1
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
2
|
Meehan SD, Abdelrahman L, Arcuri J, Park KK, Samarah M, Bhattacharya SK. Proteomics and systems biology in optic nerve regeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:249-270. [PMID: 34340769 DOI: 10.1016/bs.apcsb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.
Collapse
Affiliation(s)
- Sean D Meehan
- Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Kevin K Park
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States; Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | | | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States.
| |
Collapse
|
3
|
Herrera E, Agudo-Barriuso M, Murcia-Belmonte V. Cranial Pair II: The Optic Nerves. Anat Rec (Hoboken) 2018; 302:428-445. [DOI: 10.1002/ar.23922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina; Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca); Murcia Spain
| | - Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| |
Collapse
|
4
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
5
|
|
6
|
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive damage to the optic nerve, death of retinal ganglion cells and ultimately visual field loss. It is one of the leading causes of irreversible loss of vision worldwide. The most important trigger of glaucomatous damage is elevated eye pressure, and the current standard approach in glaucoma therapy is reduction of intraocular pressure (IOP). However, despite the use of effective medications or surgical treatment leading to lowering of IOP, progression of glaucomatous changes and loss of vision among patients with glaucoma is common. Therefore, it is critical to prevent vision loss through additional treatment. To implement such treatment(s), it is imperative to identify pathophysiological changes in glaucoma and develop therapeutic methods taking into account neuroprotection. Currently, there is no method of neuroprotection with long-term proven effectiveness in the treatment of glaucoma. Among the most promising molecules shown to protect the retina and optic nerve are neurotrophic factors. Thus, the current focus is on the development of safe and non-invasive methods for the long-term elevation of the intraocular level of neurotrophins through advanced gene therapy and topical eye treatment and on the search for selective agonists of neurotrophin receptors affording more efficient neuroprotection.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Department of Ophthalmology, MSW Hospital, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
7
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
9
|
Pharmacokinetics of intravitreal glial cell line-derived neurotrophic factor: Experimental studies in pigs. Exp Eye Res 2010; 91:890-5. [DOI: 10.1016/j.exer.2010.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 11/21/2022]
|
10
|
Dai C, Qin Yin Z, Li Y, Raisman G, Li D. Survival of retinal ganglion cells in slice culture provides a rapid screen for olfactory ensheathing cell preparations. Brain Res 2010; 1354:40-6. [PMID: 20682293 DOI: 10.1016/j.brainres.2010.07.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Transplants of olfactory ensheathing cells (OECs) cultured from the olfactory bulb are able to induce structural regeneration of severed central axons and return of function in rat models. For clinical purposes it would be preferable to obtain the cells from the more accessible olfactory mucosa in the nasal lining. However, in our laboratory preparations cultures from mucosal samples yielded around 5% of OECs compared with the 50% obtained from samples cultured from the bulb, and when transplanted these mucosal cell preparations were less effective at repair. There are a number of manipulations which may increase the OEC content and the effectiveness of mucosal preparations, but in vivo transplantation would be a highly labour intensive method for evaluating them. As a candidate for a high throughput assay to screen for beneficial effects of modifications to mucosal cells we here report the effects of co-culture of the cells with retinal explants. Both bulbar and mucosal cell preparations prolong the survival of the explants. Counts of the surviving retinal ganglion cells, identified by beta-III-tubulin immunohistochemistry and by their axon trajectory, show that the bulbar cell preparations have around twice the potency of those from the mucosa. This in vitro system, therefore, provides a bioassay that discriminates bulbar and mucosal cell preparations, and a useful tool for evaluating the functional effects of manipulations of cultured mucosal preparations.
