1
|
Hu Z, Komal F, Singh A, Deng M. Generation of a Spiral Ganglion Neuron Degeneration Mouse Model. Front Cell Dev Biol 2021; 9:761847. [PMID: 34778272 PMCID: PMC8578993 DOI: 10.3389/fcell.2021.761847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022] Open
Abstract
Spiral ganglion neurons (SGNs) can be injured by a wide variety of insults. However, there still is a lack of degeneration models to specifically damage the SGNs without disturbing other types of cells in the inner ear. This study aims to generate an SGN-specific damage model using the Cre-LoxP transgenic mouse strains. The Cre-inducible diphtheria toxin receptor (iDTR+/+) knock-in mouse strain was crossed with a mouse strain with Cre activity specific to neurons (NeflCreER/CreER). Expression of the Cre-recombinase activity was evaluated using the reporter mouse strain Ai9 at pre-hearing, hearing onset, and post-hearing stages. Accordingly, heterozygous NeflCreER/+;iDTR+/– mice were treated with tamoxifen on postnatal days 1–5 (P1–5), followed by diphtheria toxin (DT) or vehicle injection on P7, P14, and P21 to evaluate the SGN loss. Robust tamoxifen-induced Cre-mediated Ai9 tdTomato fluorescence was observed in the SGN area of heterozygous NeflCreER/+;Ai9+/– mice treated with tamoxifen, whereas vehicle-treated heterozygote mice did not show tdTomato fluorescence. Compared to vehicle-treated NeflCreER/+;iDTR+/– mice, DT-treated NeflCreER/+;iDTR+/– mice showed significant auditory brainstem response (ABR) threshold shifts and SGN cell loss. Hair cell count and functional study did not show significant changes. These results demonstrate that the NeflCreER/CreER mouse strain exhibits inducible SGN-specific Cre activity in the inner ear, which may serve as a valuable SGN damage model for regeneration research of the inner ear.
Collapse
Affiliation(s)
- Zhengqing Hu
- John D. Dingell VA Medical Center, Detroit, MI, United States.,Department of Otolaryngology-HNS, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fnu Komal
- Department of Otolaryngology-HNS, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aditi Singh
- Department of Otolaryngology-HNS, Wayne State University School of Medicine, Detroit, MI, United States
| | - Meng Deng
- Department of Otolaryngology-HNS, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Different Neurogenic Potential in the Subnuclei of the Postnatal Rat Cochlear Nucleus. Stem Cells Int 2021; 2021:8871308. [PMID: 33880121 PMCID: PMC8046557 DOI: 10.1155/2021/8871308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In patients suffering from hearing loss, the reduced or absent neural input induces morphological changes in the cochlear nucleus (CN). Neural stem cells have recently been identified in this first auditory relay. Afferent nerve signals and their impact on the immanent neural stem and progenitor cells already impinge upon the survival of early postnatal cells within the CN. This auditory brainstem nucleus consists of three different subnuclei: the anteroventral cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN), and the dorsal cochlear nucleus (DCN). Since these subdivisions differ ontogenetically and physiologically, the question arose whether regional differences exist in the neurogenic niche. CN from postnatal day nine Sprague-Dawley rats were microscopically dissected into their subnuclei and cultivated in vitro as free-floating cell cultures and as whole-mount organ cultures. In addition to cell quantifications, immunocytological and immunohistological studies of the propagated cells and organ preparations were performed. The PVCN part showed the highest mitotic potential, while the AVCN and DCN had comparable activity. Specific stem cell markers and the ability to differentiate into cells of the neural lineage were detected in all three compartments. The present study shows that in all subnuclei of rat CN, there is a postnatal neural stem cell niche, which, however, differs significantly in its potential. The results can be explained by the origin from different regions in the rhombic lip, the species, and the various analysis techniques applied. In conclusion, the presented results provide further insight into the neurogenic potential of the CN, which may prove beneficial for the development of new regenerative strategies for hearing loss.
Collapse
|
3
|
Siveke I, Myoga MH, Grothe B, Felmy F. Ambient noise exposure induces long-term adaptations in adult brainstem neurons. Sci Rep 2021; 11:5139. [PMID: 33664302 PMCID: PMC7933235 DOI: 10.1038/s41598-021-84230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
To counterbalance long-term environmental changes, neuronal circuits adapt the processing of sensory information. In the auditory system, ongoing background noise drives long-lasting adaptive mechanism in binaural coincidence detector neurons in the superior olive. However, the compensatory cellular mechanisms of the binaural neurons in the medial superior olive (MSO) to long-term background changes are unexplored. Here we investigated the cellular properties of MSO neurons during long-lasting adaptations induced by moderate omnidirectional noise exposure. After noise exposure, the input resistance of MSO neurons of mature Mongolian gerbils was reduced, likely due to an upregulation of hyperpolarisation-activated cation and low voltage-activated potassium currents. Functionally, the long-lasting adaptations increased the action potential current threshold and facilitated high frequency output generation. Noise exposure accelerated the occurrence of spontaneous postsynaptic currents. Together, our data suggest that cellular adaptations in coincidence detector neurons of the MSO to continuous noise exposure likely increase the sensitivity to differences in sound pressure levels.
Collapse
Affiliation(s)
- Ida Siveke
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany. .,Institute of Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Mike H Myoga
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany. .,Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30599, Hannover, Germany.
| |
Collapse
|
4
|
Manohar S, Russo FY, Seigel GM, Salvi R. Dynamic Changes in Synaptic Plasticity Genes in Ipsilateral and Contralateral Inferior Colliculus Following Unilateral Noise-induced Hearing Loss. Neuroscience 2020; 436:136-153. [PMID: 32278721 DOI: 10.1016/j.neuroscience.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/07/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Unilateral noise-induced hearing loss reduces the input to the central auditory pathway disrupting the excitatory and inhibitory inputs to the inferior colliculus (IC), an important binaural processing center. Little is known about the compensatory synaptic changes that occur in the IC as a consequence of unilateral noise-induced hearing loss. To address this issue, Sprague-Dawley rats underwent unilateral noise exposure resulting in severe unilateral hearing loss. IC tissues from the contralateral and ipsilateral IC were evaluated for acute (2-d) and chronic (28-d) changes in the expression of 84 synaptic plasticity genes on a PCR array. Arc and Egr1 genes were further visualized by in situ hybridization to validate the PCR results. None of the genes were upregulated, but many were downregulated post-exposure. At 2-d post-exposure, more than 75% of the genes were significantly downregulated in the contralateral IC, while only two were downregulated in the ipsilateral IC. Many of the downregulated genes were related to long-term depression, long-term potentiation, cell adhesion, immediate early genes, neural receptors and postsynaptic density. At 28-d post-exposure, the gene expression pattern was reversed with more than 85% of genes in the ipsilateral IC now downregulated. Most genes previously downregulated in the contralateral IC 2-d post-exposure had recovered; less than 15% remained downregulated. These time-dependent, asymmetric changes in synaptic plasticity gene expression could shed new light on the perceptual deficits associated with unilateral hearing loss and the dynamic structural and functional changes that occur in the IC days and months following unilateral noise-induced hearing loss.
