1
|
Zhu H, Shi J, Li W. Bioinformatics analysis of ceRNA network of autophagy-related genes in pediatric asthma. Medicine (Baltimore) 2023; 102:e36343. [PMID: 38050261 PMCID: PMC10695615 DOI: 10.1097/md.0000000000036343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
The molecular underpinnings of pediatric asthma present avenues for targeted therapies. A deeper exploration into the significance of differentially expressed autophagy-related genes (DE-ARGs) and their interactions with the long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA network may offer insights into the pathogenesis of pediatric asthma. DE-ARGs were retrieved from the Gene Expression Omnibus and the Human Autophagy Database. These DE-ARGs were subjected to comprehensive analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, Gene Set Enrichment Analysis, and protein-protein interaction networks. The identified DE-ARGs were further verified for core gene expression. The miRDB and ENCORI databases were used for inverse miRNA predictions. Furthermore, miRNA-lncRNA interactions were predicted using LncBase and ENCORI platforms. Following the exclusion of lncRNAs exclusively localized in the nucleus and extracellular space, a competitive endogenous RNA (ceRNA) network was established and subsequently subjected to detailed analysis. The mRNA expression patterns in the ceRNA network were validated using quantitative real-time PCR. In total, 31 DE-ARGs were obtained, of which 29 were up-regulated and 2 were down-regulated. Notably, the autophagy, regulation of apoptotic signaling pathways, interferon-α/β signaling, interferon γ signaling, autophagy-animal, and apoptosis pathways were predominantly enriched in pediatric asthma. Five hub genes (VEGFA, CFLAR, RELA, FAS, and ATF6) were further analyzed using the Gene Expression Omnibus dataset to verify their expression patterns and diagnostic efficacy. Four hub genes (VEGFA, CFLAR, RELA, and FAS) were obtained. Finally, a ceRNA network of 4 mRNAs (VEGFA, CFLAR, RELA, and FAS), 3 miRNAs (hsa-miR-320b, hsa-miR-22-3p, and hsa-miR-625-5p), and 35 lncRNAs was constructed by integrating data from literature review and analyzing the predicted miRNAs and lncRNAs. Moreover, the quantitative real-time PCR data revealed a pronounced upregulation of Fas cell surface death receptor. The identification of 4 DE-ARGs, especially Fas cell surface death receptor, has shed light on their potential pivotal role in the pathogenesis of pediatric asthma. The established ceRNA network provides novel insights into the autophagy mechanism in asthma and suggests promising avenues for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Jiao Shi
- Clinical Laboratory, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Wen Li
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
2
|
Woehlk C, Von Bülow A, Ghanizada M, Søndergaard MB, Hansen S, Porsbjerg C. Allergen immunotherapy effectively reduces the risk of exacerbations and lower respiratory tract infections in both seasonal and perennial allergic asthma: a nationwide epidemiological study. Eur Respir J 2022; 60:13993003.00446-2022. [PMID: 35618279 DOI: 10.1183/13993003.00446-2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Allergic asthma is associated with increased risk of respiratory tract infections and exacerbations. It remains unclear whether this susceptibility is conditioned by seasonal or by perennial allergy. AIM To investigate perennial allergy compared with seasonal allergy as a risk factor for lower respiratory tract infections and exacerbations in asthma and whether this risk can be reduced by allergen immunotherapy (AIT). METHODOLOGY This is a prospective register-based nationwide study of 18-44-year-olds treated with AIT during 1995-2014. Based on the type of AIT and use of anti-asthmatic drugs, patients were subdivided into two groups: perennial allergic asthma (PAA) versus seasonal allergic asthma (SAA). Data on antibiotics against lower respiratory tract infections (LRTI) and oral corticosteroids for exacerbations were analysed before starting AIT (baseline) and 3 years after completing AIT (follow-up). RESULTS We identified 2688 patients with asthma treated with AIT, of whom 1249 had PAA and 1439 had SAA. At baseline, patients with SAA had more exacerbations (23.8% versus 16.5%, p≤0.001), but there were no differences in LRTI. During the 3-year follow-up, we observed a highly significant reduction of exacerbations with an average decrease of 57% in PAA and 74% in SAA. In addition, we observed a significant reduction of LRTI in both PAA and SAA: 17% and 20% decrease, respectively. CONCLUSION AIT effectively reduced the risk of exacerbations and lower respiratory tract infections in both seasonal and perennial allergic asthma. Perennial allergy is seemingly not a stronger risk factor for respiratory infections and exacerbations than seasonal allergy.
Collapse
Affiliation(s)
- Christian Woehlk
- Respiratory Research Unit, Dept Respiratory Medicine, Copenhagen, Denmark
| | - Anna Von Bülow
- Respiratory Research Unit, Dept Respiratory Medicine, Copenhagen, Denmark
| | - Muzhda Ghanizada
- Respiratory Research Unit, Dept Respiratory Medicine, Copenhagen, Denmark
| | | | - Susanne Hansen
- Respiratory Research Unit, Dept Respiratory Medicine, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Dept Respiratory Medicine, Copenhagen, Denmark
| |
Collapse
|
3
|
Sultész M, Horváth A, Molnár D, Katona G, Mezei G, Hirschberg A, Gálffy G. Prevalence of allergic rhinitis, related comorbidities and risk factors in schoolchildren. Allergy Asthma Clin Immunol 2020; 16:98. [PMID: 33292450 PMCID: PMC7661153 DOI: 10.1186/s13223-020-00495-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background The study aimed to determine the prevalence and risk factors of allergic rhinitis and related comorbidities in school-age children in Budapest, capital of Hungary. Data and epidemiological studies on this disease are still limited. Methods A cross sectional study was conducted in 21 representative and randomly selected primary schools in 2019. International Study of Asthma and Allergies in Childhood-based questionnaires (n = 6869) inquiring about prevalence and related risk factors of allergic rhinitis were distributed to all parents. The data were characterised with standard descriptive statistics: frequencies (percentages) and means for categorical and quantitative data, respectively. Results 3836 of the questionnaires (1857 M/1979F) were completed. The prevalence of current allergic rhinitis was 29.3% (1043), physician-diagnosed allergic rhinitis was 9.7% (373), cumulative allergic rhinitis was 36.2% (1289) and current allergic rhinoconjunctivitis was 16.2% (577). The presence of physician diagnosed atopic disease–asthma (p < 0.0001, OR = 4.398, 95% CI 3.356–5.807), food allergy (p < 0.0001, OR = 2.594, 95% CI 1.995–3.378), and eczema (p < 0.0001, OR = 1.899, 95% CI 1.568–2.300)-were significantly related to an increased risk of cumulative allergic rhinitis. Significant factors associated with allergic rhinitis include male gender (p < 0.0001), family history of atopy (p < 0.0001), frequent upper respiratory tract infections (p < 0.0001), tonsillectomy (p = 0.0054), antibiotics given in the first year of life (p < 0.0001), paracetamol given in the first year of life (p = 0.0038), long-lasting common infections caused by viruses and/or bacteria before the appearance of the allergy (p < 0.0001), consumption of drinks containing preservatives or colourants (p = 0.0023), duration of living in Budapest (p = 0.0386), smoking at home (p = 0.0218), smoking at home in the first year of life (p = 0.0048), birds at home (p = 0.0119), birds at home in the first year of life (p = 0.0052), visible mould in the bedroom (p = 0.0139), featherbedding (p = 0.0126), frequent or constant heavy-vehicle traffic (p = 0.0039), living in a weedy area (p < 0.0001) and living in the vicinity of an air-polluting factory or mine (p = 0.0128). Conclusions The prevalence of allergic rhinoconjunctivitis in 6–12-year-old children in Budapest is higher than reported for most of the surrounding European countries. While asthma (OR = 4.398) is the most significant comorbidity, environmental factors such as birds at home in the first year of life (OR = 2.394) and living in a weedy area (OR = 1.640) seem to be the most important factors associated with AR. Strategies for preventive measures should be implemented. Trial registration number: KUT-19/2019. The study was approved by the Ethics Committee at Heim Pál National Pediatric Institute,
Collapse
Affiliation(s)
- Monika Sultész
- Department of Oto-Rhino-Laryngology, Heim Pál National Pediatric Institute, 86. Üllői street, Budapest, 1089, Hungary
| | - Alpár Horváth
- Pest County Pulmonology Hospital, 70. Munkácsy Mihály Street, Törökbálint, 2045, Hungary.,Medical Department of Chiesi Hungary Ltd, 2. Dunavirág street, Budapest, 1138, Hungary
| | - Dávid Molnár
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical Centre, Hungarian Defence Forces, 109-111. Podmaniczky street, Budapest, 1062, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, 58 Tűzoltó street, Budapest, 1085, Hungary
| | - Gábor Katona
- Department of Oto-Rhino-Laryngology, Heim Pál National Pediatric Institute, 86. Üllői street, Budapest, 1089, Hungary
| | - Györgyi Mezei
- Division of Allergo-Pulmonology, 1st Department of Paediatrics, Semmelweis University, 53-54 Bókay János street, Budapest, 1083, Hungary.
