westhoff G, Roth G. Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordani. J Comp Neurol 2002; 445:97-121. [PMID: 11891656 DOI: 10.1002/cne.10136] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the frog Discoglossus pictus and the salamander Plethodon jordani, the morphology and axonal projection pattern of neurons in the medial and dorsal pallium were determined by intracellular biocytin labeling. A total of 77 pallial neurons were labeled in the frog and 58 pallial neurons in the salamander. Within the medial pallium (MP) of the frog, four types of neurons were identified on the basis of differences in their axonal projection pattern. Type I neurons have bilateral projections into telencephalic and diencephalic areas; type II neurons have bilateral projections to telencephalic areas and ipsilaterally descending projections to diencephalic regions; type III neurons have only intratelencephalic connections, and a single type IV neuron has ipsilaterally descending projections. The somata of the four types occupy four nonoverlapping zones. Neurons of the dorsal pallium (DP) project exclusively to the ipsilateral MP and to the dorsal edge of the lateral pallium. In the ventral MP of the salamander, neurons have mostly intratelencephalic projections. Neurons in the dorsal MP project bilaterally to diencephalic and telencephalic regions. Neurons in the medial DP project ipsilaterally to the MP, lateral septum, nucleus accumbens, medial amygdala, and the internal granule layer of the olfactory bulb. In five cases, fibers were found in the commissura hippocampi, but in only two cases could these fibers be followed toward the contralateral MP and septum. Neurons in the lateral DP had no contralateral projections; they projected to the ipsilateral MP and in eight cases to the ipsilateral septum as well. Based on similarities of cytoarchitecture and projection pattern in neurons of the MP and DP, it is proposed that both frogs and salamanders have an MP subdivided into a ventral and dorsal portion, and a DP subdivided into a medial and a lateral portion.
Collapse
Affiliation(s)
- Guido Westhoff
- Brain Research Institute, University of Bremen, D-28334 Bremen, Germany.
| | | |
Collapse
|
12
|
Abstract
Vision is the most important sensory modality to anurans and a great deal of work in terms of hodological, physiological, and behavioral studies has been devoted to the visual system. The aim of this account is to survey data about the distribution of peptides in primary (lateral geniculate complex, pretectum, tectum) and secondary (striatum, anterodorsal and anteroventral tegmental nuclei, isthmic nucleus) visual relay centers. The emphasis is on general traits but interspecies variations are also noted. The smallest amount of peptide-containing neuronal elements was found in the lateral geniculate complex, where primarily nerve fibers showed immunostaining. All peptides found in the lateral geniculate complex, except two, occurred in the pretectum together with four other peptides. A large number of neurons showing intense neuropeptide thyrosine-like immunoreactivity was characteristic here. The mesencephalic tectum was the richest in peptide-like immunoreactive neuronal elements. Almost all peptides investigated were present mainly in fibers, but 9 peptides were found also in cells. The immunoreactive fibers show a complicated overlapping laminar arrangement. Cholecystokinin octapeptide, enkephalins, neuropeptide tyrosine, and substance P (not discussed here) gave the most prominent immunoreactivity. Several peptides also occur in the tectum of fishes, reptiles, birds, and mammals. Peptides in various combinations were found in the striatum, the anterodorsal- and anteroventral tegmental nucleus, and the isthmic nucleus that receive projections from the primary visual centers. The functional significance of peptides in visual information processing is not known. The only exception is neuropeptide tyrosine, which was found to be inhibitory on retinotectal synapses.
Collapse
Affiliation(s)
- G Lázár
- University of Pécs, Faculty of Medicine, Department of Human Anatomy, 7643 Pécs, Szigeti út 12, Hungary.
| |
Collapse
|
13
|
Ewert JP, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schwippert WW. Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:417-61. [PMID: 11246037 DOI: 10.1016/s1095-6433(00)00333-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present review points out that visuomotor functions in anurans are modifiable and provides neurophysiological data which suggest modulatory forebrain functions. The retino-tecto/tegmento-bulbar/spinal serial processing streams are sufficient for stimulus-response mediation in prey-catching behaviour. Without its modulatory connections to forebrain structures, however, these processing streams cannot manage perceptual tasks, directed attention, learning performances, and motor skills. (1) Visual prey/non-prey discrimination is based on the interaction of this processing stream with the pretectal thalamus involving the neurotransmitter neuropeptide-Y. (2) Experiments applying the dopamine agonist apomorphine in combination with 2DG mapping and single neurone recording suggest that prey-catching strategies in terms of hunting prey and waiting for prey depend on dose dependent dopaminergic adjustments in the neural macronetwork in which retinal, pretecto-tectal, basal ganglionic, limbic, and mesolimbic structures participate. (3) Visual response properties of striatal efferent neurones support the concept that ventral striatum is involved in directed attention. (4) Various modulatory loops involving the ventral medial pallium modify prey-recognition in the course of visual or visual-olfactory learning (associative learning) or are responsible for stimulus-specific habituation (non-associative learning). (5) The circuits suggested to underlie modulatory forebrain functions are accentuated in standard schemes of the neural macronetwork. These provide concepts suitable for future decisive experiments.