Collapse
Affiliation(s)
| | | | - Gail M Seigel
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Lee JK, Kim MJ. The distribution of calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the inferior colliculus of circling mouse. Anat Cell Biol 2017; 50:230-238. [PMID: 29043102 PMCID: PMC5639178 DOI: 10.5115/acb.2017.50.3.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022] Open
Abstract
The circling mice with tmie gene mutation are known as an animal deafness model, which showed hyperactive circling movement. Recently, the reinvestigation of circling mouse was performed to check the inner ear pathology as a main lesion of early hearing loss. In this trial, the inner ear organs were not so damaged to cause the hearing deficit of circling (cir/cir) mouse at 18 postnatal day (P18) though auditory brainstem response data indicated hearing loss of cir/cir mice at P18. Thus, another mechanism may be correlated with the early hearing loss of cir/cir mice at P18. Hearing loss in the early life can disrupt the ascending and descending information to inferior colliculus (IC) as integration site. There were many reports that hearing loss could result in the changes in Ca2+ concentration by either cochlear ablation or genetic defect. However, little was known to be reported about the correlation between the pathology of IC and Ca2+ changes in circling mice. Therefore, the present study investigated the distribution of calcium-binding proteins (CaBPs), calbindin-D28k, parvalbumin, and calretinin immunoreactivity (IR) in the IC to compare among wild-type (+/+), heterozygous (+/cir), and homozygous (cir/cir) mice by immunohistochemistry. The decreases of CaBPs IR in cir/cir were statistically significant in the neurons as well as neuropil of IC. Thus, this study proposed overall distributional alteration of CaBPs IR in the IC caused by early hearing defect and might be helpful to elucidate the pathology of central auditory disorder related with Ca2+ metabolism.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pharmacology, Dankook University College of Medicine, Cheonan, Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
6
|
Rauch AK, Rosskothen-Kuhl N, Illing RB. Counter-regulation of the AP-1 monomers pATF2 and Fos: Molecular readjustment of brainstem neurons in hearing and deaf adult rats after electrical intracochlear stimulation. Neuroscience 2016; 313:184-98. [DOI: 10.1016/j.neuroscience.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022]
|
7
|
Thin-film micro-electrode stimulation of the cochlea in rats exposed to aminoglycoside induced hearing loss. Hear Res 2015; 331:13-26. [PMID: 26471198 DOI: 10.1016/j.heares.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
The multi-channel cochlear implant (CI) provides sound and speech perception to thousands of individuals who would otherwise be deaf. Broad activation of auditory nerve fibres when using a CI results in poor frequency discrimination. The CI also provides users with poor amplitude perception due to elicitation of a narrow dynamic range. Provision of more discrete frequency perception and a greater control over amplitude may allow users to better distinguish speech in noise and to segregate sound sources. In this research, thin-film (TF) high density micro-electrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of rats administered sensorineural hearing loss (SNHL) via ototoxic insult, with neural responses taken at 434 multiunit clusters in the central nucleus of the inferior colliculus (CIC). Threshold, dynamic range and broadness of response were used to compare electrode arrays. A stronger current was required to elicit CIC threshold when using the TF array compared to the platinum ring electrode array. TF stimulation also elicited a narrower dynamic range than the PR counterpart. However, monopolar stimulation using the TF array produced more localised CIC responses than other stimulation strategies. These results suggest that individuals with SNHL could benefit from micro stimulation of the cochlea using a monopolar configuration which may provide discrete frequency perception when using TF electrode arrays.
Collapse
|
8
|
Rak K, Völker J, Jürgens L, Völker C, Frenz S, Scherzad A, Schendzielorz P, Jablonka S, Mlynski R, Radeloff A, Hagen R. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments. Brain Res 2015; 1616:58-70. [PMID: 25960344 DOI: 10.1016/j.brainres.2015.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/26/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss.
Collapse
Affiliation(s)
- Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany.
| | - Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Lukas Jürgens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Christine Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Silke Frenz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Sibylle Jablonka
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Robert Mlynski
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Andreas Radeloff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Rosskothen-Kuhl N, Illing RB. The impact of hearing experience on signal integration in the auditory brainstem: A c-Fos study of the rat. Brain Res 2012; 1435:40-55. [DOI: 10.1016/j.brainres.2011.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/10/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023]
|
10
|
Budenz CL, Cosetti MK, Coelho DH, Birenbaum B, Babb J, Waltzman SB, Roehm PC. The Effects of Cochlear Implantation on Speech Perception in Older Adults. J Am Geriatr Soc 2011; 59:446-53. [DOI: 10.1111/j.1532-5415.2010.03310.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus. Cell Tissue Res 2011; 343:499-508. [PMID: 21258945 DOI: 10.1007/s00441-010-1118-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023]
Abstract
Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus.
Collapse
|
12
|
Abstract
The work of recent decades has shown that the nervous system changes continually throughout life. Activity-dependent central nervous system (CNS) plasticity has many different mechanisms and involves essentially every region, from the cortex to the spinal cord. This new knowledge radically changes the challenge of explaining learning and memory and greatly increases the relevance of the spinal cord. The challenge is now to explain how continual and ubiquitous plasticity accounts for the initial acquisition and subsequent stability of many different learned behaviors. The spinal cord has a key role because it is the final common pathway for all behavior and is a site of substantial plasticity. Furthermore, because it is simple, accessible, distant from the rest of the CNS, and directly connected to behavior, the spinal cord is uniquely suited for identifying sites and mechanisms of plasticity and for determining how they account for behavioral change. Experimental models based on spinal cord reflexes facilitate study of the gradual plasticity that makes possible most rapid learning phenomena. These models reveal principles and generate concepts that are likely to apply to learning and memory throughout the CNS. In addition, they offer new approaches to guiding activity-dependent plasticity so as to restore functions lost to injury or disease.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
13
|
Santarelli R. Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Med 2010; 2:91. [PMID: 21176122 PMCID: PMC3025433 DOI: 10.1186/gm212] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Auditory neuropathy (AN) is a disorder characterized by disruption of auditory nerve activity resulting from lesions involving the auditory nerve (postsynaptic AN), inner hair cells and/or the synapses with auditory nerve terminals (presynaptic AN). Affected subjects show impairment of speech perception beyond that expected for the hearing loss, abnormality of auditory brainstem potentials and preserved outer hair-cell activities. Furthermore, AN can be identified either as an isolated disorder or as an associated disorder with multisystem involvement including peripheral and optic neuropathies (non-isolated AN). Mutations in several nuclear and mitochondrial genes have been identified as underlying these forms of AN. Recently, new genes have been identified as involved in both isolated (DIAPH3, OTOF) and non-isolated AN (OPA1). Moreover, abnormal cochlear potentials have been recorded from patients with specific gene mutations by using acoustic stimuli or electrical stimulation through cochlear implant. In this review, different types of genetically based auditory neuropathies are discussed and the proposed molecular mechanisms underlying AN are reviewed.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Medical and Surgical Specialities, Service of Audiology and Phoniatrics, University of Padua, Via Giustiniani 2, I-35128 Padua, Italy.
| |
Collapse
|
14
|
Rosskothen-Kuhl N, Illing RB. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem. Brain Res 2010; 1347:33-41. [DOI: 10.1016/j.brainres.2010.05.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/10/2010] [Accepted: 05/27/2010] [Indexed: 01/28/2023]
|
15
|
Knipper M, Zimmermann U, Müller M. Molecular aspects of tinnitus. Hear Res 2010; 266:60-9. [DOI: 10.1016/j.heares.2009.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023]
|
16
|
Dong S, Mulders WHAM, Rodger J, Woo S, Robertson D. Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci 2010; 31:1616-28. [DOI: 10.1111/j.1460-9568.2010.07183.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Abstract
The brain's ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be bound together and perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Here, the plasticity in the size of this temporal window was investigated using a perceptual learning paradigm in which participants were given feedback during a two-alternative forced choice (2-AFC) audiovisual simultaneity judgment task. Training resulted in a marked (i.e., approximately 40%) narrowing in the size of the window. To rule out the possibility that this narrowing was the result of changes in cognitive biases, a second experiment using a two-interval forced choice (2-IFC) paradigm was undertaken during which participants were instructed to identify a simultaneously presented audiovisual pair presented within one of two intervals. The 2-IFC paradigm resulted in a narrowing that was similar in both degree and dynamics to that using the 2-AFC approach. Together, these results illustrate that different methods of multisensory perceptual training can result in substantial alterations in the circuits underlying the perception of audiovisual simultaneity. These findings suggest a high degree of flexibility in multisensory temporal processing and have important implications for interventional strategies that may be used to ameliorate clinical conditions (e.g., autism, dyslexia) in which multisensory temporal function may be impaired.
Collapse
|
18
|
Munro KJ, Blount J. Adaptive plasticity in brainstem of adult listeners following earplug-induced deprivation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:568-71. [PMID: 19640020 DOI: 10.1121/1.3161829] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous research has shown that loudness perception is modified in adult listeners following 2 weeks of continuous sensory deprivation or stimulation [Formby, C. et al. (2003). J. Acoust. Soc. Am. 114, 55-58]. However, it is not known if the auditory system undergoes physiological changes or if the listeners simply recalibrate their behavioral criteria such that they become more, or less, conservative following sensory deprivation and stimulation, respectively. The results of this study, comparing threshold of the middle ear acoustic reflex in the two ears of adult listeners after use of a unilateral earplug, are consistent with adaptive plasticity. Acoustic reflexes were measured at a lower sound pressure level in the ear that had been plugged for 7 days. Thus, the effect is consistent with a central gain mechanism mediated by a process within the brainstem.
