1
|
Khokhar M. Non-invasive detection of renal disease biomarkers through breath analysis. J Breath Res 2024; 18:024001. [PMID: 38099568 DOI: 10.1088/1752-7163/ad15fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Harshman SW, Jung AE, Strayer KE, Alfred BL, Mattamana J, Veigl AR, Dash AI, Salter CE, Stoner-Dixon MA, Kelly JT, Davidson CN, Pitsch RL, Martin JA. Investigation of an individual with background levels of exhaled isoprene: a case study. J Breath Res 2023; 17. [PMID: 36596256 DOI: 10.1088/1752-7163/acaf98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Isoprene is one of the most abundant and most frequently evaluated volatile organic compounds in exhaled breath. Recently, several individuals with background levels of exhaled isoprene have been identified. Here, case study data are provided for an individual, identified from a previous study, with this low prevalence phenotype. It is hypothesized that the individual will illustrate low levels of exhaled isoprene at rest and during exercise. At rest, the subject (7.1 ppb) shows background (μ= 14.2 ± 7.0 ppb) levels of exhaled isoprene while the control group illustrates significantly higher quantities (μ= 266.2 ± 72.3 ppb) via proton transfer reaction mass spectrometry (PTR-MS). The result, background levels of isoprene at rest, is verified by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) collections with the individual showing -3.6 ppb exhaled isoprene while the room background containedμ= -4.1 ± 0.1 ppb isoprene. As isoprene has been shown previously to increase at the initiation of exercise, exercise bike experiments were performed with the individual identified with low isoprene, yielding low and invariant levels of exhaled isoprene (μ= 6.6 ± 0.1 ppb) during the exercise while control subjects illustrated an approximate 2.5-fold increase (preμ= 286.3 ± 43.8 ppb, exerciseμ= 573.0 ± 147.8 ppb) in exhaled isoprene upon exercise start. Additionally, exhaled breath bag data showed a significant decrease in isoprene (delta post/pre, p = 0.0078) of the control group following the exercise regimen. Finally, TD-GC-MS results for exhaled isoprene from the individual's family (mother, father, sister and maternal grandmother) illustrated that the mother and father exhibited isoprene values (28.5 ppb, 77.2 ppb) below control samples 95% confidence interval (μ= 166.8 ± 43.3 ppb) while the individual's sister (182.0 ppb) was within the control range. These data provide evidence for a large dynamic range in exhaled isoprene in this family. Collectively, these results provide additional data surrounding the existence of a small population of individuals with background levels of exhaled isoprene.
Collapse
Affiliation(s)
- Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Anne E Jung
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Kraig E Strayer
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Bryan L Alfred
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John Mattamana
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Alena R Veigl
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Aubrianne I Dash
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Charles E Salter
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Madison A Stoner-Dixon
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John T Kelly
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Jennifer A Martin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2977 Hobson Way, Area B, Building 653, Wright-Patterson AFB, OH 45433, United States of America
| |
Collapse
|
3
|
Capodicasa E, Trovarelli G, Brunori F, Vecchi L, Carobi C, De Medio GE, Pelli MA, Buoncristiani U. Lack of Isoprene Overproduction during Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686080202200108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
ObjectiveIsoprene is the constitutive unit of isoprenoid lipids and sterols. However, it is also a potential toxic and carcinogenic agent. Recent findings of a marked and prolonged isoprene overproduction induced by hemodialysis sessions raises the question of isoprene behavior in patients on peritoneal dialysis.DesignA study with repeated measures per patient and healthy control.SettingNephrology and Dialysis Unit and Perugia University Medical School.PatientsSixteen consecutive patients on regular continuous ambulatory peritoneal dialysis (CAPD) were evaluated. Endogenous isoprene was analyzed using gas chromatographic assay of breath isoprene, collected at set times before and after dialysis fluid exchange.ResultsNo significant variations were found in breath isoprene concentrations in the different samples from each patient, and levels were almost stable within the normal range of healthy controls.ConclusionThese results show that CAPD, unlike hemodialysis, has little or no effect on isoprene and isoprenoid-related lipid turnover. This lack of increased endogenous isoprene synthesis, in addition to being a distinctive metabolic feature of CAPD, could have important pathophysiological and clinical implications.