| | - Andor Hirschberg
- Department of Oto-Rhino-Laryngology and Maxillo-Facial Surgery, Saint John's Hospital, 1-3. Diós árok, Budapest, 1125, Hungary
| | - Gabriella Gálffy
- Pest County Pulmonology Hospital, 70. Munkácsy Mihály Street, Törökbálint, 2045, Hungary.,Department of Thoracic Surgery, Semmelweis University, 7-9 Ráth György street, Budapest, 1122, Hungary
| |
Collapse
|
4
|
Xi Y, Upham JW. Plasmacytoid dendritic cells and asthma: a review of current knowledge. Expert Rev Respir Med 2020; 14:1095-1106. [PMID: 32726181 DOI: 10.1080/17476348.2020.1803741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION While medications are available to treat asthma symptoms and control inflammation, no treatments can cure asthma, and efforts to develop primary prevention strategies or improved exacerbation management are limited by incomplete knowledge of the mechanisms responsible for asthma development and progression. Plasmacytoid dendritic cells (pDC) are involved in anti-viral host defense and immune regulation, and increasing evidence suggests a role for pDC in asthma pathogenesis. AREAS COVERED We undertook a literature search using PubMed for articles including the phrase 'plasmacytoid dendritic cells and asthma' published from 2015 to 2020. We reviewed the remarkable progress made over the past 5 years in understanding the role of pDC in asthma pathogenesis and how pDC regulate anti-viral immune function. This review highlights key recent findings in asthma pathogenesis and virus-triggered asthma exacerbations; pDC biology and functionality; how pDC regulate the immune response; and pDC function in asthma. EXPERT OPTION A deeper understanding of pDC function provides an important foundation for future pDC-targeted therapies that might prevent and treat asthma.
Collapse
Affiliation(s)
- Yang Xi
- The Lung and Allergy Research Centre, the University of Queensland Diamantina Institute, Translational Research Institute , Brisbane, QLD, Australia
| | - John W Upham
- The Lung and Allergy Research Centre, the University of Queensland Diamantina Institute, Translational Research Institute , Brisbane, QLD, Australia.,Department of Respiratory Medicine, Princess Alexandra Hospital , Brisbane, QLD, Australia
| |
Collapse
|
5
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
6
|
Mikhail I, Grayson MH. Asthma and viral infections: An intricate relationship. Ann Allergy Asthma Immunol 2019; 123:352-358. [PMID: 31276807 PMCID: PMC7111180 DOI: 10.1016/j.anai.2019.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To synthesize available data related to the complex associations among viral infections, atopy, and asthma. DATA SOURCES Key historical articles, articles highlighted in our recent review of most significant recent asthma advancements, and findings from several birth cohorts related to asthma and viral infections were reviewed. In addition, PubMed was searched for review articles and original research related to the associations between viral infection and asthma, using the search words asthma, viral infections, atopy, development of asthma, rhinovirus (RV), and respiratory syncytial virus (RSV). STUDY SELECTIONS Articles were selected based on novelty and relevance to our topic of interest, the role of asthma and viral infections, and possible mechanisms to explain the association. RESULTS There is a large body of evidence demonstrating a link between early viral infections (especially RV and RSV) and asthma inception and exacerbations. RV-induced wheezing is an important risk factor for asthma only when atopy is present, with much evidence supporting the idea that sensitization is a risk factor for early RV-induced wheezing, which in turn is a risk factor for asthma. RSV, on the other hand, is a more important risk factor for nonatopic asthma, with severe infections conferring greater risk. CONCLUSION There are important differences in the development of atopic and nonatopic asthma, with several proposed mechanisms explaining the association between viral infections and the development of asthma and asthma exacerbations. Understanding these complex associations is important for developing asthma prevention strategies and targeted asthma therapies.
Collapse
Affiliation(s)
- Irene Mikhail
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
7
|
Flores-Torres AS, Salinas-Carmona MC, Salinas E, Rosas-Taraco AG. Eosinophils and Respiratory Viruses. Viral Immunol 2019; 32:198-207. [PMID: 31140942 DOI: 10.1089/vim.2018.0150] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eosinophils have been mainly associated with parasitic infection and pathologies such as asthma. Some patients with asthma present a high number of eosinophils in their airways. Since respiratory viruses are associated with asthma exacerbations, several studies have evaluated the role of eosinophils against respiratory viruses. Eosinophils contain and produce molecules with antiviral activity, including RNases and reactive nitrogen species. They can also participate in adaptive immunity, serving as antigen-presenting cells. Eosinophil antiviral response has been demonstrated against some respiratory viruses in vitro and in vivo, including respiratory syncytial virus and influenza. Given the implication of respiratory viruses in asthma, the eosinophil antiviral role might be an important factor to consider in this pathology.
Collapse
Affiliation(s)
- Armando S Flores-Torres
- 1 Department of Immunology, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. Jose E. Gonzalez," Monterrey, Nuevo León, Mexico
| | - Mario C Salinas-Carmona
- 1 Department of Immunology, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. Jose E. Gonzalez," Monterrey, Nuevo León, Mexico
| | - Eva Salinas
- 2 Department of Microbiology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - Adrian G Rosas-Taraco
- 1 Department of Immunology, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. Jose E. Gonzalez," Monterrey, Nuevo León, Mexico
| |
Collapse
|
8
|
Ağaç D, Gill MA, Farrar JD. Adrenergic Signaling at the Interface of Allergic Asthma and Viral Infections. Front Immunol 2018; 9:736. [PMID: 29696025 PMCID: PMC5904268 DOI: 10.3389/fimmu.2018.00736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Upper respiratory viral infections are a major etiologic instigator of allergic asthma, and they drive severe exacerbations of allergic inflammation in the lower airways of asthma sufferers. Rhinovirus (RV), in particular, is the main viral instigator of these pathologies. Asthma exacerbations due to RV infections are the most frequent reasons for hospitalization and account for the majority of morbidity and mortality in asthma patients. In both critical care and disease control, long- and short-acting β2-agonists are the first line of therapeutic intervention, which are used to restore airway function by promoting smooth muscle cell relaxation in bronchioles. While prophylactic use of β2-agonists reduces the frequency and pathology of exacerbations, their role in modulating the inflammatory response is only now being appreciated. Adrenergic signaling is a component of the sympathetic nervous system, and the natural ligands, epinephrine and norepinephrine (NE), regulate a multitude of autonomic functions including regulation of both the innate and adaptive immune response. NE is the primary neurotransmitter released by post-ganglionic sympathetic neurons that innervate most all peripheral tissues including lung and secondary lymphoid organs. Thus, the adrenergic signaling pathways are in direct contact with both the central and peripheral immune compartments. We present a perspective on how the adrenergic signaling pathway controls immune function and how β2-agonists may influence inflammation in the context of virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Didem Ağaç
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michelle A Gill
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - J David Farrar
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Edwards MR, Strong K, Cameron A, Walton RP, Jackson DJ, Johnston SL. Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. J Allergy Clin Immunol 2017; 140:909-920. [PMID: 28987220 PMCID: PMC7173222 DOI: 10.1016/j.jaci.2017.07.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Viral respiratory tract infections are associated with asthma inception in early life and asthma exacerbations in older children and adults. Although how viruses influence asthma inception is poorly understood, much research has focused on the host response to respiratory viruses and how viruses can promote; or how the host response is affected by subsequent allergen sensitization and exposure. This review focuses on the innate interferon-mediated host response to respiratory viruses and discusses and summarizes the available evidence that this response is impaired or suboptimal. In addition, the ability of respiratory viruses to act in a synergistic or additive manner with TH2 pathways will be discussed. In this review we argue that these 2 outcomes are likely linked and discuss the available evidence that shows reciprocal negative regulation between innate interferons and TH2 mediators. With the renewed interest in anti-TH2 biologics, we propose a rationale for why they are particularly successful in controlling asthma exacerbations and suggest ways in which future clinical studies could be used to find direct evidence for this hypothesis.