Collapse
Affiliation(s)
- Kevin J Munro
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
19
|
Argence M, Vassias I, Kerhuel L, Vidal PP, de Waele C. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur J Neurosci 2009; 28:1589-602. [PMID: 18973578 DOI: 10.1111/j.1460-9568.2008.06454.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last decade, numerous studies have investigated synaptic transmission changes in various auditory nuclei after unilateral cochlear injury. However, few data are available concerning the potential effect of electrical stimulation of the deafferented auditory nerve on the inhibitory neurotransmission in these nuclei. We report here for the first time the effect of chronic electrical stimulation of the deafferented auditory nerve on alpha1 subunit of the glycinergic receptor (GlyRalpha1) and glutamic acid decarboxylase (GAD)67 expression in the central nucleus of inferior colliculus (CIC). Adult rats were unilaterally cochleectomized by intracochlear neomycin sulphate injection. Fifteen days later, the ipsilateral auditory nerve was chronically stimulated either 4, 8 or 22 h daily, for 5 days using intracochlear bipolar electrodes. GlyRalpha1 and GAD67 mRNA and protein were quantified in the CIC using in situ hybridization and immunohistofluorescence methods. Our data showed that as after surgical ablation, GlyRalpha1 and GAD67 expression were strongly decreased in the contralateral CIC after unilateral chemical cochleectomy. Most importantly, these postlesional down-modulations were significantly reversed by chronic electrical stimulation of the deafferented auditory nerve. This recovery, however, did not persist for more than 5 days after the cessation of the deafferented auditory nerve electrical stimulation. Thus, downregulations of GlyRalpha1 and GAD67 may be involved both in the increased excitability observed in the CIC after unilateral deafness and consequently in the tinnitus frequently observed in unilateral adult deaf patients. Electrical stimulation of the deafferented auditory nerve in patients may be a potential new approach for treating tinnitus with unilateral hearing loss.
Collapse
Affiliation(s)
- Meritxell Argence
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Université Paris Descartes - CNRS, Centre Universitaire des Saints-Pères, Paris, France
| | | | | | | | | |
Collapse
|
20
|
Alvarado JC, Fuentes-Santamaría V, Henkel CK. Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation. Hear Res 2008; 247:78-86. [PMID: 19017539 DOI: 10.1016/j.heares.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/20/2008] [Accepted: 10/26/2008] [Indexed: 11/24/2022]
Abstract
Calretinin (CR) is a calcium-binding protein that plays an important role in the homeostasis of intracellular calcium concentration in the auditory pathway. To test if hearing loss could lead indirectly to modifications in levels of this calcium-binding protein in neurons and neuropilar structures outside of the lemniscal auditory pathway, CR-immunostaining was evaluated in the superior colliculus (SC) in adult ferrets at 1, 20 and 90 days after unilateral cochlear ablation. The results demonstrate that within 24h there was a significant increase in CR-immunostaining in ablated animals as indicated by an increase in the mean gray level of immunostaining in the deep, multisensory layers of the contralateral SC compared to the ipsilateral side and control ferrets. This upregulation was evident in both neurons and neuropil and did not change at the two subsequent time points. In contrast, there was no change in the superficial layers of the SC which have visual properties but no auditory inputs. These findings suggest that upregulation of CR levels within neurons and neuropil in the contralateral deep SC is subject to modifications by activity in multisynaptic auditory pathways. Therefore, cochlear-driven activity appears to affect calcium-binding protein levels not only in auditory nuclei but also in other neural structures whose response properties may be influenced by auditory-related activity.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Regional Center for Biomedical Research (CRIB), Department of Medical Sciences, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
21
|
Munro KJ. Reorganization of the adult auditory system: perceptual and physiological evidence from monaural fitting of hearing aids. Trends Amplif 2008; 12:254-71. [PMID: 18694879 PMCID: PMC4134895 DOI: 10.1177/1084713808323483] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in the sensory environment modify our sensory experience and may result in experience-related or learning-induced reorganization within the central nervous system. Hearing aids change the sensory environment by stimulating a deprived auditory system; therefore, they may be capable of inducing changes within the central auditory system. Examples of studies that have shown hearing aid induced perceptual and/or physiological changes in the adult human auditory system are discussed. Evidence in the perceptual domain is provided by studies that have investigated (a) speech perception, (b) intensity discrimination, and (c) loudness perception. Evidence in the physiological domain is provided by studies that have investigated acoustic reflex thresholds and event-related potentials. Despite the controversy in the literature concerning the rate, extent, and clinical significance of the acclimatization effect, there is irrefutable evidence that the deprived auditory system of some listeners can be modified with hearing aid experience.
Collapse
Affiliation(s)
- Kevin J Munro
- School of Psychological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
22
|
Abstract
Acoustical or intracochlear stimulation may induce expression of the immediate early gene product c-Fos in neurons throughout the auditory brainstem. Attempting to estimate its consequences, we sought to determine if c-Fos expression occurs in neurons that also contain c-Jun p39 with which it could form the heterodimeric transcription factor AP-1 to activate a large number of genes, among them several involved in neuroplastic remodeling. Following intracochlear stimulation, c-Fos and c-Jun were found to be colocalized in nuclei of many neurons at all levels of the subcortical auditory system. We conclude that stimulation triggers Fos-Jun dimerization, causing cascades of gene expression that potentially culminate in structural changes of neurons affected by the specific pattern of activity imposed on the neuronal system.
Collapse
|
23
|
Munro KJ. Reorganization of the adult auditory system: perceptual and physiological evidence from monaural fitting of hearing AIDS. Trends Amplif 2008; 12:85-102. [PMID: 18567590 PMCID: PMC4111427 DOI: 10.1177/1084713808316173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in the sensory environment modify our sensory experience and may result in experience-related or learning-induced reorganization within the central nervous system. Hearing aids change the sensory environment by stimulating a deprived auditory system; therefore, they may be capable of inducing changes within the central auditory system. Examples of studies that have shown hearing aid induced perceptual and/or physiological changes in the adult human auditory system are discussed. Evidence in the perceptual domain is provided by studies that have investigated (a) speech perception, (b) intensity discrimination, and (c) loudness perception. Evidence in the physiological domain is provided by studies that have investigated acoustic reflex thresholds and event-related potentials. Despite the controversy in the literature concerning the rate, extent, and clinical significance of the acclimatization effect, there is irrefutable evidence that the deprived auditory system of some listeners can be modified with hearing aid experience.
Collapse
Affiliation(s)
- Kevin J Munro
- School of Psychological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
24
|
Franklin SR, Brunso-Bechtold JK, Henkel CK. Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neuroscience 2008; 154:346-54. [PMID: 18372115 DOI: 10.1016/j.neuroscience.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/25/2008] [Accepted: 02/13/2008] [Indexed: 11/16/2022]
Abstract
Axonal projections from the dorsal nucleus of the lateral lemniscus (DNLL) distribute contralaterally in a pattern of banded layers in the central nucleus of the inferior colliculus (IC). The banded pattern of DNLL projections is already in the IC by onset of hearing in postnatal rat pups. Previously, it was shown that unilateral cochlear ablation in neonatal rat pups disrupted the banded pattern in IC for the projections of the DNLL contralateral to the ablation but not those of the DNLL ipsilateral to the ablation. In the present study, bilateral cochlear ablation or sham surgery was performed at postnatal day 9 (P9) after which rat pups were killed at P12 and the brains removed to study axonal projections of the DNLL. A lipophilic carbocyanine dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), was placed in the dorsal tegmental commissure of Probst to label decussating DNLL axons that end in the central nucleus of the contralateral IC. The distribution of labeled fibers across the central nucleus of the IC was analyzed in digital images by comparing the pattern of labeling with a sine model of periodic distribution of banded layers. In the control group, labeled axons formed a regular pattern of dense banded layers in IC. In the bilateral cochlear ablation group, labeled axons in the IC were distributed diffusely and there was little or no regular pattern of dense bands of axonal labeling. The influence of the cochlea on developing auditory circuits possibly mediated by activity-dependent mechanisms is discussed.