Collapse
Affiliation(s)
- Chao Dai
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
11
|
Fu QL, Li X, Yip H, Shao Z, Wu W, Mi S, So KF. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma. Neuroscience 2009; 162:375-82. [DOI: 10.1016/j.neuroscience.2009.04.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/22/2009] [Accepted: 04/26/2009] [Indexed: 12/09/2022]
|
12
|
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007; 48:446-54. [PMID: 17197566 PMCID: PMC2823590 DOI: 10.1167/iovs.06-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Brigitte Angénieux
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Francis L. Munier
- Unit of Clinical Oculogenetics, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Bampton ETW, Ma CH, Tolkovsky AM, Taylor JSH. Osteonectin is a Schwann cell-secreted factor that promotes retinal ganglion cell survival and process outgrowth. Eur J Neurosci 2005; 21:2611-23. [PMID: 15926910 DOI: 10.1111/j.1460-9568.2005.04128.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have investigated the factors made by Schwann cells (SCs) that stimulate survival and neurite outgrowth from postnatal rat retinal ganglion cells (RGCs). These effects are preserved under K252a blockade of the Trk family of neurotrophin receptors and are not fully mimicked by the action of a number of known trophic factors. To identify novel factors responsible for this regenerative activity, we have used a radiolabelling assay. Proteins made by SCs were labelled radioactively and then fed to purified RGCs. The proteins taken up by the RGCs were then isolated and further characterized. Using this assay we have identified a major 40 kDa factor taken up by RGCs, which was microsequenced and shown to be the matricellular protein osteonectin (ON). Using an in vitro assay of purified RGCs we show that ON promotes both survival and neurite outgrowth. We conclude that ON has a potential new role in promoting CNS repair.
Collapse
Affiliation(s)
- Edward T W Bampton
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
14
|
Taylor JSH, Bampton ETW. Factors secreted by Schwann cells stimulate the regeneration of neonatal retinal ganglion cells. J Anat 2004; 204:25-31. [PMID: 14690475 PMCID: PMC1571234 DOI: 10.1111/j.1469-7580.2004.00262.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian central nervous system (CNS) does not repair after injury. However, we and others have shown in earlier work that the neonatal CNS is capable of repair and importantly of allowing regenerating axons to re-navigate through the same pathways as they did during development. This phase of neonatal repair is restricted by the fragility of neurons after injury and a lack of trophic factors that enable their survival. Our aim is to define better the factors that sustain neurons after injury and allow regeneration to occur. We describe some of our work using Schwann cells to promote the regeneration of neurons from young postnatal rodents. We have established rapid methods for purifying Schwann cells without the use of either anti-mitotic agents to suppress contaminating fibroblasts or mitotic stimulation to generate large numbers of Schwann cells. The rapidly purified Schwann cells have been used to generate conditioned medium that we have shown stimulates axon regeneration in cultured retinal ganglion cell neurons. We also show that the positive effects of Schwann cells are still present after pharmacological blockade of the neurotrophin receptors, suggesting that novel factors mediate these effects.
Collapse
|
15
|
Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J Neurosci 2002. [PMID: 12196587 DOI: 10.1523/jneurosci.22-17-07639.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The dendritic and axonal arbors of developing retinal ganglion cells (RGCs) are exposed to two sources of BDNF: RGC dendrites are exposed to BDNF locally within the retina, and RGC axons are exposed to BDNF at the target, the optic tectum. Our previous studies demonstrated that increasing tectal BDNF levels promotes RGC axon terminal arborization, whereas increasing retinal BDNF levels inhibits RGC dendritic arborization. These results suggested that differential neurotrophic action at the axon versus dendrite might be responsible for the opposing effects of BDNF on RGC axonal versus dendritic arborization. To explore this possibility, we examined the effects of altering BDNF levels at the optic tectum on the elaboration of RGC dendritic arbors in the retina. Increasing tectal BDNF levels resulted in a significant increase in dendritic branching, whereas neutralizing endogenous tectal BDNF with function-blocking antibodies significantly decreased dendritic arbor complexity. Thus, RGC dendritic arbors react in opposing manners to retinal- versus tectal-derived BDNF. Alterations in retinal BDNF levels, however, did not affect axon terminal arborization. Thus, RGC dendritic arborization is controlled in a complementary manner by both local and target-derived sources of BDNF, whereas axon arborization is modulated solely by neurotrophic interactions at the target. Together, our results indicate that developing RGCs modulate dendritic arborization by integrating signals from discrete sources of BDNF in the eye and brain. Differential integration of spatially discrete neurotrophin signals within a single neuron may therefore finely tune afferent and efferent neuronal connectivity.