Collapse
Affiliation(s)
- Michael R Edwards
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom.
| | - Katherine Strong
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Aoife Cameron
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Ross P Walton
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - David J Jackson
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom; Guy's & St Thomas's Hospital London, London, United Kingdom
| | - Sebastian L Johnston
- COPD & Asthma Section, National Heart Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
10
|
Smith N, Herbeuval JP. Mechanisms underlying plasmacytoid dendritic cell regulation during viral infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Nikaïa Smith
- CNRS UMR-8601, Université Paris Descartes, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Descartes, CICB, 45 rue des Saints-Pères, 75006 Paris, France
- Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT
| |
Collapse
|
11
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
12
|
Edwards MR, Saglani S, Schwarze J, Skevaki C, Smith JA, Ainsworth B, Almond M, Andreakos E, Belvisi MG, Chung KF, Cookson W, Cullinan P, Hawrylowicz C, Lommatzsch M, Jackson D, Lutter R, Marsland B, Moffatt M, Thomas M, Virchow JC, Xanthou G, Edwards J, Walker S, Johnston SL. Addressing unmet needs in understanding asthma mechanisms: From the European Asthma Research and Innovation Partnership (EARIP) Work Package (WP)2 collaborators. Eur Respir J 2017; 49:49/5/1602448. [PMID: 28461300 DOI: 10.1183/13993003.02448-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Asthma is a heterogeneous, complex disease with clinical phenotypes that incorporate persistent symptoms and acute exacerbations. It affects many millions of Europeans throughout their education and working lives and puts a heavy cost on European productivity. There is a wide spectrum of disease severity and control. Therapeutic advances have been slow despite greater understanding of basic mechanisms and the lack of satisfactory preventative and disease modifying management for asthma constitutes a significant unmet clinical need. Preventing, treating and ultimately curing asthma requires co-ordinated research and innovation across Europe. The European Asthma Research and Innovation Partnership (EARIP) is an FP7-funded programme which has taken a co-ordinated and integrated approach to analysing the future of asthma research and development. This report aims to identify the mechanistic areas in which investment is required to bring about significant improvements in asthma outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rene Lutter
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Benjamin Marsland
- University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | - Georgina Xanthou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
13
|
Baraldo S, Papi A, Saetta M, Contoli M. IFN-α/IFN-λ responses to respiratory viruses in paediatric asthma. Eur Respir J 2017; 49:49/3/1602489. [PMID: 28356375 DOI: 10.1183/13993003.02489-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Simonetta Baraldo
- Dept of Cardiac, Thoracic and Vascular Sciences, Section of Respiratory Diseases, University of Padova, Padova, Italy
| | - Alberto Papi
- Dept of Medical Sciences, Section of Respiratory Diseases, University of Ferrara, Ferrara, Italy
| | - Marina Saetta
- Dept of Cardiac, Thoracic and Vascular Sciences, Section of Respiratory Diseases, University of Padova, Padova, Italy
| | - Marco Contoli
- Dept of Medical Sciences, Section of Respiratory Diseases, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Bergauer A, Sopel N, Kroß B, Vuorinen T, Xepapadaki P, Weiss ST, Blau A, Sharma H, Kraus C, Springel R, Rauh M, Mittler S, Graser A, Zimmermann T, Melichar VO, Kiefer A, Kowalski ML, Sobanska A, Jartti T, Lukkarinen H, Papadopoulos NG, Finotto S. IFN-α/IFN-λ responses to respiratory viruses in paediatric asthma. Eur Respir J 2017; 49:49/3/1700006. [PMID: 28356378 DOI: 10.1183/13993003.00006-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Annika Bergauer
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nina Sopel
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bettina Kroß
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Scott T Weiss
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized Medicine, Cambridge, MA, USA
| | - Ashley Blau
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized Medicine, Cambridge, MA, USA
| | - Himanshu Sharma
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized Medicine, Cambridge, MA, USA
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rebekka Springel
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Children's Hospital, Dept of Paediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Mittler
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Graser
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Children's Hospital, Dept of Allergy and Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Volker O Melichar
- Children's Hospital, Dept of Allergy and Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Children's Hospital, Dept of Allergy and Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marek L Kowalski
- Dept of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland
| | - Anna Sobanska
- Dept of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland
| | - Tuomas Jartti
- Dept of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Heikki Lukkarinen
- Dept of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, Turku University Hospital, Turku, Finland
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
| | - Susetta Finotto
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun 2017; 8:14253. [PMID: 28181493 PMCID: PMC5309800 DOI: 10.1038/ncomms14253] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 12/08/2016] [Indexed: 01/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. Plasmacytoid dendritic cells produce type I interferons in response to viral sensing. Here the authors show that amines inhibit these plasmacytoid dendritic cell responses through CXCR4 engagement.
Collapse
|
16
|
Hagmann BR, Odermatt A, Kaufmann T, Dahinden CA, Fux M. Balance between IL-3 and type Iinterferons and their interrelationship with FasL dictates lifespan and effector functions of human basophils. Clin Exp Allergy 2016; 47:71-84. [PMID: 27910206 DOI: 10.1111/cea.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND In contrast to eosinophils and neutrophils, the regulation of the lifespan of human basophils is poorly defined, with the exception of the potent anti-apoptotic effect of IL-3 that also promotes pro-inflammatory effector functions and phenotypic changes. Type I IFNs (IFN-α, IFN-β), which are well known for their anti-viral activities, have the capacity to inhibit allergic inflammation. OBJECTIVE To elucidate whether type I IFNs have the potential to abrogate the lifespan and/or effector functions of human basophils. METHODS We cultured human basophils, and for comparison, eosinophils and neutrophils, with IL-3, interferons, FasL and TRAIL, alone or in combination, and studied cell survival, effector functions and signalling pathways involved. RESULTS Despite an identical pattern of early signalling in basophils, eosinophils and neutrophils in response to different types of interferons, only basophils displayed enhanced apoptosis after type I IFN treatment. IFN-γ prolonged survival of eosinophils but did not affect the lifespan of basophils. IFN-α-mediated apoptosis required STAT1-STAT2 heterodimers and the contribution of constitutive p38 MAPK activity. Whereas the death ligands FasL and TRAIL-induced apoptosis in basophils per se, IFN-α-mediated apoptosis did neither involve autocrine TRAIL signalling nor did it sensitize basophils to FasL-induced apoptosis. However, IFN-α and FasL displayed an additive effect in killing basophils. Interestingly, IL-3, which protected basophils from IFN-α-, TRAIL- or FasL-mediated apoptosis, did not completely block the additive effect of combined IFN-α and FasL treatment. Moreover, we demonstrate that IFN-α suppressed IL-3-induced release of IL-8 and IL-13. In contrast to IFN-α-mediated apoptosis, these inhibitory effects of IFN-α were not dependent on p38 MAPK signalling. CONCLUSIONS AND CLINICAL RELEVANCE Our study defines the unique and granulocyte-type-specific inhibitory and pro-apoptotic function of type I IFNs and their cooperation with death ligands in human blood basophils, which may be relevant for the anti-allergic properties of type I IFNs.
Collapse
Affiliation(s)
- B R Hagmann
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - A Odermatt
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - T Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - C A Dahinden
- University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Fux
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Abstract
Chronic airway diseases are a significant cause of morbidity and mortality worldwide, and their prevalence is predicted to increase in the future. Respiratory viruses are the most common cause of acute pulmonary infection, and there is clear evidence of their role in acute exacerbations of inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. Studies have reported impaired host responses to virus infection in these diseases, and a better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in acute exacerbations of chronic pulmonary diseases and to discuss exciting areas for future research and novel treatments.