Collapse
Affiliation(s)
- S R Franklin
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
25
|
Asymmetry in the auditory brainstem response following experience of monaural amplification. Neuroreport 2008; 18:1871-4. [PMID: 18090329 DOI: 10.1097/wnr.0b013e3282f1b003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hearing aids can induce perceptual changes in some elderly listeners and there is recent evidence that this might be associated with reorganization within the auditory system. We compared the click-evoked auditory brainstem response in adults with and without monaural hearing aid experience. In listeners with monaural hearing aid experience, the mean peak-to-peak amplitude between wave V and SN10 was approximately 100 nV larger in the ear with hearing aid experience and this difference was statistically significant (P<0.01). The response was symmetrical in adults with no hearing aid experience. This suggests that hearing aids can induce physiological changes at the level of the auditory brainstem in elderly monaural hearing aid users.
Collapse
|
26
|
Takahata T, Hashikawa T, Higo N, Tochitani S, Yamamori T. Difference in sensory dependence of occ1/Follistatin-related protein expression between macaques and mice. J Chem Neuroanat 2007; 35:146-57. [PMID: 17950574 DOI: 10.1016/j.jchemneu.2007.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/16/2022]
Abstract
occ1/Follistatin-related protein (Frp) is strongly expressed in the primary visual cortex (V1) of macaque monkeys, and its expression is strongly down-regulated by intraocular tetrodotoxin (TTX) injection. The pronounced area selectivity of occ1/Frp mRNA expression occurs in macaques and marmosets, but not in mice, rabbits and ferrets, suggesting that occ1/Frp is an important clue to the evolution of the primate cerebral cortex. To further determine species differences, we examined the sensory-input dependency of occ1/Frp mRNA expression in mice in comparison with macaque V1. In macaque V1, occ1/Frp mRNA expression level significantly decreased with even 1-day monocular deprivation (MD) by TTX injection. In contrast to that in macaques, however, the occ1/Frp mRNA expression in the visual cortex in mice was not down-regulated by 1- to 7-day MD by TTX injection. Similarly, MD had no effect on occ1/Frp mRNA expression level in the dorsal lateral geniculate nucleus of mice. In addition, the extirpation of the cochlear or olfactory epithelium had no effect on occ1/Frp mRNA expression in either the cochlear nucleus or the olfactory bulb in mice. Thus, occ1/Frp mRNA expression is independent of sensory-input in mice. The results suggest that activity-dependent occ1/Frp mRNA expression is not common between mice and monkeys, and that primate V1 has acquired a unique gene regulatory mechanism that enables a rapid response to environmental changes. The characteristic feature of the activity dependency of occ1/Frp mRNA expression is discussed, in comparison with that of the expression of the immediate-early genes, c-fos and zif268.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaijicho, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
27
|
Hwang JH, Chao JC, Ho HC, Hsiao SH. Effects of sex, age and hearing asymmetry on the interaural differences of auditory brainstem responses. Audiol Neurootol 2007; 13:29-33. [PMID: 17715467 DOI: 10.1159/000107468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 04/27/2007] [Indexed: 11/19/2022] Open
Abstract
Healthy patients with asymmetric sensorineural hearing loss who had received examination of auditory brainstem responses (ABR) were gathered for retrospective analysis. The effects of sex, age and hearing asymmetry on the interaural differences of ipsilateral ABR were determined by multivariant linear regression. Our results showed that the interaural differences of ABR wave III and wave V latencies were significantly affected by hearing asymmetry but not by sex or age. However, in female subjects younger than 50 years, differences of III-V intervals could be negatively correlated with hearing asymmetry. We suggest that plasticity in the auditory brainstem in younger females might account for asymmetrical peripheral hearing in this group.
Collapse
Affiliation(s)
- J H Hwang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
28
|
Munro KJ, Walker AJ, Purdy SC. Evidence for adaptive plasticity in elderly monaural hearing aid users. Neuroreport 2007; 18:1237-40. [PMID: 17632274 DOI: 10.1097/wnr.0b013e32822025f4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hearing aids can induce perceptual changes in some elderly listeners but few studies have investigated physiological changes in this population. Loudness discomfort levels and acoustic reflex thresholds were measured in long-term users of a single hearing aid. The results show an asymmetry of +2 to +9 dB between ears in the sound level that (i) causes loudness discomfort and (ii) elicits a reflex contraction of the middle ear muscles. The elevation of the acoustic reflex threshold occurs in the ear with hearing aid experience, irrespective of the ear of stimulation. Therefore, there is evidence of adaptive plasticity and this can be measured at the level of the auditory brainstem.
Collapse
Affiliation(s)
- Kevin J Munro
- School of Psychological Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
29
|
Ruan Q, Wang D, Gao H, Liu A, Da C, Yin S, Chi F. The effects of different auditory activity on the expression of phosphorylated c-Jun in the auditory system. Acta Otolaryngol 2007; 127:594-604. [PMID: 17503228 DOI: 10.1080/00016480600951459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONCLUSION The data revealed that calcium influx via the NMDA receptor up-regulated the expression of phosphorylated c-Jun in the primary auditory cortices following sensory stimulation and after different neural injury stimulations which guide activity-dependent changes in gene expression and neural plasticity. OBJECTIVES Activator protein-1 (AP-1) transcription factor, which is mainly composed of c-Fos and c-Jun proteins, is believed to be a key participant in molecular processes that guide activity-dependent changes in gene expression. Our previous study had shown that the expression of NMDAR2A gene on synaptosomes membrane of auditory cortical neurons varied by electrical intracochlear stimulation (EIS) and neural injury induced by acoustic trauma. In this study, we investigated the role of the NMDA receptor (NMDAR) in regulating the expression of phosphorylated c-Jun in the primary auditory cortex (AI). The modulation factors observed for gene expression included EIS and noise traumas. MATERIALS AND METHODS EIS was applied in rats with early postnatal auditory deprivation. The impact of the noise traumas on the ultrastructures of spiral ganglion neurons (SGNs) and their innervations to inner hair cells (IHCs) were verified by transmission electron microscopy (EM). These changes include a decrease in subcellular organelles, the swelling of mitochondria and endoplasmic reticulum, the morphological changes in cell nuclei, and damage in the afferent synapse. RESULTS Immunohistochemistry observations showed that the expression of phosphorylated c-jun and active caspase-3 in hair cells and SGNs varied with amount of noise. Immunocytochemistry and Western blotting showed that the auditory cortex began to express phosphorylated c-jun 24 h after 2 h of EIS. However, this expression was not changed by EIS if NMDAR antagonist was applied. The level of phosphorylated c-Jun was remarkably increased in AI after noise overstimulation at 115 dB SPL for 3 h. Again, such an increase was not seen if NMDAR antagonist 3-(2 carboxypiperazin-4yl) propyl-1-phosphonic acid (CPP, 10 mg/kg, i.p.) was applied 30 min before the noise exposure.
Collapse
MESH Headings
- Animals
- Auditory Cortex/pathology
- Auditory Cortex/physiology
- Auditory Pathways/physiology
- Auditory Threshold/physiology
- Blotting, Western
- Caspase 3/metabolism
- Cochlea/metabolism
- Cochlea/ultrastructure
- Electric Stimulation
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Genes, jun
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Male
- Microscopy, Electron
- Neuronal Plasticity/physiology
- Phosphorylation
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-jun/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- Qingwei Ruan
- Otolaryngology Research Institute, Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61:288-302. [PMID: 17318882 DOI: 10.1002/syn.20373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets to evaluate possible time-dependent modifications of synaptophysin and insulin-like growth factor-1 (IGF-1) in the central nucleus of the inferior colliculus (CNIC). Using densitometric analysis, synaptophysin and IGF-1 immunostaining were assessed at 1 (PA1) and 90 (PA90) days after cochlear ablation. The results demonstrated that 1 day after the lesion there was an increase in the levels of synaptophysin immunostaining bilaterally in the CNIC compared to control animals. That increase was no longer present at 90 days after the ablation. Overall levels of IGF-1 immunostaining at PA1 were increased significantly within neurons and neuropil. However, at PA90, only IGF-1 immunostaining contralateral to the lesion was elevated compared to control animals, although elevation was less than that observed at PA1. These results suggest that cochlear ablation appears to affect synaptophysin and IGF-1 protein levels bilaterally in the CNIC.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|
31
|
Oh SH, Kim CS, Song JJ. Gene expression and plasticity in the rat auditory cortex after bilateral cochlear ablation. Acta Otolaryngol 2007; 127:341-50. [PMID: 17453451 DOI: 10.1080/00016480701275246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONCLUSION The plastic changes in the auditory cortex after bilateral cochlear ablation are related to the immediate early genes as well as the neural plasticity-related genes. In addition, cross-modal plasticity may play an important role in the early changes in the auditory cortex after bilateral cochlear ablation. OBJECTIVES The purpose of this study was to identify candidate genes involved in the normal development of primary auditory cortex during the critical period as well as those genes specifically modulated under conditions of sensory deafferentation by bilateral cochlear ablation. MATERIALS AND METHODS We produced a bilaterally deaf rat model and used DNA microarray technology to analyze differential gene expression in the primary auditory cortex of bilateral cochlear ablated and sham-operated age-matched control rats. Gene expression in the auditory cortex was compared at 2, 4, and 12 weeks after surgery. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction (PCR). RESULTS In the cochlear ablation groups, the expression of immediate early genes (Egr1, 2, 3, 4, c-fos, etc.) and neural plasticity-related genes (Arc, Syngr1, Bdnf, etc.) was decreased at 2 weeks and increased at 4 weeks. The expression of neurotransmission-related genes (Gabra5, Chrnb3, Chrne, etc.) was decreased at 12 weeks.