Collapse
Affiliation(s)
- Enrico Capodicasa
- Department of Clinical and Experimental Medicine, Perugia University Medical School, Perugia, Italy
| | - Gianfranco Trovarelli
- Institute of Biochemistry and Medical Chemistry, Perugia University Medical School, Perugia, Italy
| | - Federica Brunori
- Institute of Biochemistry and Medical Chemistry, Perugia University Medical School, Perugia, Italy
| | - Luigi Vecchi
- Perugia University Medical School; Nephrology and Dialysis Unit, Perugia University Medical School, Perugia, Italy
| | - Carmen Carobi
- Perugia University Medical School; Nephrology and Dialysis Unit, Perugia University Medical School, Perugia, Italy
| | - Gianna E. De Medio
- Perugia University Medical School; Nephrology and Dialysis Unit, Perugia University Medical School, Perugia, Italy
| | - Maria A. Pelli
- Silvestrini General Hospital; Department of Emergency and General Surgery, Perugia University Medical School, Perugia, Italy
| | - Umberto Buoncristiani
- Perugia University Medical School; Nephrology and Dialysis Unit, Perugia University Medical School, Perugia, Italy
| |
Collapse
|
4
|
Wirtz LM, Kreuer S, Volk T, Hüppe T. Moderne Atemgasanalysen. Med Klin Intensivmed Notfmed 2019; 114:655-660. [DOI: 10.1007/s00063-019-0544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
5
|
Breath analysis as promising indicator of hemodialysis efficiency. Clin Exp Nephrol 2018; 23:251-257. [PMID: 30121801 DOI: 10.1007/s10157-018-1625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The measurement of trimethylamine and isoprene in exhaled breath collected from dialysed patients indicates the changes in concentration of both compounds during dialysis. The aim of the presented study was to confirm diagnostic usefulness of TMA and isoprene detected in breath, as potential biomarkers of hemodialysis efficiency. METHODS The samples of exhaled breath were collected from 22 dialyzed patients (9 women, 13 men) before and after hemodialysis (HD). All analyses were carried out using a gas chromatograph equipped with a mass spectrometer. Thermal desorption was used as breath sample enrichment method. RESULTS Chromatographic analysis of breath samples indicated statistically significant differences in trimethylamine (TMA) and 2-methyl-1,3-butadiene (isoprene) concentrations in patients' breath collected before and after HD. TMA concentrations measured in breath samples, before dialysis, ranged from 0.024 to 0.461 nmol/L. After dialysis, the values of detected TMA were lower versus output values and ranged from 0.008 to 0.050 nmol/L. Isoprene concentrations before dialysis were present in the range from 0.236 to 9.718 nmol/L, after dialysis in the range from 0.478 to 26.182 nmol/L. Additionally, the dependences of TMA and isoprene concentrations, detected in breath with renal efficiency parameters detected in blood, were studied. The relationships between TMA and urea (r = 0.67; p < 0.00001) and creatinine (r = 0.61; p = 0.00002) were checked. In case of isoprene considerably higher concentrations were observed after dialysis, but no statistically significant correlation of isoprene with blood parameters was noticed. CONCLUSION The observed decrease of TMA concentrations during dialysis could be useful as a measure of dialysis efficiency. The explanation of isoprene increase in breath during dialysis requires further investigation.
Collapse
|
6
|
Capodicasa E, Brunori F, De Medio GE, Pelli MA, Vecchi L, Buoncristiani U. Effect of Two-Hour Daily Hemodialysis and Sham Dialysis on Breath Isoprene Exhalation. Int J Artif Organs 2018; 30:583-8. [PMID: 17674334 DOI: 10.1177/039139880703000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Isoprene, a volatile hydrocarbon produced by the human organism, is currently being extensively investigated because the mechanisms underlying its endogenous origin are unknown and because experiments suggest it is toxic and cancerogenous. Previous reports of increases in breath isoprene concentrations during 4-hour, thrice-weekly hemodialysis, but not during continuous ambulatorial peritoneal dialysis, prompted us to assess the behavior of isoprene in another dialytic modality, i.e., short daily hemodialysis (short DHD). Furthermore, in order to determine whether removal of solutes and/or contact of blood with the dialytic membrane influenced the metabolism of isoprene, we performed a sham short hemodialysis session in a subgroup of 8 patients (sham short HD), i.e., with blood flowing through a dialyzer but without dialysate and ultrafiltration. Methods The present study evaluates the effects of a two-hour short DHD and a two-hour session of sham HD on isoprene breath levels, as determined by gas chromatography before, during and after sessions. Parallel analyses of ambient air and monitoring of blood pressure and heart rate were performed. Results Both short DHD and sham DHD induced an increase in breath isoprene exhalation in all patients without being associated with significant hemodynamic variations. Conclusion These findings suggest that the increase in breath isoprene after a session of hemodialysis is neither a reaction to mevalonate depletion nor to metabolic variations induced by the depurative effect, because these changes do not occur during sham HD. It is not related to hemodynamic changes because none were observed in this experimental model. The isoprene increase seems to be of metabolic origin and appears to be connected in some way with the extracorporeal circuit. These interesting findings provide a further impulse to study the biosynthetic pathways involved and to investigate the medical and biological significance of isoprene in humans. (Int J Artif Organs 2007; 30: 583–8)