Collapse
|
18
|
Swedin L, Saarne T, Rehnberg M, Glader P, Niedzielska M, Johansson G, Hazon P, Catley MC. Patient stratification and the unmet need in asthma. Pharmacol Ther 2016; 169:13-34. [PMID: 27373855 DOI: 10.1016/j.pharmthera.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Asthma is often described as an inflammatory disease of the lungs and in most patients symptomatic treatment with bronchodilators or inhaled corticosteroids is sufficient to control disease. Unfortunately there are a proportion of patients who fail to achieve control despite treatment with the best current treatment. These severe asthma patients have been considered a homogeneous group of patients that represent the unmet therapeutic need in asthma. Many novel therapies have been tested in unselected asthma patients and the effects have often been disappointing, particularly for the highly specific monoclonal antibody-based drugs such as anti-IL-13 and anti-IL-5. More recently, it has become clear that asthma is a syndrome with many different disease drivers. Clinical trials of anti-IL-13 and anti-IL-5 have focused on biomarker-defined patient groups and these trials have driven the clinical progression of these drugs. Work on asthma phenotyping indicates that there is a group of asthma patients where T helper cell type 2 (Th2) cytokines and inflammation predominate and these type 2 high (T2-high) patients can be defined by biomarkers and response to therapies targeting this type of immunity, including anti-IL-5 and anti-IL-13. However, there is still a subset of T2-low patients that do not respond to these new therapies. This T2-low group will represent the new unmet medical need now that the T2-high-targeting therapies have made it to the market. This review will examine the current thinking on patient stratification in asthma and the identification of the T2-high subset. It will also look at the T2-low patients and examine what may be the drivers of disease in these patients.
Collapse
Affiliation(s)
- Linda Swedin
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Tiiu Saarne
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Maria Rehnberg
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Pernilla Glader
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Magdalena Niedzielska
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Gustav Johansson
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Petra Hazon
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden
| | - Matthew C Catley
- Respiratory, Inflammation and Autoimmunity iMED, Translational Biology, AstraZeneca R&D Gothenburg, Sweden.
| |
Collapse
|
19
|
O'Byrne PM, Tworek D. Timing is everything: Targeting IgE to reduce asthma exacerbation risk. J Allergy Clin Immunol 2016; 136:1486-1487. [PMID: 26654197 DOI: 10.1016/j.jaci.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Damian Tworek
- Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Rhinovirus stimulated IFN-α production: how important are plasmacytoid DCs, monocytes and endosomal pH? Clin Transl Immunology 2015; 4:e46. [PMID: 26682054 PMCID: PMC4673444 DOI: 10.1038/cti.2015.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Human rhinovirus (HRV) infection is a major cause of asthma exacerbations, which appears to be linked to a defective innate immune response to infection. Although the type I interferons (IFN-α and IFN-β) have a critical role in protecting against most viral infections, the cells responsible for IFN production in response to HRV and the relative importance of pattern recognition receptors located in endosomes has not been fully elucidated. In the current study we demonstrate that, using intracellular flow cytometry, >90% of the IFN-α-producing cells in human blood mononuclear cells following HRV16 exposure are plasmacytoid dendritic cells, whereas monocytes and myeloid dendritic cells contribute only 10% and <1%, respectively, of the IFN-α production. Bafilomycin and chloroquine, agents that inhibit the function of endosomal toll-like receptors (TLRs), significantly reduced the capacity of TLR3-, TLR7- and TLR-9-stimulated cells to produce IFN-α and the IFN-induced chemokine CXCL10 (IP-10). In contrast, only bafilomycin (but not chloroquine) effectively suppressed HRV16-stimulated IFN-α and IP-10 production, whereas neither bafilomycin or chloroquine inhibited HRV16-stimulated interleukin-6 release. Attempts to block IFN-α production with commercially available TLR-specific oligonucleotides were unsuccessful due to major ‘off-target' effects. These findings suggest that among circulating haemopoietic cells, plasmacytoid dendritic cells and TLRs located within endosomes are critical for inducing efficient IFN-I production in response to HRVs.
Collapse
|
21
|
Abstract
Asthma is a heterogeneous disease with numerous clinical phenotypes. Severe asthma constitutes about 10 % of all cases of asthma. There is significant geographic and regional variation in the incidence and severity of asthma. Other important factors include gender, ethnicity, living environment, lifestyle, socioeconomic class, and pathophysiology. These factors can often be identified as either genetic or environmental influences on asthma severity. The immune system derangements in severe asthma are poorly understood. Many molecules and cell types have been implicated in severe asthma, including neutrophils, airway epithelial cells, thymic stromal lymphopoietin, and even filaggrin. Recently, vitamin D has been thought to have a role in the severity of asthma. Aspirin exacerbated respiratory disease is an example of a phenotype that includes severe asthma as a feature. This suggests a role of leukotrienes or prostaglandins in the pathogenesis of severe asthma. Both the innate and adaptive immune system may play a role in the development of severe asthma. Besides filaggrin, other factors of the innate immune system, including TLR4 and TLR9 have been implicated in asthma. Airway epithelial cells possess pattern recognition receptors that recognize danger or pathogen-associated molecular patterns, and the result of binding of the ligand is the triggering of a signaling pathway that ultimately can lead to an activation of inflammatory mediators through the action of calcineurin and NF-κB. Components of the adaptive immune system, including TH2 and Th17 cells, have been implicated in the pathogenesis of asthma. The fact that so many molecules and cells may be variably involved in asthma patients, coupled with the presence of redundant pathways that lead to secretion of inflammatory mediators, make the development of effective drugs for the treatment of asthma extremely difficult. A better understanding of the heterogeneity and what drives this diversity on a genetic and epigenetic level will help to develop strategies for novel therapeutic agents or methods.
Collapse
Affiliation(s)
- Stacey Galowitz
- Division of Allergy and Immunology, Thomas Jefferson University, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | | |
Collapse
|
22
|
Kim SH, Lim KH, Park HK, Lee SY, Kim SH, Kang HR, Park HW, Chang YS, Cho SH. Reduced IRF7 response to rhinovirus unrelated with DNA methylation in peripheral mononuclear cells of adult asthmatics. Asia Pac Allergy 2015; 5:114-22. [PMID: 25938076 PMCID: PMC4415177 DOI: 10.5415/apallergy.2015.5.2.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/12/2015] [Indexed: 02/04/2023] Open
Abstract
Background Human rhinoviruses are the major cause of asthma exacerbation in both children and adults. Recently, impaired antiviral interferon (IFN) response in asthmatics has been indicated as a primary reason of the susceptibility to respiratory virus, but the mechanism of defective IFN production is little understood to date. The expression of IFN regulatory factor 7 (IRF7), a transcriptional factor for virus-induced type I IFN production is known to be regulated epigenetically by DNA methylation. Objective We aimed to investigate the expression of IFN-α, IFN-β, and IRF7 in response to rhinovirus infection in the adult asthmatics and evaluate DNA methylation status of IRF7 gene promotor. Methods Twenty symptomatic adult asthmatics and 10 healthy subjects were enrolled and peripheral blood was collected from each subject. Peripheral blood mononuclear cells (PBMCs) were isolated, cultured, and ex vivo stimulated with rhinovirus-16. The mRNA expressions of IFN-α, IFN-β, and IRF7 were analyzed using real time quantitative polymerase chain reaction. Genomic DNA was isolated from untreated PBMCs and the methylation status of IRF7 gene promotor was investigated using bisulfite pyrosequencing. Results The mean age of asthmatics was 45.4 ± 15.7 years and 40% was male, which were not different with those of control group. Asthmatics showed significantly decreased mRNA expressions (relative expression to beta-actin) of IFN-α and IFN-β compared with normal control. The mRNA expression of IRF7 in the asthmatics was also significantly lower than those in the normal control. No significant difference of DNA methylation was observed between asthmatics and controls in all analyzed positions of IRF7 promotor CpG loci. Conclusion The mRNA expression of type I IFN in response to rhinovirus was impaired in the PBMCs of adult asthmatics. The mRNA expression of IRF7, transcriptional factor inducing type I IFN was also reduced, but not caused by altered DNA methylation in the IRF7 gene promotor.