Collapse
Affiliation(s)
- Seung-Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
32
|
Thai-Van H, Cozma S, Boutitie F, Disant F, Truy E, Collet L. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clin Neurophysiol 2007; 118:676-89. [PMID: 17223382 DOI: 10.1016/j.clinph.2006.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 10/27/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Maturation of acoustically evoked brainstem responses (ABR) in hearing children is not complete at birth but rather continues over the first two years of life. In particular, it has been established that the decrease in ABR wave V latency can be modeled as the sum of two decaying exponential functions with respective time-constants of 4 and 50 weeks [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9]. Here, we investigated the maturation of electrically evoked auditory brainstem responses (EABR) in 55 deaf children who recovered hearing after cochlear implantation, and proposed a predictive model of EABR maturation depending on the onset of deafness. The pattern of EABR maturation over the first 2 years of cochlear implant use was compared with the normal pattern of ABR maturation in hearing children. METHODS Changes in EABR wave V latency over the 2 years following cochlear implant connection were analyzed in two groups of children. The first group (n=41) consisted of children with early-onset of deafness (mostly congenital), and the second (n=14) of children who had become profoundly deaf after 1 year of age. The modeling of changes in EABR wave V latency with time was based on the mean values from each of the two groups, allowing comparison of the rates of EABR maturation between groups. Differences between EABRs elicited at the basal and apical ends of the implant electrode array were also tested. RESULTS There was no influence of age at implantation on the rate of wave V latency change. The main factor for EABR changes was the time in sound. Indeed, significant maturation was observed over the first 2 years of implant use only in the group with early-onset deafness. In this group maturation of wave V progressed as in the ABR model of [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9] of normal hearing children: a sum of two decaying exponential functions, one showing an early rapid decrease in latency and the other a slower decrease. Remarkably, the time-constants fell well within the ranges described by Eggermont and Salamy (i.e., 3.9 and 68 weeks), consistent with the time-course of the neurophysiological mechanisms presumably involved in auditory pathway maturation during the first 2 years of life: i.e., myelination and increased synaptic efficacy. In contrast, relatively little change in wave V was evident in children with late-onset deafness. In agreement with the notion that EABR maturation follows an apex-to-base gradient as described for ABR, we observed that wave V latencies were longer for the basal than the apical end of the implant electrode array and remained so throughout the study period, whatever the time of onset of deafness. CONCLUSIONS The findings in the early-onset of deafness group support the theory that auditory pathways remain "frozen" during the period of sensory deprivation until cochlear implant rehabilitation restores the normal chronology of maturational processes. In children with late-onset deafness, however, some maturational processes may occur before the onset of deafness, and thus less additional maturation is required during the first two years of implant use resulting in no significant EABR latency changes being observed in this period. The results suggest that the rehabilitation-induced plasticity of the auditory pathways is, in case of late auditory deprivation, unlikely to result in neurophysiological outcomes similar to those observed in children with early auditory deprivation. SIGNIFICANCE Changes in EABR wave V latency over the first 2 years of cochlear implant use were found to be well fitted by the sum of two decaying exponential functions in children with early-onset deafness. This is in line with the maturation of ABR wave V latency in normal-hearing children over the first two years of life. Further studies are needed to assess whether the differences observed in terms of auditory pathways maturation are associated with consistent differences in terms of language development.
Collapse
|
33
|
Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 2007; 145:715-26. [PMID: 17275194 DOI: 10.1016/j.neuroscience.2006.11.067] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 12/24/2022]
Abstract
The molecular changes following sensory trauma and the subsequent response of the CNS are poorly understood. We focused on finding a molecular tool for monitoring the features of excitability which occur following acoustic trauma to the auditory system. Of particular interest are genes that alter their expression pattern during activity-induced changes in synaptic efficacy and plasticity. The expression of brain-derived neurotrophic factor (BDNF), the activity-dependent cytoskeletal protein (Arg3.1/arc), and the immediate early gene c-Fos were monitored in the peripheral and central auditory system hours and days following a traumatic acoustic stimulus that induced not only hearing loss but also phantom auditory perception (tinnitus), as shown in rodent animal behavior models. A reciprocal responsiveness of activity-dependent genes became evident between the periphery and the primary auditory cortex (AI): as c-Fos and BDNF exon IV expression was increased in spiral ganglion neurons, Arg3.1/arc and (later on) BDNF exon IV expression was reduced in AI. In line with studies indicating increased spontaneous spike activity at the level of the inferior colliculus (IC), an increase in BDNF and GABA-positive neurons was seen in the IC. The data clearly indicate the usefulness of Arg3.1/arc and BDNF for monitoring trauma-induced activity changes and the associated putative plasticity responses in the auditory system.
Collapse
Affiliation(s)
- J Tan
- University of Tübingen, Department of Otorhinolaryngology, Hearing Research Center Tübingen, Molecular Neurobiology, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Unilateral cochlear ablation in adult ferrets results in upregulation in calretinin immunostaining in the central nucleus of the inferior colliculus. Neuroscience 2006; 136:957-69. [PMID: 16344163 DOI: 10.1016/j.neuroscience.2005.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 03/26/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets in order to determine whether an upregulation of the calretinin immunostained plexus in the central nucleus of the inferior colliculus occurs and if so, what the time course of this upregulation is. Accordingly, the mean gray level and the calretinin-immunostained area of the axonal plexus in the central nucleus of the inferior colliculus were evaluated at 1, 20 and 90 days after cochlear ablation. In unoperated animals, the calretinin-immunostained plexus was bilaterally symmetric. In ablated animals, both the mean gray level and the immunostained area of the plexus increased in the central nucleus of the inferior colliculus contralateral to the lesion compared with both the ipsilateral side and unoperated animals. This upregulation was present 24 h after the ablation and did not change at the two subsequent time points. In a previous study in young ferrets, the immunostained area of the plexus in the central nucleus of the inferior colliculus contralateral to the lesion increased 200% compared with control ferrets [J Comp Neurol 460 (2003) 585], whereas it increased only 33% in adult ferrets. These findings suggest that 1) calretinin upregulation in the contralateral central nucleus of the inferior colliculus following cochlear ablation occurs by 24 h after cochlear ablation and 2) there is an age-related decline in the magnitude of this upregulation after cochlear ablation.