Collapse
Affiliation(s)
- E Capodicasa
- Department of Clinical and Experimental Medicine, Perugia University Medical School, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Eng K, Alkhouri N, Cikach F, Patel N, Yan C, Grove D, Lopez R, Rome E, Dweik RA. Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls. J Breath Res 2015; 9:026002. [PMID: 25891513 DOI: 10.1088/1752-7155/9/2/026002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Breath testing is increasingly being used as a non-invasive diagnostic tool for disease states across medicine. The purpose of this study was to compare the levels of volatile organic compounds (VOCs) as measured by mass spectrometry in healthy children and children with chronic liver disease (CLD). Patients between the ages of 6 and 21 were recruited for the study. Control subjects were recruited from a general pediatric population during well-child visits, while patients with CLD were recruited from pediatric gastroenterology clinic visits. The diagnosis of CLD was confirmed by clinical, laboratory, and/or histologic data. A single exhaled breath was collected and analyzed by means of selected-ion flow-tube mass spectrometry per protocol. A total of 104 patients were included in the study (49 with CLD and 55 healthy controls). Of the patients with CLD, 20 had advanced liver fibrosis (F3-F4). In the CLD cohort, levels of exhaled 1-decene, 1-heptene, 1-octene and 3 methylhexane were found to be significantly higher when compared to the control population (p < 0.001, p = 0.035, p < 0.001 and p = 0.004, respectively). Exhaled 1-nonene, (E)-2-nonene, and dimethyl sulfide levels were found to be significantly lower in patients with CLD patients when compared to controls (p < 0.001, p < 0.001 and p = 0.007, respectively). By utilizing a combination of five of the VOCs, the accuracy for predicting the presence of CLD was excellent (AUROC = 0.97). Our study demonstrates that children with CLD have a unique pattern of exhaled VOCs. Utilization of a combination of these VOCs represents a promising non-invasive diagnostic tool and may provide further insight into the pathophysiologic processes and pathways leading to pediatric liver disease. Further analysis of these compounds in external cohorts are needed to validate our findings.
Collapse
Affiliation(s)
- Katharine Eng
- Department of Pediatric Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 2014; 6:357-76. [PMID: 24471956 DOI: 10.4155/bio.13.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the last few decades intense scientific research has been placed on the relationship between trace substances found in exhaled breath such as volatile organic compounds (VOC) and a wide range of local or systemic diseases. Although currently there is no general consensus, results imply that VOC have a different profile depending on the organ or disease that generates them. The association between a specific pathology and exhaled breath odor is particularly evident in patients with medical conditions such as liver, renal or oral diseases. In other cases the unpleasant odors can be associated with the whole body and have a genetic underlying cause. The present review describes the current advances in identifying and quantifying VOC used as biomarkers for a number of systemic diseases. A special focus will be placed on volatiles that characterize unpleasant breath 'fingerprints' such as fetor hepaticus; uremic fetor; fetor ex ore or trimethylaminuria.
Collapse
|
9
|
Mochalski P, King J, Haas M, Unterkofler K, Amann A, Mayer G. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrol 2014; 15:43. [PMID: 24607025 PMCID: PMC3984739 DOI: 10.1186/1471-2369-15-43] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 02/28/2014] [Indexed: 01/20/2023] Open
Abstract
Background Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment. Methods Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as pre-concentration method. Results A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients. Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide, thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment. Conclusions Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Anton Amann
- Breath Research Institute, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria.
| | | |
Collapse
|
10
|
Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 2014; 6:843-57. [DOI: 10.4155/bio.14.26] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The volatile metabolites present in trace amounts in exhaled breath of healthy individuals and patients, for example those with advanced chronic kidney disease (CKD), can now be detected and quantified by sensitive analytical techniques. In this review, special attention is given to the major retention metabolites resulting from dialysis-dependent CKD stage 5 and especially ammonia, as a potential estimator of the severity of uremia. However, other biomarkers are important, including the hydrocarbons isoprene, ethane and pentane, in that they are likely to indicate tissue injury associated with the dialysis treatment itself. Evaluation of over-hydration, a serious complication of CKD stage5 can be improved by analysis of deuterium in exhaled water vapor after ingestion of a known amount of deuterated water, so providing total body water measurements at the bedside to support clinical management of volume status.