Collapse
Affiliation(s)
- J P Ewert
- Department of Neurobiology, FB19 Biology/Chemistry, University of, Kassel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Patton P, Grobstein P. The effects of telencephalic lesions on visually mediated prey orienting behavior in the leopard frog (Rana pipiens). I. The effects of complete removal of one telencephalic lobe, with a comparison to the effects of unilateral tectal lobe lesions. BRAIN, BEHAVIOR AND EVOLUTION 2000; 51:123-43. [PMID: 9519287 DOI: 10.1159/000006535] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper, we report studies aimed at characterizing the relationship between forebrain and midbrain systems involved in the control of prey orienting behavior in the leopard frog. In frogs, unilateral forebrain lesions, like unilateral tectal lobe lesions, have their most prominent effects in the contralateral monocular visual field. Such lesions produce partial reductions in response frequency in the binocular visual field as well. Similar sequelae follow unilateral tectal lobe removal. These findings suggest that the effects of unilateral forebrain removal can be largely attributed to removal of a facilitating influence on the tectal lobe on the same side of the brain. In the case of both forebrain and midbrain lesions, behavior was assayed not only in terms of the frequency with which animals responded to stimuli at various locations in the visual field (as is usually done) but also in terms of the latency of whatever responses were observed. A striking inverse relationship between response frequency and response latency was found, both in lesioned and in normal frogs. This relationship has not previously been noticed, doesn't appear to be an obvious consequence of any existing models of the neuronal circuitry underlying anuran orienting behavior, and is difficult to account for in terms of the time scales associated with axonal conduction times and synaptic delays. It may be easier to account for in terms of the responses to perturbation of large interacting systems of neurons, and this possibility seems worthy of further exploration.
Collapse
Affiliation(s)
- P Patton
- Mercer University School of Medicine, Division of Basic Sciences, Macon, Ga. 31207, USA.
| | | |
Collapse
|
15
|
Sewards TV, Sewards MA. Visual awareness due to neuronal activities in subcortical structures: a proposal. Conscious Cogn 2000; 9:86-116. [PMID: 10753495 DOI: 10.1006/ccog.1999.0427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been shown that visual awareness in the blind hemifield of hemianopic cats that have undergone unilateral ablations of visual cortex can be restored by sectioning the commissure of the superior colliculus or by destroying a portion of the substantia nigra contralateral to the cortical lesion (the Sprague effect). We propose that the visual awareness that is recovered is due to synchronized oscillatory activities in the superior colliculus ipsilateral to the cortical lesion. These oscillatory activities are normally partially suppressed by the inhibitory, GABAergic contralateral nigrotectal projection, and the destruction of the substantia nigra, or the sectioning of the collicular commissure, disinhibits the collicular neurons, causing an increase in the extent of oscillatory activity and/or synchronization between activities at different sites. This increase in the oscillatory and synchronized character is sufficient for the activities to give rise to visual awareness. We argue that in rodents and lower vertebrates, normal visual awareness is partly due to synchronized oscillatory activities in the optic tectum and partly due to similar activities in visual cortex. It is only in carnivores and primates that visual awareness is wholly due to cortical activities. Based on von Baerian recapitulation theory, we propose that, even in humans, there is a period in early infancy when visual awareness is partially due to activities in the superior colliculus, but that this awareness gradually disappears as the nigrotectal projection matures.