Collapse
Affiliation(s)
- Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Kyung-Hwan Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Han-Ki Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Soon-Hee Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| |
Collapse
|
23
|
|
24
|
Patel DA, You Y, Huang G, Byers DE, Kim HJ, Agapov E, Moore ML, Peebles RS, Castro M, Sumino K, Shifren A, Brody SL, Holtzman MJ. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J Allergy Clin Immunol 2014; 134:1402-1412.e7. [PMID: 25216987 PMCID: PMC4261010 DOI: 10.1016/j.jaci.2014.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Some investigators find a deficiency in IFN production from airway epithelial cells infected with human rhinovirus in asthma, but whether this abnormality occurs with other respiratory viruses is uncertain. OBJECTIVE To assess the effect of influenza A virus (IAV) and respiratory syncytial virus (RSV) infection on IFN production and viral level in human bronchial epithelial cells (hBECs) from subjects with and without asthma. METHODS Primary-culture hBECs from subjects with mild to severe asthma (n = 11) and controls without asthma (hBECs; n = 7) were infected with live or ultraviolet-inactivated IAV (WS/33 strain), RSV (Long strain), or RSV (A/2001/2-20 strain) with multiplicity of infection 0.01 to 1. Levels of virus along with IFN-β and IFN-λ and IFN-stimulated gene expression (tracked by 2'-5'-oligoadenylate synthetase 1 and myxovirus (influenza virus) resistance 1 mRNA) were determined up to 72 hours postinoculation. RESULTS After IAV infection, viral levels were increased 2-fold in hBECs from asthmatic subjects compared with nonasthmatic control subjects (P < .05) and this increase occurred in concert with increased IFN-λ1 levels and no significant difference in IFNB1, 2'-5'-oligoadenylate synthetase 1, or myxovirus (influenza virus) resistance 1mRNA levels. After RSV infections, viral levels were not significantly increased in hBECs from asthmatic versus nonasthmatic subjects and the only significant difference between groups was a decrease in IFN-λ levels (P < .05) that correlated with a decrease in viral titer. All these differences were found only at isolated time points and were not sustained throughout the 72-hour infection period. CONCLUSIONS The results indicate that IAV and RSV control and IFN response to these viruses in airway epithelial cells is remarkably similar between subjects with and without asthma.
Collapse
Affiliation(s)
- Dhara A. Patel
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Yingjian You
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Guangming Huang
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Hyun Jik Kim
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Eugene Agapov
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt School of Medicine, Nashville, TN
| | - Mario Castro
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Kaharu Sumino
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Adrian Shifren
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| |
Collapse
|
25
|
Pritchard AL, White OJ, Burel JG, Carroll ML, Phipps S, Upham JW. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PLoS One 2014; 9:e106501. [PMID: 25203745 PMCID: PMC4159236 DOI: 10.1371/journal.pone.0106501] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human rhinovirus (HRV) infection is a major trigger for asthma exacerbations. Anti-viral immunity appears to be abnormal in asthma, with immune dysfunction reported in both airway structural cells and migratory, bone marrow derived cells. Though decreased capacity to produce anti-viral interferons (IFNs) has been reported in asthma, a detailed analysis of the molecular events involved has not been undertaken. OBJECTIVE To compare the molecular pathway controlling type I IFN synthesis in HRV-stimulated peripheral blood mononuclear cells (PBMC) from asthmatic and healthy subjects. METHODS PBMC from 22 allergic asthmatics and 20 healthy donors were cultured with HRV for 24 hours. Multiple components of the Toll-like receptor (TLR), IFN regulatory and NFκβ pathways were compared at the mRNA and protein level. RESULTS Multiple deficiencies in the innate immune response to HRV were identified in asthma, with significantly lower expression of IFNα, IFNβ and interferon stimulated genes than in healthy subjects. This was accompanied by reduced expression of intra-cellular signalling molecules including interferon regulatory factors (IRF1, IRF7), NF-κB family members (p50, p52, p65 and IκKα) and STAT1, and by reduced responsiveness to TLR7/TLR8 activation. These observations could not be attributed to alterations in the numbers of dendritic cell (DC) subsets in asthma or baseline expression of the viral RNA sensing receptors TLR7/TLR8. In healthy subjects, blocking the activity of type-I IFN or depleting plasmacytoid DC recapitulated many of the abnormalities observed in asthma. CONCLUSIONS Multiple abnormalities in innate anti-viral signalling pathways were identified in asthma, with deficiencies in both IFN-dependent and IFN-independent molecules identified.
Collapse
Affiliation(s)
- Antonia L. Pritchard
- Lung and Allergy Research Group, School of Medicine, The University of Queensland, Translational Research Institute (TRI), Woolloongabba, Brisbane, Australia
| | - Olivia J. White
- Lung and Allergy Research Group, School of Medicine, The University of Queensland, Translational Research Institute (TRI), Woolloongabba, Brisbane, Australia
| | - Julie G. Burel
- Lung and Allergy Research Group, School of Medicine, The University of Queensland, Translational Research Institute (TRI), Woolloongabba, Brisbane, Australia
| | - Melanie L. Carroll
- Lung and Allergy Research Group, School of Medicine, The University of Queensland, Translational Research Institute (TRI), Woolloongabba, Brisbane, Australia
| | - Simon Phipps
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - John W. Upham
- Lung and Allergy Research Group, School of Medicine, The University of Queensland, Translational Research Institute (TRI), Woolloongabba, Brisbane, Australia
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
26
|
Zhu L, Lee B, Zhao F, Zhou X, Chin V, Ling SC, Chen Y. Modulation of airway epithelial antiviral immunity by fungal exposure. Am J Respir Cell Mol Biol 2014; 50:1136-43. [PMID: 24428709 DOI: 10.1165/rcmb.2013-0357oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple pathogens, such as bacteria, fungi, and viruses, have been frequently found in asthmatic airways and are associated with the pathogenesis and exacerbation of asthma. Among these pathogens, Alternaria alternata (Alt), a universally present fungus, and human rhinovirus have been extensively studied. However, their interactions have not been investigated. In the present study, we tested the effect of Alt exposure on virus-induced airway epithelial immunity using live virus and a synthetic viral mimicker, double-stranded RNA (dsRNA). Alt treatment was found to significantly enhance the production of proinflammatory cytokines (e.g., IL-6 and IL-8) induced by virus infection or dsRNA treatment. In contrast to this synergistic effect, Alt significantly repressed type I and type III IFN production, and this impairment led to elevated viral replication. Mechanistic studies suggested the positive role of NF-κB and mitogen-activated protein kinase pathways in the synergism and the attenuation of the TBK1-IRF3 pathway in the inhibition of IFN production. These opposite effects are caused by separate fungal components. Protease-dependent and -independent mechanisms appear to be involved. Thus, Alt exposure alters the airway epithelial immunity to viral infection by shifting toward more inflammatory but less antiviral responses.
Collapse
Affiliation(s)
- Lingxiang Zhu
- 1 Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona; and
| | | | | | | | | | | | | |
Collapse
|
27
|
Razzuoli E, Villa R, Ferrari A, Amadori M. A pig tonsil cell culture model for evaluating oral, low-dose IFN-α treatments. Vet Immunol Immunopathol 2014; 160:244-54. [PMID: 24951265 DOI: 10.1016/j.vetimm.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 12/27/2022]
Abstract
Oral, low-dose IFN-α treatments proved effective in several models of viral infections and immunopathological conditions. Also, they do not give rise to the serious side effects observed after parenteral inoculation of high doses (10(5)U/kg b.w. and higher). There is convincing evidence that such treatments work through an early, effective interaction with oral lymphoid tissues before the IFN-α molecules are rapidly destroyed by gut enzymes. Yet, the paucity of detailed information about these crucial interactions and the lack of recognized in vitro models hamper the development of proper administration protocols. On the basis of a previous study, we developed an in vitro model of interaction between different types of human and porcine IFNs-α at low/moderate concentrations and pig tonsil cells. The IFNs-α under study showed different properties with respect to three fundamental control actions: (1) IgA release in culture, (2) release of natural antimicrobial compounds, and (3) homeostatic regulation of the inflammatory response. This was checked in pig intestinal epithelial cells (IPEC-J2 cell line) treated with supernatants of control and IFN α-treated tonsil cell cultures, respectively, in terms of inflammatory cytokine and chemokine responses. Some IFNs-α caused a significant inhibition of IL-8 (protein release and gene expression) and beta-defensin 1 (gene expression) probably through second messengers released by IFN α-treated tonsil cells. Interestingly, a human lymphoblastoid IFN-α under study caused the decrease of polyclonal IgA release by pig tonsil cells and significantly stimulated the in vitro recall antibody response of swine PBMC to Foot-and-Mouth Disease virus. The modulation of IgA and antibacterial compounds was accompanied by an anti-inflammatory control action at the same, low to moderate IFN-α concentrations (1-100 U/ml). This highlights the very foundation of the homeostatic control actions performed by Type I IFNs: to promote an effective host response to infectious and non-infectious stressors and to turn off noxious inflammatory responses associated with tissue damage and waste of metabolic energy. The described tonsil cell model in vitro can be conducive to a further development of oral cytokine treatments in humans and animals in the "one health" conceptual framework.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- S.S Genova, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Riccardo Villa
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, via A. Bianchi 9, 25124 Brescia, Italy
| | - Angelo Ferrari
- S.S Genova, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, via A. Bianchi 9, 25124 Brescia, Italy.