Collapse
|
11
|
Jankowski J, Westhof T, Vaziri ND, Ingrosso D, Perna AF. Gases as Uremic Toxins: Is There Something in the Air? Semin Nephrol 2014; 34:135-50. [DOI: 10.1016/j.semnephrol.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Meinardi S, Jin KB, Barletta B, Blake DR, Vaziri ND. Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. Biochim Biophys Acta Gen Subj 2013; 1830:2531-7. [PMID: 23274524 DOI: 10.1016/j.bbagen.2012.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND While much is known about the effect of chronic kidney disease (CKD) on composition of body fluids little is known regarding its impact on the gases found in exhaled breath or produced by intestinal microbiome. We have recently shown significant changes in the composition of intestinal microbiome in humans and animals with CKD. This study tested the hypothesis that uremia-induced changes in cellular metabolism and intestinal microbiome may modify the volatile organic metabolites found in the exhaled breath or generated by intestinal flora. METHODS SD rats were randomized to CKD (5/6 nephrectomy) or control (sham operation) groups. Exhaled breath was collected by enclosing each animal in a glass chamber flushed with clean air, then sealed for 45 min and the trapped air collected. Feces were collected, dissolved in pure water, incubated at 37 degrees C in glass reactors for 24 h and the trapped air collected. Collected gases were analyzed by gas chromatography. RESULTS Over 50 gases were detected in the exhaled breath and 36 in cultured feces. Four gases in exhaled breath and 4 generated by cultured feces were significantly different in the two groups. The exhaled breath in CKD rats showed an early rise in isoprene and a late fall in linear aldehydes. The CKD animals' cultured feces released larger amounts of dimethyldisulfide, dimethyltrisulfide, and two thioesters. CONCLUSIONS CKD significantly changes the composition of exhaled breath and gaseous products of intestinal flora. GENERAL SIGNIFICANCE Analysis of breath and bowel gases may provide useful biomarkers for detection and progression of CKD and its complications.
Collapse
Affiliation(s)
- Simone Meinardi
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Dadamio J, Van den Velde S, Laleman W, Van Hee P, Coucke W, Nevens F, Quirynen M. Breath biomarkers of liver cirrhosis. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 905:17-22. [PMID: 22921634 DOI: 10.1016/j.jchromb.2012.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
The diagnosis of asymptomatic cirrhosis in patients with liver disease is of importance to start screening for complications in due time. Liver biopsy is neither sensitive nor practical enough to be used as a frequent follow-up test in patients with chronic liver disease. The volatile organic compounds present in exhaled breath offer the possibility of exploring internal physiologic and pathologic process in a non invasive way. This study examined whether a specific pattern of biomarkers can be found in breath samples of patients with cirrhosis. To this aim samples of alveolar breath from patients with cirrhosis and healthy volunteers were analyzed using gas chromatography-mass spectrometry. When linear discriminant analysis was used to search for a model(s)/pattern of compounds characteristic for liver cirrhosis, 24 models of 8 independent compounds could distinguish between the groups. The sensitivity and specificity (between 82% and 88%, and 96% and 100%, respectively) of the models suggest that a specific pattern of breath biomarkers can be found in patients with cirrhosis, which may allow detecting this complication of chronic liver disease in an early stage.
Collapse
Affiliation(s)
- Jesica Dadamio
- Department of Periodontology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, Teschl S, Hinterhuber H, Amann A. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol 2010; 267:626-37. [PMID: 20869370 DOI: 10.1016/j.jtbi.2010.09.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.
Collapse
Affiliation(s)
- Julian King
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Smith D, Španěl P, Enderby B, Lenney W, Turner C, Davies SJ. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J Breath Res 2009; 4:017101. [DOI: 10.1088/1752-7155/4/1/017101] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Anderson JC, Lamm WJE, Hlastala MP. Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J Appl Physiol (1985) 2006; 100:880-9. [PMID: 16282431 DOI: 10.1152/japplphysiol.00868.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054 ± 0.016 liter−1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79 ± 0.04 and 0.85 ± 0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium + mucosal tissue) thickness, this model predicted accurately ( R2 = 0.94 ± 0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Medicine, Univ. of Washington, Seattle, Washington 98195-6522, USA.
| | | | | |
Collapse
|
17
|
Turner C, Spanel P, Smith D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol Meas 2005; 27:13-22. [PMID: 16365507 DOI: 10.1088/0967-3334/27/1/002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thirty volunteers (19 males, 11 females) were recruited for a 6-month study of the volatile compounds in their exhaled breath using the selected ion flow tube mass spectrometry (SIFT-MS) analytical technique. Volunteers provided weekly breath samples between 8:45 am and 1 pm (before lunch), and the concentrations of several trace compounds were obtained. In this paper, we focus on the isoprene in alveolar breath, which was monitored by SIFT-MS using NO(+) precursor ions. The mean isoprene level for all samples was 118 parts per billion (ppb) with a standard deviation of 68 ppb and the range of values for breath samples given is 0-474 ppb. Variability in isoprene levels was similar in most volunteers. Isoprene levels increased immediately after moderate exercise, but returned to normal within 2-3 min for those few volunteers that were investigated. Cholesterol levels analysed for only three of the subjects were not obviously correlated with isoprene concentration in breath. Differences in isoprene levels were not directly correlated to gender, age or body mass index.