Collapse
Affiliation(s)
- J C Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA. jalvarad@@wfubmc.edu
| | | | | | | | | |
Collapse
|
35
|
Mo Z, Suneja SK, Potashner SJ. Phosphorylated cAMP response element-binding protein levels in guinea pig brainstem auditory nuclei after unilateral cochlear ablation. J Neurosci Res 2006; 83:1323-30. [PMID: 16511870 DOI: 10.1002/jnr.20820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After left unilateral cochlear ablation (UCA) in young adult guinea pigs, the appearance of plasticities in auditory pathways suggested altered gene expression and modified phenotypic behaviors of auditory neurons. Because phosphorylated cyclic-AMP response element-binding protein (CREB-P) is a transcription factor that binds to certain genes to facilitate their expression, CREB-P levels were measured after UCA and correlated with postablation plasticities. After UCA, Western blotting was employed to quantify CREB-P levels and illustrate CREB levels in the anteroventral (AVCN), posteroventral (PVCN), and dorsal (DCN) cochlear nucleus; the lateral (LSO) and medial superior olive (MSO); the medial nucleus of the trapezoid body (MNTB); and the central nucleus of the inferior colliculus (ICc) for up to 145 days. We also quantified the levels of several protein synthesis regulators and synaptic markers in the AVCN at 60 days. Sucrose-based extraction buffer improved CREB-P recovery. CREB-P levels became depressed at 3 and 7 postablation days, except in the PVCN, where they were elevated at 7 days, and in the ICc, where they were elevated at both times. At 60 days, CREB-P levels in all the nuclei were elevated. In the AVCN, levels of the protein synthesis regulators and synaptic markers were also elevated at 60 days. By 145 days, CREB-P levels again declined, except in the AVCN, where elevations persisted and increased on the ablated side, and in the ICc, where CREB-P elevations remained. The changes in CREB-P levels coincided with several plasticities in glutamatergic and glycinergic transmitter release and receptor activities, and alterations in neurotrophic support, that developed after UCA. These findings suggest that UCA altered CREB-P levels, which in turn might have contributed to plasticities that appear after UCA.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
36
|
Tong L, Altschuler RA, Holt AG. Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 2005; 206:28-41. [PMID: 16080996 DOI: 10.1016/j.heares.2005.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 03/07/2005] [Indexed: 11/22/2022]
Abstract
Tyrosine hydroxylase (TH), a key enzyme in the catecholaminergic pathway, allows for the differentiation of dopaminergic neurons. We previously showed decreases in TH gene expression in the rat inferior colliculus (IC) 3 and 21 days following deafness. In the present study, we characterized the normal distribution of TH as well as changes following deafness (bilateral cochlear ablation) in the IC and nuclei of the lateral lemniscus. Immunostaining was compared in three groups of rats: normal hearing (n=8), 21 day deaf (n=5) and 90 days following deafening (n=5). Many TH immunoreactive fibers and puncta were identified in the IC and nuclei of the lateral lemniscus of normal hearing animals and labeling was most dense in the external cortex of the IC. We also identified immunolabeling for fibers and puncta for another catecholaminergic enzyme, dopamine beta hydroxylase (DBH), but not phenylethanolamine-N-methyltranferase (PNMT). Neurons immunopositive for TH but not DBH or PNMT were observed in the dorsal cortex and dorsal horn of the central nucleus of the IC and ventral and intermediate lemniscus. In the central nucleus of the IC and dorsal lateral lemniscus many lightly labeled TH neurons were also DBH positive. Although the number of immunopositive cells in the IC and lemniscus declined 3 weeks and 3 months after deafening, the decline was not significant at three weeks in the VNLL nor after three months in the dorsal cortex. Immunolabeling for TH decreased significantly in IC and lemniscus 3 weeks and 3 months following deafening. These results suggest a role for dopaminergic neurons and fibers in deafness-related plasticity.
Collapse
Affiliation(s)
- Ling Tong
- Department of Otolaryngology/Head Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
37
|
Illing RB, Kraus KS, Meidinger MA. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res 2005; 206:185-99. [PMID: 16081008 DOI: 10.1016/j.heares.2005.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/10/2005] [Indexed: 11/27/2022]
Abstract
When we disturbed the auditory input of the adult rat by cochleotomy or noise trauma on one side, several substantial anatomical, cellular, and molecular changes took place in the auditory brainstem. We found that: (1) cochleotomy or severe noise trauma both lead to a considerable increase of immunoreactivity of the growth-associated protein GAP-43 in the ventral cochlear nucleus (VCN) of the affected side; (2) the expression of GAP-43 in VCN is restricted to presynaptic endings and short fiber segments; (3) axon collaterals of the cholinergic medial olivocochlear (MOC) neurons are the path along which GAP-43 reaches VCN; (4) partial cochlear lesions induce the emergence of GAP-43 positive presynaptic endings only in regions tonotopically corresponding to the extent of the lesion; (5) judging from the presence of immature fibers and growth cones in VCN on the deafened side, at least part of the GAP-43 positive presynaptic endings appear to be newly formed neuronal contacts following axonal sprouting while others may be modified pre-existing contacts; and (6) GAP-43 positive synapses are formed only on specific postsynaptic profiles, i.e., glutamatergic, glycinergic and calretinin containing cell bodies, but not GABAergic cell bodies. We conclude that unilateral deafening, be it partial or total, induces complex patterns of reconnecting neurons in the adult auditory brainstem, and we evaluate the possibility that the deafness-induced chain of events is optimized to remedy the loss of a bilaterally balanced activity in the auditory brainstem.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
38
|
Holt AG, Asako M, Lomax CA, MacDonald JW, Tong L, Lomax MI, Altschuler RA. Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity. J Neurochem 2005; 93:1069-86. [PMID: 15934929 DOI: 10.1111/j.1471-4159.2005.03090.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inferior colliculus (IC) is a major center of integration in the ascending as well as descending auditory pathways, where both excitatory and inhibitory amino acid neurotransmitters play a key role. When normal input to the auditory system is decreased, the balance between excitation and inhibition in the IC is disturbed. We examined global changes in gene expression in the rat IC 3 and 21 days following bilateral deafening, using Affymetrix GeneChip arrays and focused our analysis on changes in expression of neurotransmission-related genes. Over 1400 probe sets in the Affymetrix Rat Genome U34A Array were identified as genes that were differentially expressed. These genes encoded proteins previously reported to change as a consequence of deafness, such as calbindin, as well as proteins not previously reported to be modulated by deafness, such as clathrin. A subset of 19 differentially expressed genes was further examined using quantitative RT-PCR at 3, 21 and 90 days following deafness. These included several GABA, glycine, glutamate receptor and neuropeptide-related genes. Expression of genes for GABA-A receptor subunits beta2, beta3, and gamma2, plus ionotropic glutamate receptor subunits AMPA 2, AMPA 3, and kainate 2, increased at all three times. Expression of glycine receptor alpha1 initially declined and then later increased, while alpha2 increased sharply at 21 days. Glycine receptor alpha3 increased between 3 and 21 days, but decreased at 90 days. Of the neuropeptide-related genes tested with qRT-PCR, tyrosine hydroxylase decreased approximately 50% at all times tested. Serotonin receptor 2C increased at 3, 21, and 90 days. The 5B serotonin receptor decreased at 3 and 21 days and returned to normal by 90 days. Of the genes tested with qRT-PCR, only glycine receptor alpha2 and serotonin receptor 5B returned to normal levels of expression at 90 days. Changes in GABA receptor beta3, GABA receptor gamma2, glutamate receptor 2/3, enkephalin, and tyrosine hydroxylase were further confirmed using immunocytochemistry.
Collapse
Affiliation(s)
- Avril Genene Holt
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND An important factor in the clinical outcome of cochlear implantation is the age of the patient. Compared to older patients, children with congenital deafness have a better outcome when the implantation is made before the age of 2 years. The cause may lie in the molecular biology of the brain, which changes during postnatal maturation. METHODS Protein probes were obtained from tissue of the rat inferior colliculus at different ages. The probes were analyzed using 2-dimensional SDS electrophoresis. RESULTS The expression of GAP-43, a protein expressed by neurons during axonal outgrowth and synaptogenesis, and the total number of the protein species showed a significant reduction during ontogenesis. This shows that while neurons gradually assume their specific function, they downregulate GAP-43 and the molecular complexity decreases. CONCLUSIONS Due to a lack of neuronal pluripotency at later developmental stages, the flexibility to adapt to the afferent activation provided by a cochlear implant is increasingly limited.