| |
Collapse
|
28
|
Mackenzie KJ, Anderton SM, Schwarze J. Viral respiratory tract infections and asthma in early life: cause and effect? Clin Exp Allergy 2013. [DOI: 10.1111/cea.12139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- K. J. Mackenzie
- MRC Centre for Inflammation Research; The University of Edinburgh; Edinburgh UK
| | - S. M. Anderton
- MRC Centre for Inflammation Research; The University of Edinburgh; Edinburgh UK
- Centre for Multiple Sclerosis Research; The University of Edinburgh; Edinburgh UK
- Centre for Immunity, Infection and Evolution; The University of Edinburgh; Edinburgh UK
| | - J. Schwarze
- MRC Centre for Inflammation Research; The University of Edinburgh; Edinburgh UK
- Child Life and Health; The University of Edinburgh; Edinburgh UK
| |
Collapse
|
29
|
Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, Kon OM, McHale M, Johnston SL. Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 2013; 69:240-6. [PMID: 24127021 DOI: 10.1136/thoraxjnl-2012-202909] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Defective rhinovirus (RV)-induced interferon (IFN)-β and IFN-λ production and increased RV replication have been reported in primary human bronchial epithelial cells (HBECs) from subjects with asthma. How universal this defect is in asthma is unknown. Additionally, the IFN subtypes induced by RV infection in primary HBECs have not been comprehensively investigated. OBJECTIVE To study RV induction of IFN-α, IFN-β and IFN-λ and RV replication in HBECs from subjects with atopic asthma and healthy controls. METHODS HBECs were obtained from subjects with asthma and healthy controls and infected with RV16 and RV1B, and cells and supernatants harvested at 8, 24 and 48h. IFN proteins were analysed by ELISA and IFN mRNA and viral RNA expression by quantitative PCR. Virus release was assessed in cell supernatants. RESULTS IFN-β and IFN-λ were the only IFNs induced by RV in HBECs and IFN-λ protein induction was substantially greater than IFN-β. Induction of IFN-λ1 mRNA by RV16 at 48h was significantly greater in HBECs from subjects with asthma; otherwise there were no significant differences between subjects with asthma and controls in RV replication, or in induction of type I or III IFN protein or mRNA. CONCLUSIONS IFN-λ and, to a lesser degree, IFN-β are the major IFN subtypes induced by RV infection of HBECs. Neither defective IFN induction by RV nor increased RV replication was observed in the HBECs from subjects with well controlled asthma reported in this study.
Collapse
Affiliation(s)
- Annemarie Sykes
- National Heart and Lung Institute, Imperial College London, , London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A, Shoemark A, Saglani S, Sykes A, Macintyre J, Davies J, Bossley C, Bush A, Johnston SL. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013; 6:797-806. [PMID: 23212197 PMCID: PMC3684776 DOI: 10.1038/mi.2012.118] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/22/2012] [Indexed: 02/04/2023]
Abstract
Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA.
Collapse
Affiliation(s)
- M R Edwards
- Respiratory Medicine, St Mary's Campus, National Heart Lung Institute, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sykes A, Edwards MR, Macintyre J, del Rosario A, Gielen V, Haas J, Kon OM, McHale M, Johnston SL. TLR3, TLR4 and TLRs7-9 Induced Interferons Are Not Impaired in Airway and Blood Cells in Well Controlled Asthma. PLoS One 2013; 8:e65921. [PMID: 23824215 PMCID: PMC3688823 DOI: 10.1371/journal.pone.0065921] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022] Open
Abstract
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7-9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.
Collapse
Affiliation(s)
- Annemarie Sykes
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Michael R. Edwards
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Jonathan Macintyre
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ajerico del Rosario
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vera Gielen
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Jennifer Haas
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark McHale
- Respiratory and Inflammation Research Area, AstraZeneca R&D Charnwood, Loughborough, United Kingdom
| | - Sebastian L. Johnston
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Centre for Respiratory Infection, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
32
|
Dhariwal J, Edwards MR, Johnston SL. Anti-viral agents: potential utility in exacerbations of asthma. Curr Opin Pharmacol 2013; 13:331-6. [PMID: 23664758 PMCID: PMC7172264 DOI: 10.1016/j.coph.2013.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/30/2023]
Abstract
Respiratory virus infections are the single greatest precipitants of asthma exacerbations. Current treatment options for AE are limited and have developed little in recent years. Development of effective anti-viral treatments remains a key target for therapeutic intervention. Approaches include therapies that either target the virus or boost host response to the virus. New clinical studies are needed to further our understanding of the mechanisms of virus induced asthma exacerbation.
Asthma is the most common chronic respiratory disease and its prevalence is on the increase. Respiratory viral infections in early life have been suggested to increase the risk of development of asthma in later life and virus infection remains the single greatest precipitant of asthma exacerbations. The development of effective anti-viral treatments remains a key target for therapeutic intervention. Here we discuss the role of respiratory viral infection in asthma exacerbation and highlight current and potential anti-viral agents and their mechanisms of action.
Collapse
Affiliation(s)
- Jaideep Dhariwal
- Airway Disease Infection Section, National Heart Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
33
|
Meyer N, Akdis CA. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways. Curr Allergy Asthma Rep 2013; 13:1-9. [PMID: 23076420 DOI: 10.1007/s11882-012-0317-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.
Collapse
Affiliation(s)
- Norbert Meyer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| | | |
Collapse
|
34
|
Kaiko GE, Loh Z, Spann K, Lynch JP, Lalwani A, Zheng Z, Davidson S, Uematsu S, Akira S, Hayball J, Diener KR, Baines KJ, Simpson JL, Foster PS, Phipps S. Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. J Allergy Clin Immunol 2013; 131:1331-9.e10. [PMID: 23561801 DOI: 10.1016/j.jaci.2013.02.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/20/2013] [Accepted: 02/12/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Respiratory tract viruses are a major environmental risk factor for both the inception and exacerbations of asthma. Genetic defects in Toll-like receptor (TLR) 7-mediated signaling, impaired type I interferon responses, or both have been reported in asthmatic patients, although their contribution to the onset and exacerbation of asthma remains poorly understood. OBJECTIVE We sought to determine whether Pneumovirus infection in the absence of TLR7 predisposes to bronchiolitis and the inception of asthma. METHODS Wild-type and TLR7-deficient (TLR7(-/-)) mice were inoculated with the rodent-specific pathogen pneumonia virus of mice at 1 (primary), 7 (secondary), and 13 (tertiary) weeks of age, and pathologic features of bronchiolitis or asthma were assessed. In some experiments infected mice were exposed to low-dose cockroach antigen. RESULTS TLR7 deficiency increased viral load in the airway epithelium, which became sloughed and necrotic, and promoted an IFN-α/β(low), IL-12p70(low), IL-1β(high), IL-25(high), and IL-33(high) cytokine microenvironment that was associated with the recruitment of type 2 innate lymphoid cells/nuocytes and increased TH2-type cytokine production. Viral challenge of TLR7(-/-) mice induced all of the cardinal pathophysiologic features of asthma, including tissue eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle alterations, and airways hyperreactivity in a memory CD4(+) T cell-dependent manner. Importantly, infections with pneumonia virus of mice promoted allergic sensitization to inhaled cockroach antigen in the absence but not the presence of TLR7. CONCLUSION TLR7 gene defects and Pneumovirus infection interact to establish an aberrant adaptive response that might underlie virus-induced asthma exacerbations in later life.