Collapse
Affiliation(s)
- Claire Turner
- Silsoe Research Institute, Wrest Park, Silsoe, Bedford MK45 4HS, UK.
| | | | | |
Collapse
|
18
|
Skeldon KD, Patterson C, Wyse CA, Gibson GM, Padgett MJ, Longbottom C, McMillan LC. The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy. ACTA ACUST UNITED AC 2005. [DOI: 10.1088/1464-4258/7/6/019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Moser B, Bodrogi F, Eibl G, Lechner M, Rieder J, Lirk P. Mass spectrometric profile of exhaled breath—field study by PTR-MS. Respir Physiol Neurobiol 2005; 145:295-300. [PMID: 15705543 DOI: 10.1016/j.resp.2004.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2004] [Indexed: 10/25/2022]
Abstract
Recently, increased interest has focused on the diagnostic potential of volatile organic compounds (VOC) exhaled in human breath as this substance group has been conjectured in indoor air quality and disease screening. Proton transfer reaction-mass spectrometry (PTR-MS) has been established as a new tool for a rapid determination of exhaled air profile. However, no investigations have been carried out into the profile of exhaled air as determined by PTR-MS. Therefore, it was the aim of the present study to determine the profile of exhaled breath in a field survey enrolling 344 persons. Analysis was performed using PTR-MS. No significant correlations with age, blood pressure, and body mass index could be observed with any molecular mass. The present study delineates possible reference values for PTR-MS investigations into exhaled air profile. In conclusion, the present study was the first to delineate mass spectrometric characteristics of an average patient sample as possible reference values.
Collapse
Affiliation(s)
- Berthold Moser
- Department of Anesthesiology and Critical Care Medicine, Leopold Franzens University, Anichstr. 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
20
|
Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis--focus on volatile organic compounds. Clin Chim Acta 2004; 347:25-39. [PMID: 15313139 DOI: 10.1016/j.cccn.2004.04.023] [Citation(s) in RCA: 605] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/30/2004] [Accepted: 04/16/2004] [Indexed: 01/03/2023]
Abstract
Breath analysis has attracted a considerable amount of scientific and clinical interest during the last decade. In contrast to NO, which is predominantly generated in the bronchial system, volatile organic compounds (VOCs) are mainly blood borne and therefore enable monitoring of different processes in the body. Exhaled ethane and pentane concentrations were elevated in inflammatory diseases. Acetone was linked to dextrose metabolism and lipolysis. Exhaled isoprene concentrations showed correlations with cholesterol biosynthesis. Exhaled levels of sulphur-containing compounds were elevated in liver failure and allograft rejection. Looking at a set of volatile markers may enable recognition and diagnosis of complex diseases such as lung or breast cancer. Due to technical problems of sampling and analysis and a lack of normalization and standardization, huge variations exist between results of different studies. This is among the main reasons why breath analysis could not yet been introduced into clinical practice. This review addresses the basic principles of breath analysis and the diagnostic potential of different volatile breath markers. Analytical procedures, issues concerning biochemistry and exhalation mechanisms of volatile substances, and future developments will be discussed.
Collapse
Affiliation(s)
- Wolfram Miekisch
- Department of Anaesthesia and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
21
|
Fend R, Bessant C, Williams AJ, Woodman AC. Monitoring haemodialysis using electronic nose and chemometrics. Biosens Bioelectron 2004; 19:1581-90. [PMID: 15142591 DOI: 10.1016/j.bios.2003.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
An ever-increasing number of patients have to undergo regular renal dialysis to compensate for acute or chronic renal failure. The adequacy of the treatment has a profound effect on patients' morbidity and mortality. Therefore, it is necessary to assess the delivered dialysis dose. For the quantification of the dialysis dose, two parameters are most commonly used, namely the K(t)/V value (normalised dose of dialysis) and the urea reduction rate, yet the prescribed dialysis dose often differs from the actual delivered dialysis dose. Currently, no interactive process is available to ensure optimal treatment. The aim of this study was to investigate the potential for an "electronic nose" as a novel monitoring tool for haemodialysis. Blood samples were analysed using an electronic nose, comprising an array of 14 conducting polymer sensors, and compared to traditional biochemistry. Principal component analysis and hierarchical cluster analysis were applied to evaluate the data, and demonstrated the ability to distinguish between pre-dialysis blood from post-dialysis blood independent of the method used. It is concluded that the electronic nose is capable of discriminating pre-dialysis from post-dialysis blood and hence, together with an appropriate classification model, suitable for on-line monitoring.