Collapse
Affiliation(s)
- T V Sewards
- Sandia Research Center, 21 Perdiz Canyon Road, Placitas, New Mexico 87043, USA
| | | |
Collapse
|
16
|
Buxbaum-Conradi H, Ewert JP. Responses of single neurons in the toad's caudal ventral striatum to moving visual stimuli and test of their efferent projection by extracellular antidromic stimulation/recording techniques. BRAIN, BEHAVIOR AND EVOLUTION 1999; 54:338-54. [PMID: 10681604 DOI: 10.1159/000006633] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous work in anuran amphibians has shown that activity in the caudal ventral striatum correlates with visuomotor activity: orienting responses toward prey fail to occur after striatal lesions. Thus it has been suggested that the striatum influences visually guided behavior. Therefore, the present study investigates visual response properties from neurons recorded in the striatum. Extracellular recordings of 104 single neurons of the cane toad's (Bufo marinus) caudal ventral striatum (STR) reveal five different response properties: resting discharge activity uninfluenced by the visual test stimuli (group STR1, 24.0%); resting discharge activity increased by any moving visual object (STR2, 31.7%); preference to moving compact objects (STR3, 15.4%); preference to certain configurational moving objects (STR4a and b, 13.5%), and resting activity reduced by visual stimuli (STR5, 15.4%). The receptive fields of these neurons encompassed the contralateral (46%) or the entire field of vision (54%). Of the neurons recorded in the striatum, 34% responded to electrical stimuli applied in the rostral diencephalon to the ipsilateral lateral forebrain bundle (LFB) which connects the striatum with the optic tectum (e.g. either directly or via pretectum or tegmentum). Various electrically driven STR neurons (40%) have axons that project caudally through the LFB, which was suggested by their antidromic activation in response to electrical stimuli applied to the LFB in the rostral diencephalon. In the present study, the main striatal output is mediated by 'motion detectors' (STR2) and 'compact object perceivers' (STR3). It is suggested that the caudal ventral striatum is involved in visual attentional processes that allow the translation of perception into action.
Collapse
Affiliation(s)
- H Buxbaum-Conradi
- Abteilung Neurobiologie, Fachbereich Biologie/Chemie, Universität Kassel (GhK), Kassel, Germany
| | | |
Collapse
|
17
|
Glagow M, Ewert J. Apomorphine alters prey-catching patterns in the common toad: behavioral experiments and (14)C-2-deoxyglucose brain mapping studies. BRAIN, BEHAVIOR AND EVOLUTION 1999; 54:223-42. [PMID: 10592384 DOI: 10.1159/000006625] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies on the dopaminergic modulation of visuomotor functions in amphibians showed that the dopamine agonist apomorphine (APO) alters prey-catching strategies. After systemic administration of APO in common toads Bufo bufo, prey-oriented turning and locomotion was attenuated whereas snapping toward prey was facilitated in a dose dependent manner. With systemic APO administration, toads which had previously been hunting, that is pursuing prey, behaved in a waiting position, that is sitting motionless and waiting for prey. This suggests that APO facilitates the ingestive component and inhibits the orientational and locomotory components of prey capture. To help unravel the cerebral sites of action of APO, the present study employs the (14)C-2-deoxyglucose method to compare the rate of local glucose utilization in 41 brain structures. The retinal projection fields - e.g. superficial optic tectum, pretectal nuclei, and anterior dorsal thalamic nucleus - showed an elevation in glucose utilization due to APO-induced increases in retinal output. The medial tectal layers and the ventral striatum, both involved in visuomotor functions related to prey-oriented turning and locomotion, displayed APO-induced decreases in glucose utilization. APO-induced increases in glucose utilization were observed in the medial reticular formation and the hypoglossal nucleus which participate in the motor pattern generation of snapping. APO-induced increases in glucose utilization were also detected in the nucleus accumbens and the ventral tegmentum (mesolimbic system) as well as in the ventromedial pallium ('primordium hippocampi') and the septum, both of which belonging to the limbic system. These structures contribute to motivational level control and may be responsible for the APO-induced elevation of the snapping rate. Various other structures revealed APO-induced increases in glucose utilization. These structures include the olfactory bulb, lateral pallium, suprachiasmatic nucleus, nucleus of the periventricular organ, and the nucleus of the solitary tract. The lateral amygdala displayed APO-induced decreases in glucose utilization. The APO-induced alterations in local cerebral glucose utilization are evaluated with reference to the distribution of dopaminergic structures, and this is compared with similar data obtained in the rat by other authors. A neural network explaining the APO-induced behavioral syndrome in the common toad is discussed.
Collapse
Affiliation(s)
- M Glagow
- Abteilung Neurobiologie, Fachbereich Biologie/Chemie, Universität Kassel, Kassel, Germany
| | | |
Collapse
|