Collapse
Affiliation(s)
- Gerard E Kaiko
- Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Baraldo S, Contoli M, Bazzan E, Turato G, Padovani A, Marku B, Calabrese F, Caramori G, Ballarin A, Snijders D, Barbato A, Saetta M, Papi A. Deficient antiviral immune responses in childhood: distinct roles of atopy and asthma. J Allergy Clin Immunol 2012; 130:1307-14. [PMID: 22981791 DOI: 10.1016/j.jaci.2012.08.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Impaired immune response to viral infections in atopic asthmatic patients has been recently reported and debated. Whether this condition is present in childhood and whether it is affected by atopy per se deserves further investigation. OBJECTIVE We sought to investigate airway interferon production in response to rhinovirus infection in children who are asthmatic, atopic, or both and its correlation with the airway inflammatory profile. METHODS Bronchial biopsy specimens and epithelial cells were obtained from 47 children (mean age, 5 ± 0.5 years) undergoing bronchoscopy. The study population included asthmatic children who were either atopic or nonatopic, atopic children without asthma, and children without atopy or asthma. Rhinovirus type 16 induction of IFN-λ and IFN-β mRNA and protein levels was assessed in bronchial epithelial cell cultures. The immunoinflammatory profile was evaluated by means of immunohistochemistry in bronchial biopsy specimens. RESULTS Rhinovirus type 16-induced interferon production was significantly reduced in atopic asthmatic, nonatopic asthmatic, and atopic nonasthmatic children compared with that seen in nonatopic nonasthmatic children (all P < .05). Increased rhinovirus viral RNA levels paralleled this deficient interferon induction. Additionally, IFN-λ and IFN-β induction correlated inversely with the airway T(H)2 immunopathologic profile (eosinophilia and IL-4 positivity: P < .05 and r = -0.38 and P < .05 and r = -0.58, respectively) and with epithelial damage (P < .05 and r = -0.55). Furthermore, total serum IgE levels correlated negatively with rhinovirus-induced IFN-λ mRNA levels (P < .05 and r = -0.41) and positively with rhinovirus viral RNA levels (P < .05 and r = 0.44). CONCLUSIONS Deficient interferon responses to rhinovirus infection are present in childhood in asthmatic subjects irrespective of their atopic status and in atopic patients without asthma. These findings suggest that deficient immune responses to viral infections are not limited to patients with atopic asthma but are present in those with other T(H)2-oriented conditions.
Collapse
Affiliation(s)
- Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, Section of Respiratory Diseases, University of Padova, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pritchard AL, White OJ, Burel JG, Upham JW. Innate interferons inhibit allergen and microbial specific T(H)2 responses. Immunol Cell Biol 2012; 90:974-7. [PMID: 22825591 DOI: 10.1038/icb.2012.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies provided evidence of innate interferons (IFNs) regulating T(H)2 cytokine production using purified CD4(+) memory cells and T(H)2 polarisation via interleukin-4 (IL-4). Vitally, none of these previous studies examined IFN attenuation of T(H)2 responses to allergen or antigen. This study therefore sought to investigate the abrogation of specific allergen- and antigen-stimulated T(H)2 response in peripheral blood mononuclear cells (PBMC) derived from 12 sensitised individuals by IFN-β and IFN-λ. PBMC were cultured in the presence of house dust mite (HDM) allergen, rhinovirus (RV), influenza vaccine and tetanus toxoid (TT)±either IFN-β or IFN-λ for 3 and 5 days. IFN-γ, IL-5 and IL-13 protein levels were measured by ELISA. Quantitative PCR (qPCR) was used to investigate induction of genes involved in control of T(H)2 cytokines. No alteration in T(H)1 IFN-γ allergen/antigen response was observed with addition of IFN-β or IFN-λ. Consistent abrogation of T(H)2 response to HDM and influenza was observed with IFN-β at both time points; attenuation was observed by day 5 with RV and TT. IFN-λ had no consistent effect on T(H)2 production except in the presence of RV (multiplicity of infection=5); a decrease in IL-5 alone was observed in the presence of trivalent inactivated influenza vaccine. GATA binding protein 3 (GATA3) and suppressors of cytokine signalling3 mRNA were differentially regulated in HDM and influenza-stimulated cultures±IFN-β. We concluded that IFN-β produced a strong and consistent abrogation of T(H)2 cytokine production in the presence of a range of allergen and antigen stimulants.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Buranda, Brisbane, Australia.
| | | | | | | |
Collapse
|
37
|
Dendritic cells, viruses, and the development of atopic disease. J Allergy (Cairo) 2012; 2012:936870. [PMID: 23118777 PMCID: PMC3478734 DOI: 10.1155/2012/936870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells are important residents of the lung environment. They have been associated with asthma and other inflammatory diseases of the airways. In addition to their antigen-presenting functions, dendritic cells have the ability to modulate the lung environment to promote atopic disease. While it has long been known that respiratory viral infections associate with the development and exacerbation of atopic diseases, the exact mechanisms have been unclear. Recent studies have begun to show the critical importance of the dendritic cell in this process. This paper focuses on these data demonstrating how different populations of dendritic cells are capable of bridging the adaptive and innate immune systems, ultimately leading to the translation of viral illness into atopic disease.
Collapse
|
38
|
Hillyer P, Mane VP, Schramm LM, Puig M, Verthelyi D, Chen A, Zhao Z, Navarro MB, Kirschman KD, Bykadi S, Jubin RG, Rabin RL. Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. Immunol Cell Biol 2012; 90:774-83. [PMID: 22249201 PMCID: PMC3442264 DOI: 10.1038/icb.2011.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 10/18/2011] [Accepted: 11/20/2011] [Indexed: 01/03/2023]
Abstract
Recent genome-wide association studies suggest distinct roles for 12 human interferon-alpha (IFN-α) and 3 IFN-λ subtypes that may be elucidated by defining the expression patterns of these sets of genes. To overcome the impediment of high homology among each of the sets, we designed a quantitative real-time PCR assay that incorporates the use of molecular beacon and locked nucleic acid (LNA) probes, and in some instances, LNA oligonucleotide inhibitors. We then measured IFN subtype expression by human peripheral blood mononuclear cells and by purified monocytes, myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), and monocyte-derived macrophages (MDM), and -dendritic cells (MDDC) in response to poly I:C, lipopolysaccharide (LPS), imiquimod and CpG oligonucleotides. We found that in response to poly I:C and LPS, monocytes, MDM and MDDC express a subtype pattern restricted primarily to IFN-β and IFN-λ1. In addition, while CpG elicited expression of all type I IFN subtypes by pDC, imiquimod did not. Furthermore, MDM and mDC highly express IFN-λ, and the subtypes of IFN-λ are expressed hierarchically in the order IFN-λ1 followed by IFN-λ2, and then IFN-λ3. These data support a model of coordinated cell- and ligand-specific expression of types I and III IFN. Defining IFN subtype expression profiles in a variety of contexts may elucidate specific roles for IFN subtypes as protective, therapeutic or pathogenic mediators.
Collapse
Affiliation(s)
- Philippa Hillyer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Viraj P Mane
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
- These authors contributed equally to this work
- Current address: Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Lynnsie M Schramm
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Montserrat Puig
- Center for Drugs Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Daniela Verthelyi
- Center for Drugs Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Aaron Chen
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Zeng Zhao
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Maria B Navarro
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Kevin D Kirschman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Srikant Bykadi
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | | | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| |
Collapse
|
39
|
Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 2012; 122:2741-8. [PMID: 22850884 DOI: 10.1172/jci60325] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Caramori G, Papadopoulos N, Contoli M, Marku B, Forini G, Pauletti A, Johnston SL, Papi A. Asthma: a chronic infectious disease? Clin Chest Med 2012; 33:473-84. [PMID: 22929096 DOI: 10.1016/j.ccm.2012.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
There are increasing data to support the "hygiene" and "microbiota" hypotheses of a protective role of infections in modulating the risk of subsequent development of asthma. There is less evidence that respiratory infections can actually cause the development of asthma. There is some evidence that rhinovirus respiratory infections are associated with the development of asthma, particularly in childhood, whereas these infections in later life seem to have a weaker association with the development of asthma. The role of bacterial infections in chronic asthma remains unclear. This article reviews the available evidence indicating that asthma may be considered as a chronic infectious disease.
Collapse
Affiliation(s)
- Gaetano Caramori
- Section of Respiratory Diseases, Department of Medical Sciences, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio, University of Ferrara, via Savonarola 9, 44121, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The role of dendritic cells in asthma. J Allergy Clin Immunol 2012; 129:889-901. [PMID: 22464668 DOI: 10.1016/j.jaci.2012.02.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are known to play a central role in sensing the presence of foreign antigens and infectious agents and in initiating appropriate immune responses. More recently, an additional role has been discovered for DCs in determining whether the response to potential environmental allergens will be one of tolerance or whether a vigorous response along allergic pathways will be initiated. This review discusses ways in which DCs participate specifically in initiating allergic responses, particularly those associated with allergic asthma, and how interventions focused on DCs might lead to new therapeutic approaches to asthma.