Collapse
Affiliation(s)
- Reinhard Fend
- Cranfield BioMedical Centre, Cranfield University at Silsoe, Silsoe, Bedfordshire MK 45 4DT, UK
| | | | | | | |
Collapse
|
22
|
Leaf DA, Kleinman MT, Deitrick RW. The Effects of Exercise on Markers of Lipid Peroxidation in Renal Dialysis Patients Compared with Control Subjects. Am J Med Sci 2004; 327:9-14. [PMID: 14722390 DOI: 10.1097/00000441-200401000-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to compare the susceptibility to exercise-induced lipid peroxidation of patients on chronic maintenance dialysis (CMD) and non-CMD control subjects. DESIGN Cross-sectional comparison of exercise-induced changes in breath ethane and pentane flux between patients on CMD (group A) and an age-, gender-, medical diagnosis-, smoking-, and ethanol consumption-matched comparison group (group B). Breath ethane and pentane were measured at rest before exercise, during cardiopulmonary exercise stress testing (CPX) at lactic acidosis threshold (Vo2lat), and 5 minutes after CPX. RESULTS Group comparisons of clinical characteristics reveal that the groups were similar in terms of age, ethnicity, comorbid diagnoses, prevalence of medication use, BMI, measurements of aerobic exercise capacity, cigarette smoking and ethanol consumption behaviors. All subjects successfully completed the CPX protocol achieving Vo2lat. There were significant differences in breath ethane flux between group A and B subjects, with greater pre-exercise, Vo2lat, and postexercise ethane levels in group A compared with group B subjects, and significant group differences, with lower breath ethane/pentane flux ratios at rest, Vo2lat, and recovery with lower ratios in group B than group A subjects. DISCUSSION/CONCLUSIONS This study shows that patients on CMD have greater lipid peroxidation compared with control subjects at rest and during and after physical exercise. In addition, compared with control subjects, patients on CMD preferentially peroxidize n-3 polyunsaturated fatty acids at rest and during physical exercise and recovery. The lipid peroxidation profile may result in an unfavorable endoperoxide shift and should be evaluated further, along with modalities to reduce oxidative stress among patients on CMD.
Collapse
Affiliation(s)
- David Alexander Leaf
- Department of Medicine, UCLA School of Medicine and Greater Los Angeles VA Healthcare System, CA 90073, USA.
| | | | | |
Collapse
|
23
|
Abstract
Breath ethane measurements in hemodialysis indicate that a portion of these patients suffer increased oxidant stress, consistent with findings using other methods for oxidant stress determination. Loosely-bound iron definitely appears in the bloodstream when substantial doses of IV iron are administered, since transferrin is fully saturated, but our investigations generally do not show short-term oxidant stress from this treatment. If small doses of IV iron are utilized, transferrin saturation can be avoided, and risk is minimized. The vitamin C status of hemodialysis patients is usually lower than the general population, and the impact of this deficiency must be assessed in controlled investigations. Various interventions, including the vitamin E-bonded dialyzer and dietary antioxidant supplements, may ameliorate a portion of the oxidant stress in hemodialysis patients.
Collapse
Affiliation(s)
- Garry J Handelman
- Health and Clinical Science, University of Massachusetts, Lowell 01854, USA.
| |
Collapse
|
24
|
Lirk P, Bodrogi F, Raifer H, Greiner K, Ulmer H, Rieder J. Elective haemodialysis increases exhaled isoprene. Nephrol Dial Transplant 2003; 18:937-41. [PMID: 12686668 DOI: 10.1093/ndt/gfg049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Uraemic odour is a characteristic feature of patients with end-stage renal disease (ESRD). However, few investigations have been carried out into the composition of exhaled air in ESRD patients undergoing haemodialysis (HD). Increases of exhaled isoprene levels by a factor of up to 2.7 following HD have been reported. METHODS We attempted to confirm these findings in 50 patients undergoing HD using haemophan (n=23) or polysulphone (n=27) dialysis membranes. Parallel evaluation of ambient air, calorie intake, medication and haemodynamic variables was performed. Samples were analysed using proton transfer reaction-mass spectrometry (PTR-MS). RESULTS Significant changes in breath isoprene concentration were observed when comparing patients before [39.14+/-14.96 parts per billion (ppbv)] and after (63.54+/-27.59 ppbv) dialysis (P<0.001). The quotient of values before and after dialysis was 1.84 (SD 1.41). No significant differences in isoprene kinetics were found between the use of haemophan and polysulphone membranes. No significant correlations were observed between isoprene quotients and variations in blood pressure during HD, calorie intake, ingestion of lipid-lowering drugs or serum lipid levels. CONCLUSIONS Isoprene concentration was higher in the exhaled air of patients after HD as compared with values before HD. Large interindividual variability existed in isoprene kinetics. Oxidative stress appears to be an unlikely cause for this rise. An alternative hypothesis is an influence of respiratory variables on isoprene exhalation based upon Henry's law constant. We therefore propose to perform online monitoring of isoprene exhalation by PTR-MS during the HD session to investigate the possible influence of respiratory variables.