Collapse
Affiliation(s)
- C Jung
- Neurobiologisches Forschungslabor der Universitäts-HNO-Klinik Freiburg
| | | |
Collapse
|
40
|
Chen TJ, Huang CW, Wang DC, Chen SS. Co-induction of growth-associated protein GAP-43 and neuronal nitric oxide synthase in the cochlear nucleus following cochleotomy. Exp Brain Res 2004; 158:151-62. [PMID: 15148562 DOI: 10.1007/s00221-004-1886-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 02/17/2004] [Indexed: 11/28/2022]
Abstract
In adult animals, cochlear lesioning leads to a reactive synaptogenesis with a reemergence of growth-associated protein, GAP-43, in the auditory brainstem nuclei. In addition, nitric oxide (NO) is also implicated in synaptogenesis. Three isoforms of nitric oxide synthase (NOS) responsible for generating NO have been identified and, in neurons, the predominant isoform is neuronal NOS (nNOS). Studies in visual or olfactory systems have found that the NOS expression often correlates with periods of axonal outgrowth and synapse formation; whether NO plays a similar role in the auditory brainstem needs to be examined. In the present study, a unilateral cochleotomy was performed in adult mice to examine the relationship between the reemergence of GAP-43 and the expression pattern of nNOS. Following surgery, GAP-43 re-emerged in the ipsilateral anterior ventral cochlear nucleus (AVCN) and the immunoreactivity reached a climax around postoperative day (POD) 8; the same expression pattern as that reported in the previous literature is the indicator of synaptogenesis. As for the nNOS immunoreactivity, a dramatic redistribution from a mostly cytoplasmal to a predominantly membranous localization in the ipsilateral AVCN was found especially at POD 4. A similar redistribution pattern in the ipsilateral AVCN for the N-methyl-D-aspartate (NMDA) receptor was also observed at POD 4, corresponding to the fact that the activation of nNOS is coupled to calcium influx via the NMDA-receptor. Furthermore, the expression of cyclic guanosine monophosphate (cGMP) is an indicator for activity of soluble guanylyl cyclase (sGC), the substrate of NO, which reveals the target area of NO. Therefore, cGMP immunoreactivity was also examined and an obvious increase of cytoplasmal cGMP expression was observed around POD 4. Accordingly, it is suggested that nNOS activity correlates closely with the reactive synaptogenesis following a cochleotomy. Further evidence is shown by the results of fluorescent double staining; nNOS-positive cells were surrounded by GAP-43 labeled regions that appeared to be presynaptic boutons, and the vast majority of nNOS-positive cells also expressed cGMP. The former result indicates that, after surgery, there should be new terminal endings projecting onto the nNOS-positive cells in the AVCN. Furthermore, the latter result suggests a possible role of an autocrine mediator for nNOS in the AVCN.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
41
|
Gordon KA, Papsin BC, Harrison RV. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Ear Hear 2004; 24:485-500. [PMID: 14663348 DOI: 10.1097/01.aud.0000100203.65990.d4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 1) To determine if a period of early auditory deprivation influences neural activity patterns as revealed by human auditory brain stem potentials evoked by electrical stimulation from a cochlear implant. 2) To examine the potential for plasticity in the human auditory brain stem. Specifically, we asked if electrically evoked auditory potentials from the auditory nerve and brain stem in children show evidence of development as a result of implant use. 3) To assess whether a sensitive or critical period exists in auditory brain stem development. Specifically, is there an age of implantation after which there are no longer developmental changes in auditory brain stem activity as revealed by electrically evoked potentials? DESIGN The electrically evoked compound potential of the auditory nerve (ECAP) and the electrically evoked auditory brain stem response (EABR) were recorded repeatedly during the first year of implant use in each of 50 children. The children all had pre- or peri-lingual onset of severe to profound sensorineural hearing loss and received their implants at ages ranging from 12 mo to 17 yr. All children received Nucleus cochlear implant devices. All children were in therapy and in school programs that emphasized listening and required the children to wear their implants consistently. RESULTS Initial stimulation from the cochlear implant evoked clear responses from the auditory nerve and auditory brain stem in most children. There was no correlation between minimum latency, maximum amplitude, or slope of amplitude growth of initial responses with age at implantation for ECAP eN1, EABR eIII and eV components (p > 0.05). During the first year of implant use, minimum latency of these waves significantly decreased (p < 0.01, p < 0.0001, p < 0.0001, respectively). Neural conduction time, measured using the interwave latency of ECAP eN1-EABR eIII for lower brain stem and EABR eIII-eV for upper brain stem, decreased during the period of 6 to 12 mo of cochlear implant use (p < 0.01 (lower), p < 0.0001(upper)). The ECAP wave eN1 and the EABR wave eV showed significant increases in amplitude during time of implant use (p < 0.05 and p < 0.01, respectively). There were no correlations between the rate of interwave latency decrease and the rate of amplitude increases and the age at which children underwent implantation (p < 0.05). CONCLUSIONS Activity in the auditory pathways to the level of the midbrain can be evoked by acute stimulation from a cochlear implant. EABR measures are not influenced by any period of auditory deprivation. Auditory development proceeds once the implant is activated and involves improvements in neural conduction velocity and neural synchrony. Underlying mechanisms likely include improvements in synaptic efficacy and possibly increased myelination. The developmental plasticity that we have shown in the human auditory brain stem does not appear from EABR data to be limited by a critical period during childhood.
Collapse
Affiliation(s)
- Karen A Gordon
- Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, University of Toronto, Ontario, Canada, M5G 1X8.
| | | | | |
Collapse
|
42
|
Alvarado JC, Fuentes-Santamaria V, Henkel CK, Brunso-Bechtold JK. Alterations in calretinin immunostaining in the ferret superior olivary complex after cochlear ablation. J Comp Neurol 2004; 470:63-79. [PMID: 14755526 DOI: 10.1002/cne.11038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we used image analysis to assess changes in calretinin immunoreactivity in the lateral (LSO) and medial (MSO) superior olivary nuclei in ferrets 2 months after unilateral cochlear ablations at 30-40 days of age, soon after hearing onset. These two nuclei are the first significant sites of binaural convergence in the ascending auditory system, and both receive direct projections from the deafferented cochlear nucleus. Cochlear ablation results in a decrease in the overall level of calretinin immunostaining within the LSO ipsilaterally compared with the contralateral side and with control animals and within the MSO bilaterally compared with control ferrets. In addition, the level of calretinin immunostaining ipsilaterally within neurons in the LSO was significantly less in cochlear ablated than control animals. In contrast, there was no effect of cochlear ablation on the level of calretinin immunostaining within neurons either in the contralateral LSO or in the MSO. These results are consistent with a downregulation in calretinin within the neuropil of MSO bilaterally and LSO ipsilaterally, as well as a downregulation in calretinin within somata in the ipsilateral LSO as a result of unilateral cochlear ablation soon after hearing onset. Thus, cochlear-driven activity appears to affect calcium binding protein levels in both neuropil and neurons within the superior olivary complex.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA.
| | | | | | | |
Collapse
|
43
|
Saxon DW, White G. Episodic blockade of cranial nerve VIII provokes asymmetric changes in lobule X of the rat. Brain Res 2004; 997:165-75. [PMID: 14706869 DOI: 10.1016/j.brainres.2003.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although debilitating syndromes like Ménière's disease are in part characterized by recurrent or episodic vestibular disturbance the study of episodic vestibular disruption has only recently been possible with the introduction of a new model utilizing tetrodotoxin (TTX). In the present study, serial unilateral transtympanic administration of TTX produced behavioral symptoms indicative of transient vestibular disruption and novel patterns of Fos activity in the brainstem and cerebellum. Following two or three serial injections of TTX and a final survival time of 2 h, Fos immunocytochemistry revealed a distinct pattern of labeling in the brainstem that differed temporally from that observed following a single unilateral TTX injection. Specifically there was protracted expression of Fos in the beta subdivision of the inferior olive (IO) on the side ipsilateral to TTX treatment. In the cerebellum, the hallmark of episodic vestibular blockade was an asymmetric pattern of Fos labeling that involved all three layers of the cortex. In particular, there was prominent Fos labeling of Purkinje cells in the contra-TTX half of lobule X. In view of the fact that Fos labeling is not found in Purkinje cells following a single transient event or following peripheral vestibular ablation, it is suggested that Fos expression in Purkinje cells is a unique feature of episodic vestibular disruption and may represent a novel plastic response by a select population of Purkinje cells to episodic functional deafferentation.