Collapse
|
16
|
Bennet MR, Gibson WG, Lemon G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton Neurosci 2002; 95:1-23. [PMID: 11871773 DOI: 10.1016/s1566-0702(01)00358-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Viktor Hamburger has just died at the age of 100. It is 50 years since he and Rita Levi-Montalcini laid the foundations for the study of naturally occurring cell death and of neurotrophic factors in the nervous system. In a period of less than 10 years, from 1949 to 1958, Hamburger and Levi-Montalcini made the following seminal discoveries: that neuron cell death occurs in dorsal root ganglia, sympathetic ganglia and the cervical column of motoneurons; that the predictions arising from this observation, namely that survival is dependent on the supply of a trophic factor, could be substantiated by studying the effects of a sarcoma on the proliferation of ganglionic processes both in vivo and in vitro; and that the proliferation of these processes could be used as an assay system to isolate the factor. This work provides a short review mostly of the early history of this subject in the context of the Hamburger/Levi-Montalcini paradigm. This acts as an introduction to a consideration of models that have been proposed to account for how the different sources of growth factors provide for the survival of neurons during development. It is suggested that what has been called the 'social-control' model provides the most parsimonious quantitative description of the contribution of trophic factors to neuronal survival, a concept for which we are in debt to Viktor Hamburger and Rita Levi-Montalcini.
Collapse
Affiliation(s)
- M R Bennet
- Department of Physiology, Institute for Biomedical Research, University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
17
|
Negishi H, Dezawa M, Oshitari T, Adachi-Usami E. Optic nerve regeneration within artificial Schwann cell graft in the adult rat. Brain Res Bull 2001; 55:409-19. [PMID: 11489349 DOI: 10.1016/s0361-9230(01)00534-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigate whether an artificial graft made by cultured Schwann cell, extracellular matrix (ECM) and trophic factors can provide the environment for the regeneration of retinal ganglion cell (RGC) axons in adult rats. Six kinds of artificial grafts were used: ECM (control); ECM and Schwann cells; ECM, Schwann cells and either nerve growth factor, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4); ECM, Schwann cells, BDNF and NT-4, combined with intravitreal injection of BDNF. The grafts were transplanted onto the transected optic nerve. RGC regeneration was evaluated by dil retrograde labeling, immunohistochemistry, and electron microscopy at 3 weeks post-operation. The degree of dil labeled RGC was approximately 2% for ECM alone, and 10% for ECM and Schwann cells (p < 0.01). The labeling increased to approximately 20% by administration of neurotrophins. The addition of intravitreous BDNF injection resulted in highest labeling percentage of 30%. Immunohistochemical study showed that axons were association with GAP-43 and cell adhesion molecules. Neurotrophin receptors (Trk-A and Trk-B) were detected in nerve fibers both in the retina and in the graft. Remyelination was seen by electron microscopic observation. These results demonstrate that the regeneration of RGC axons is induced with the use of cultured Schwann cells and ECM as promoting factors for regrowth. The degree of regeneration was significantly increased by neurotrophins in the grafts and in the vitreous.
Collapse
Affiliation(s)
- H Negishi
- Department of Ophthalmology and Visual Science (D1), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
18
|
Farkas RH, Grosskreutz CL. Apoptosis, neuroprotection, and retinal ganglion cell death: an overview. Int Ophthalmol Clin 2001; 41:111-30. [PMID: 11198138 DOI: 10.1097/00004397-200101000-00011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R H Farkas
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | |
Collapse
|
19
|
Abstract
In this review, we summarize the main stages of structural and functional development of retinal ganglion cells (RGCs). We first consider the various mechanisms that are involved in restructuring of dendritic trees. To date, many mechanisms have been implicated including target-dependent factors, interactions from neighboring RGCs, and afferent signaling. We also review recent evidence showing how rapidly such dendritic remodeling might occur, along with the intracellular signaling pathways underlying these rearrangements. Concurrent with such structural changes, the functional responses of RGCs also alter during maturation, from sub-threshold firing to reliable spiking patterns. Here we consider the development of intrinsic membrane properties and how they might contribute to the spontaneous firing patterns observed before the onset of vision. We then review the mechanisms by which this spontaneous activity becomes correlated across neighboring RGCs to form waves of activity. Finally, the relative importance of spontaneous versus light-evoked activity is discussed in relation to the emergence of mature receptive field properties.
Collapse
Affiliation(s)
- E Sernagor
- Department of Neurobiology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
20
|
|