Collapse
Affiliation(s)
- Philipp Lirk
- Department of Anesthesiology and Critical Care Medicine, Leopold Franzens University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Lärstad M, Loh C, Ljungkvist G, Olin AC, Torén K. Determination of ethane, pentane and isoprene in exhaled air using a multi-bed adsorbent and end-cut gas-solid chromatography. Analyst 2002; 127:1440-5. [PMID: 12475031 DOI: 10.1039/b205994k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the determination of exhaled ethane, pentane and isoprene was developed and validated. The method was based on pre-concentration of the analytes on a multi-bed solid adsorbent tube containing Tenax TA, Carboxen 569 and Carboxen 1000, thermal desorption and gas chromatography (GC) with flame ionisation detection (FID). A pre-column in an end-cut GC system was used to avoid problems with water and strongly retained substances. The detection limits were 5, 2 and 6 pmol per sample for ethane, pentane and isoprene, respectively, using a sample volume of 500 ml. The linearity was good for all analytes with correlation coefficients exceeding 0.999. The repeatability for exhaled air samples was 7, 10 and 12% for ethane, pentane and isoprene, respectively. Analysis of a certified reference material of ethane and pentane did not differ significantly from the certified values. Ethane and pentane levels were stable up to six days of storage in sample tubes. Isoprene levels were not stable during storage in the sample tubes used here, but using Carbopack X instead of Carboxen 569, levels were stable up to two days. The levels of exhaled ethane, pentane and isoprene in healthy subjects (n = 4) were 8.1+/-5.8 pmol l(-1), 11+/-5.8 pmol l(-1) and 2.4+/-0.90 mnol l(-1), respectively. The method could, with minor modifications, be used to determine other low-molecular hydrocarbons in exhaled air as well.
Collapse
Affiliation(s)
- Mona Lärstad
- Department of Occupational Medicine, The Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Csanády GA, Filser JG. Toxicokinetics of inhaled and endogenous isoprene in mice, rats, and humans. Chem Biol Interact 2001; 135-136:679-85. [PMID: 11397422 DOI: 10.1016/s0009-2797(01)00204-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Isoprene (IP) is ubiquitous in the environment and is used for the production of polymers. It is metabolized in vivo to reactive epoxides, which might cause the tumors observed in IP exposed rodents. Detailed knowledge of the body and tissue burden of inhaled IP and its intermediate epoxides can be gained using a physiological toxicokinetic (PT) model. For this purpose, a PT-model was developed for IP in mouse, rat, and human. Experimentally determined partition coefficients were taken from the literature. Metabolic parameters were obtained from gas-uptake experiments. The measured data could be described by introducing hepatic and extrahepatic metabolism into the model. At exposure concentrations up to 50 ppm, the rate of metabolism at steady-state is 14 times faster in mice and about 8 times faster in rats than in humans (2.5 micromol/h/kg at 50 ppm IP in air). IP does accumulate only barely due to its fast metabolism and its low thermodynamic partition coefficient whole body:air. IP is produced endogenously. This production is negligible in rodents compared to that in humans (0.34 micromol/h/kg). About 90% of IP produced endogenously in humans is metabolized and 10% is exhaled unchanged. The blood concentration of IP in non-exposed humans is predicted to be 9.5 nmol/l. The area under the blood concentration-time curve (AUC) following exposure over 8 h to 10 ppm IP is about 4 times higher than the AUC resulting from the unavoidable endogenous IP over 24 h. A comparison of such AUCs can be used for establishing workplace exposure limits. For estimation of the absolute risk, knowledge of the body burden of the epoxide intermediates of IP is required. Unfortunately, such data are not yet available.