Collapse
Affiliation(s)
- Dale W Saxon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Evansville Center for Medical Education, 8600 University Blvd., Evansville, IN 47712, USA.
| | | |
Collapse
|
44
|
|
45
|
Kraus KS, Illing RB. Superior olivary contributions to auditory system plasticity: Medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus. J Comp Neurol 2004; 475:374-90. [PMID: 15221952 DOI: 10.1002/cne.20180] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A unilateral cochlear lesion induces expression of the growth and plasticity-associated protein 43 (GAP-43) in fibers and their varicosities on specific types of postsynaptic profiles in the ventral cochlear nucleus (VCN), suggesting the induction of synaptic remodeling. One candidate population from which GAP-43 might emerge was neurons of the lateral olivocochlear (LOC) system residing in the lateral superior olive (LSO). Upon cochleotomy, these neurons express GAP-43 mRNA and GAP-43 protein. However, retrograde axonal tracing with Fast Blue or biotinylated dextran amine from VCN revealed that the number of 6.8 +/- 1.3 neurons in the whole ipsilateral LSO labeled in normal adult rats was distinctly small and did not rise after cochleotomy. Concluding that LOC neurons cannot be the source of GAP-43 in the VCN, we reinvestigated the pattern of GAP-43 in situ hybridization and found that, after cochleotomy, shell neurons in the regions surrounding the LSO and medial olivocochlear (MOC) neurons in the ventral nucleus of the trapezoid body up-regulated GAP-43 mRNA. We then lesioned these regions by means of stereotaxic injections of kainic acid. Destruction of shell neurons preceding an ipsilateral cochleotomy did not change the emergence of GAP-43 immunoreactivity in the VCN. However, if the contralateral MOC system was lesioned, the rise of GAP-43 immunoreactivity in VCN on the side of the cochleotomy was significantly reduced. We conclude that, after cochlear dysfunction, MOC neurons are the major (if not exclusive) source of synaptic reorganization in the VCN that could possibly entail compensatory activation of the affected ascending auditory pathway.
Collapse
Affiliation(s)
- Kari Suzanne Kraus
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany
| | | |
Collapse
|
46
|
Rubel EW, Parks TN, Zirpel L. Assembling, Connecting, and Maintaining the Cochlear Nucleus. PLASTICITY OF THE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4757-4219-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Michler SA, Illing RB. Molecular plasticity in the rat auditory brainstem: modulation of expression and distribution of phosphoserine, phospho-CREB and TrkB after noise trauma. Audiol Neurootol 2003; 8:190-206. [PMID: 12811001 DOI: 10.1159/000071060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 02/21/2003] [Indexed: 11/19/2022] Open
Abstract
We induced acoustic trauma by applying click stimuli of 130 dB (SPL) for 30 min to one ear of adult rats. This treatment resulted in an instant and permanent threshold shift of 96 dB in the affected ear. A massive reduction of cochlear nerve fibers in the ventral cochlear nucleus (VCN) was demonstrated by tracing them from the cochlea of rats that survived acoustic overstimulation for 1 year or longer. In the auditory brainstem, we observed a deprivation-dependent appearance of fibers positive for tyrosine receptor kinase B in the ipsilateral VCN between day 3 and day 21 after trauma and an increase in phosphoserine immunostaining in the neuropil of the ipsilateral VCN and in neurons of the contralateral lateral superior olive during the first 30 days after trauma. Immunoreactivity for the cAMP response element binding protein in its phosphorylated form was transiently depressed in the ipsilateral inferior colliculus immediately after trauma and was elevated as late as 7 months after trauma in the ipsilateral VCN. Apparently, a unilateral acoustic overstimulation entails specific regulations of the activity of plasticity-associated molecules through phosphorylation and includes changes to neurotrophin signaling between neurons of the auditory brainstem.
Collapse
Affiliation(s)
- Steffen A Michler
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
48
|
Lorke DE, Wong LY, Lai HWL, Poon PWF, Zhang A, Chan WY, Yew DTW. Early postnatal sound exposure induces lasting neuronal changes in the inferior colliculus of senescence accelerated mice (SAMP8): a morphometric study on GABAergic neurons and NMDA expression. Cell Mol Neurobiol 2003; 23:143-64. [PMID: 12735628 DOI: 10.1023/a:1022993704617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Senescence-acceleration-prone mice (SAMP8) provide a model to study the influence of early postnatal sound exposure upon the aging auditory midbrain. SAMP8 were exposed to a 9-kHz monotone of either 53- or 65-dB sound pressure level during the first 30 postnatal days, the neurons in the auditory midbrain responding selectively to 9 kHz were localized by c-fos immunohistochemistry and the following parameters were compared to control SAMP8 not exposed to sound: mortality after sound exposure, dendritic spine density, and quantitative neurochemical alterations in this 9-kHz isofrequency lamina. For morphometric analysis, animals were examined at 1, 4, and 8 months of age. Serial sections of the inferior colliculus were Golgi impregnated or stained immunohistochemically for the expression of epsilon1 subunit of NMDA receptor or GABA. Mortality after exposure to 53 dB was the same as in controls, but was markedly increased from 7 months of age onward after postnatal exposure to 65 dB. No gross morphological alterations were observed in the auditory midbrain after sound exposure. However, sound exposure to 53 or 65 dB significantly reduced dendritic spine density by 11% at 4 months or by 11-17% both at 1 and 4 months of age, respectively. The effect of sound exposure upon neurons expressing the NMDAepsilon1 subunit was dose-dependent. Increasing with age until 4 months in control mice and remaining essentially stable thereafter, the percentage of NMDAepsilon1-immunoreactive neurons was significantly elevated by 40-66% in 1- and 8-month-old SAMP8 exposed to 53 dB, whereas no significant effect of 65 dB was apparent. The proportion of GABAergic cells declined with age in controls. It was significantly decreased at 1 month after 53 and 65 dB sound exposure. In contrast, it was elevated at later stages, being significantly increased at 4 months after exposure to 53 dB and at 8 months after exposure to 65 dB. The total cell number in the 9-kHz isofrequency lamina of SAMP8 decreased with age, but was not affected by exposure to either 53 or 65 dB. The present results indicate that early postnatal exposure to a monotone of mild intensity has long-term effects upon the aging auditory brain stem. Some of the changes induced by sound exposure, e.g., decline in spine density, are interpreted as accelerations of the normal aging process, whereas other effects, e.g., increased NMDAepsilon1 expression after 53 dB and elevated GABA expression after both 53 and 65 dB, are not merely explicable by accelerated aging.
Collapse
Affiliation(s)
- Dietrich Ernst Lorke
- Institute of Neuroanatomy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Michler SA, Illing RB. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem. J Comp Neurol 2002; 451:250-66. [PMID: 12210137 DOI: 10.1002/cne.10348] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We explored the consequences of unilateral acoustic trauma to intracochlear and central nervous system structures in rats. An acoustic trauma, induced by applying click stimuli of 130 dB (sound pressure level; SPL) for 30 minutes, resulted in an instant and permanent threshold shift of 95.92 +/- 1.08 dB (SEM) in the affected ear. We observed, as a consequence, a structural deterioration of the organ of Corti. Deprivation-dependent changes of neurons of the auditory brainstem were determined using antibodies against neurofilament and the growth-associated protein GAP-43 and compared with those following cochleotomy, studied earlier. By 231 days posttrauma, spiral ganglion cell bodies and their processes were almost entirely lost from all cochlear regions with destroyed organ of Corti. In the lateral superior olive (LSO) ipsilateral to the trauma, cell bodies of lateral olivocochlear neurons turned transiently GAP-43 positive within the first 1.5 years posttrauma. The time course of emergence and disappearance of this population of neurons was similar to that found after cochleotomy. Additionally, after noise trauma, principal cells in contralateral LSO and in medial superior olive (MSO) on both sides of the brainstem developed an expression of GAP-43 that began 3 and 16 days posttrauma, respectively, and lasted for at least 1 year. Such cells were rarely observed after cochleotomy. An unequivocal rise in GAP-43 immunoreactivity was also found in the neuropil of the inferior colliculus and the ventral cochlear nucleus, both preferentially on the acoustically damaged side. We conclude that the degree and specific cause of sudden unilateral deafness entail specific patterns of plasticity responses in the auditory brainstem, possibly to prevent the neural network dedicated to locate sounds in the environment from delivering erroneous signals centralward.
Collapse
Affiliation(s)
- Steffen A Michler
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany
| | | |
Collapse
|