Collapse
Affiliation(s)
- G A Csanády
- Institute of Toxicology, GSF National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | |
Collapse
|
27
|
Trovarelli G, Brunori F, De Medio GE, Timio M, Lippi G, Pelli MA, Capodicasa E. Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. Nephron Clin Pract 2001; 88:44-7. [PMID: 11340350 DOI: 10.1159/000045958] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings of increased isoprene emission in the exhaled breath of patients undergoing haemodialysis and experimental evidence of the potential toxic and cancerogenic effects of isoprene hydrocarbon led us to assess how long haemodialysis patients are exposed to how much isoprene after a single haemodialysis session. Patients with end-stage renal failure on regular 4-hour (from 08.00 to 12.00 h) maintenance haemodialysis three times weekly were monitored. The breath isoprene content was analyzed by gas chromatography. Intrapatient evaluations were performed by collecting samples before, during, and immediately after the haemodialysis session, during the following hours, and on the following nondialysis day. The breath isoprene content increased in all patients. Isoprene overproduction showing a biphasic pattern was first detected soon after the dialysis session ended. These data show that haemodialyzed patients seem to be consistently exposed to high endogenous isoprene concentrations. The mechanisms and implications of this endogenous isoprene overproduction need to be elucidated with regard to the mevalonic pathway and in the physiopathological setting of the uraemia-dialysis syndrome.
Collapse
Affiliation(s)
- G Trovarelli
- Institute of Biochemistry and Medical Chemistry, Perugia University Medical School, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Davies S, Spanel P, Smith D. A new 'online' method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant 2001; 16:836-9. [PMID: 11274283 DOI: 10.1093/ndt/16.4.836] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Isoprene is the most abundant hydrocarbon present in breath, and recent reports indicate that breath concentrations increase following haemodialysis. The purpose of this study was to establish whether selected ion flow tube mass spectrometry (SIFT-MS), a newly established technique in breath analysis, may be used to quantify breath isoprene in haemodialysis patients in the clinical setting. SIFT-MS is compared and contrasted with the established gas chromatography mass spectrometric technique for this purpose. METHODS Three consecutive exhalations from 19 haemodialysis patients (12 males, seven females) undergoing a morning dialysis shift were analysed just prior to commencing treatment. Within 5 min of completing their usual dialysis regimen, using polysulphone membranes, the breath of each patient was analysed again. Additional contemporary samples were obtained from 17 normal controls. Breath isoprene was quantified using SIFT-MS, a method previously validated quantitatively using neat isoprene. RESULTS Successful measurements of breath isoprene were obtained for each subject within 2 min, with minimum disruption to a busy dialysis environment. The coefficient of variation of triplicate measurements of breath isoprene was <10%. Prior to dialysis, the mean (+/-SD) breath isoprene concentration (138+/-63 parts per billion (ppb)) was significantly greater than for normal controls (89+/-36 ppb; P=0.016). Immediately following treatment, breath isoprene increased significantly to 184+/-95 ppb (P=0.023). CONCLUSIONS SIFT-MS permits the accurate and rapid measurement of breath isoprene in haemodialysis patients in the clinical setting. The previously reported increase in breath isoprene following dialysis treatment is confirmed. SIFT-MS is the ideal analytical tool to investigate this phenomenon further.
Collapse
Affiliation(s)
- S Davies
- Centre for Science and Technology in Medicine, School of Postgraduate Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | | | | |
Collapse
|
29
|
Galli F, Varga Z, Balla J, Ferraro B, Canestrari F, Floridi A, Kakuk G, Buoncristiani U. Vitamin E, lipid profile, and peroxidation in hemodialysis patients. KIDNEY INTERNATIONAL. SUPPLEMENT 2001; 78:S148-54. [PMID: 11169001 DOI: 10.1046/j.1523-1755.2001.59780148.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypertriglyceridemia, lipid peroxidation, and abnormalities of the plasma fatty acid (PUFA) profile may be important risk factors for the atherosclerotic cardiovascular disease in hemodialysis (HD) patients. METHODS We investigated how these factors are affected by vitamin E supplementation carried out by oral administration (clinical study 1) and dialysis with vitamin E-modified dialyzers (clinical study 2). RESULTS In the HD patients, conditions of relative vitamin E deficiency were observed [lowered vitamin E/triglyceride (TG) ratio] in the presence of high levels of thiobarbituric acid reactants (TBARs) and decreased levels of the polyunsaturated fraction of PUFAs paired with an increased amount of monounsaturated ones (MUFA). In both studies, vitamin E supplementation significantly increased the levels of vitamin E in the plasma without affecting TG levels and provided a partial correction of TBAR levels. Of note was the relative increase in the PUFA fraction, which gave solid proof of an anti(per)oxidant effect of vitamin E supplementation in HD patients. Vitamin E supplementation was also observed to increase plasma levels of reduced glutathione and NOx (NO2 + NO3). CONCLUSION The results suggest that vitamin E supplementation may be an effective accessory therapy to combat oxidative stress-lowering lipid peroxidation in HD patients.
Collapse
Affiliation(s)
- F Galli
- G. Fornaini Institute of Biological Chemistry, University of Urbino, Urbino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|