Collapse
|
42
|
Rhinovirus 16–induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin Immunol 2012; 129:1506-1514.e6. [DOI: 10.1016/j.jaci.2012.03.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/19/2012] [Accepted: 03/14/2012] [Indexed: 01/12/2023]
|
43
|
Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, Upham JW. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. THE JOURNAL OF IMMUNOLOGY 2012; 188:5898-905. [PMID: 22611238 DOI: 10.4049/jimmunol.1103507] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human rhinoviruses (RV) cause only minor illness in healthy individuals, but can have deleterious consequences in people with asthma. This study sought to examine normal homeostatic mechanisms regulating adaptive immunity to RV in healthy humans, focusing on effects of IFN-αβ and plasmacytoid dendritic cells (pDC) on Th2 immune responses. PBMC were isolated from 27 healthy individuals and cultured with RV16 for up to 5 d. In some experiments, IFN-αβ was neutralized using a decoy receptor that blocks IFN signaling, whereas specific dendritic cell subsets were depleted from cultures with immune-magnetic beads. RV16 induced robust expression of IFN-α, IFN-β, multiple IFN-stimulated genes, and T cell-polarizing factors within the first 24 h. At 5 d, the production of memory T cell-derived IFN-γ, IL-10, and IL-13, but not IL-17A, was significantly elevated. Neutralizing the effects of type-I IFN with the decoy receptor B18R led to a significant increase in IL-13 synthesis, but had no effect on IFN-γ synthesis. Depletion of pDC from RV-stimulated cultures markedly inhibited IFN-α secretion, and led to a significant increase in expression and production of the Th2 cytokines IL-5 (p = 0.02), IL-9 (p < 0.01), and IL-13 (p < 0.01), but had no effect on IFN-γ synthesis. Depletion of CD1c(+) dendritic cells did not alter cytokine synthesis. In healthy humans, pDC and the IFN-αβ they secrete selectively constrain Th2 cytokine synthesis following RV exposure in vitro. This important regulatory mechanism may be lost in asthma; deficient IFN-αβ synthesis and/or pDC dysfunction have the potential to contribute to asthma exacerbations during RV infections.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Lung and Allergy Research Centre, School of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Sumino K, Tucker J, Shahab M, Jaffee KF, Visness CM, Gern JE, Bloomberg GR, Holtzman MJ. Antiviral IFN-γ responses of monocytes at birth predict respiratory tract illness in the first year of life. J Allergy Clin Immunol 2012; 129:1267-1273.e1. [PMID: 22460071 PMCID: PMC3340511 DOI: 10.1016/j.jaci.2012.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 01/09/2023]
Abstract
Background Viral respiratory tract infections are the leading cause of acute illness during infancy and are closely linked to chronic inflammatory airway diseases later in life. However, the determinants of susceptibility to acute respiratory tract infections still need to be defined. Objective We investigated whether the individual variation in antiviral response at birth determines the risk for acute respiratory tract illness in the first year of life. Methods We studied 82 children who were enrolled in a birth cohort study of inner-city children with at least 1 parent with allergy or asthma. We cultured cord blood monocytes and assessed IFNG and CCL5 mRNA production at 24 hours after inoculation with respiratory syncytial virus. We also monitored the frequency of acute respiratory tract illness at 3-month intervals and analyzed nasal lavage samples for respiratory tract viruses at the time of illness during the first year. Results Respiratory tract infection was reported for 88% of subjects, and respiratory tract viruses were recovered in 74% of symptomatic children. We observed a wide range of antiviral responses in cord blood monocytes across the population. Furthermore, a decrease in production of IFNG (but not CCL5) mRNA in response to respiratory syncytial virus infection of monocytes was associated with a significant increase in the frequency of upper respiratory tract infections (r = −0.42, P < .001) and the prevalence of ear and sinus infections, pneumonias, and respiratory-related hospitalizations. Conclusion Individual variations in the innate immune response to respiratory tract viruses are detectable even at birth, and these differences predict the susceptibility to acute respiratory tract illness during the first year of life.
Collapse
Affiliation(s)
- Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|
46
|
Frischmeyer-Guerrerio PA, Schroeder JT. Cellular immune response parameters that influence IgE sensitization. J Immunol Methods 2012; 383:21-9. [PMID: 22245389 DOI: 10.1016/j.jim.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/07/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
In vitro basophil responses have long been used in mechanistic studies to help assess the human allergic diathesis, particularly during therapeutic intervention. Recent evidence points to the use of dendritic cells (DCs) in also being valuable in evaluating therapies aimed at lessening disease through immunomodulation. This review article therefore takes a look at some of the recent advances in old and new assays employing both basophils and DCs, with the added perception that the responses mediated by two cell types are insightful towards understanding immune cell mechanisms underlying allergic disease.
Collapse
Affiliation(s)
- Pamela A Frischmeyer-Guerrerio
- The Department of Pediatrics, Division of Allergy and Immunology, Johns Hopkins Children's Hospital, Johns Hopkins University, USA
| | | |
Collapse
|
47
|
Davies JM, Carroll ML, Li H, Poh AM, Kirkegard D, Towers M, Upham JW. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro. PLoS One 2011; 6:e27898. [PMID: 22125636 PMCID: PMC3220700 DOI: 10.1371/journal.pone.0027898] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined.
Collapse
Affiliation(s)
- Janet M Davies
- Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital Clinical Division, Woolloongabba, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Razzuoli E, Villa R, Sossi E, Amadori M. Reverse transcription real-time PCR for detection of porcine interferon α and β genes. Scand J Immunol 2011; 74:412-8. [PMID: 21645029 DOI: 10.1111/j.1365-3083.2011.02586.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A few studies provided convincing evidence of constitutive expression of type I interferons (IFNs) in humans and mice, and of the steady-state role of these cytokines under health conditions. These results were later confirmed in pigs, too. In line with this tenet, low levels of IFN-α/β can be detected in swine tissues in the absence of any specific inducer. These studies are compounded by the utmost complexity of type I IFNs (including among others 17 IFN-α genes in pigs), which demands proper research tools. This prompted us to analyse the available protocols and to develop a relevant, robust, reverse transcription (RT) real-time polymerase chain reaction (PCR) detection system for the amplification of porcine IFN-α/β genes. The adopted test procedure is user-friendly and provides the complete panel of gene expression of one subject in a microtitre plate. Also, a proper use of PCR fluorochromes (SYBR(®) versus EvaGreen(®) supermix) enables users to adopt proper test protocols in case of low-expression porcine IFN-α genes. This is accounted for by the much higher sensitivity of the test protocol with EvaGreen(®) supermix. Interestingly, IFN-β showed the highest frequency of constitutive expression, in agreement with its definition of 'immediate early' gene in both humans and mice. Results indicate that the outlined procedure can detect both constitutively expressed and virus-induced IFN-α/β genes, as well as the impact of environmental, non-infectious stressors on the previous profile of constitutive expression.
Collapse
Affiliation(s)
- E Razzuoli
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | | | | | | |
Collapse
|
49
|
Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Pappas TE, Lee WM, Gern JE, Lemanske RF. Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. Am J Respir Crit Care Med 2011; 185:281-5. [PMID: 21960534 DOI: 10.1164/rccm.201104-0660oc] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Aeroallergen sensitization and virus-induced wheezing are risk factors for asthma development during early childhood, but the temporal developmental sequence between them is incompletely understood. OBJECTIVE To define the developmental relationship between aeroallergen sensitization and virus-induced wheezing. METHODS A total of 285 children at high risk for allergic disease and asthma were followed prospectively from birth. The timing and etiology of viral respiratory wheezing illnesses were determined, and aeroallergen sensitization was assessed annually for the first 6 years of life. The relationships between these events were assessed using a longitudinal multistate Markov model. MEASUREMENTS AND MAIN RESULTS Children who were sensitized to aeroallergens had greater risk of developing viral wheeze than nonsensitized children (hazard ratio [HR], 1.9; 95% confidence interval [CI], 1.2-3.1). Allergic sensitization led to an increased risk of wheezing illnesses caused by human rhinovirus (HRV) but not respiratory syncytial virus. The absolute risk of sensitized children developing viral wheeze was greatest at 1 year of age; however, the relative risk was consistently increased at every age assessed. In contrast, viral wheeze did not lead to increased risk of subsequent allergic sensitization (HR, 0.76; 95% CI, 0.50-1.1). CONCLUSIONS Prospective, repeated characterization of a birth cohort demonstrated that allergic sensitization precedes HRV wheezing and that the converse is not true. This sequential relationship and the plausible mechanisms by which allergic sensitization can lead to more severe HRV-induced lower respiratory illnesses support a causal role for allergic sensitization in this developmental pathway. Therefore, therapeutics aimed at preventing allergic sensitization may modify virus-induced wheezing and the development of asthma.
Collapse
|
50
|
Huber JP, Farrar JD. Regulation of effector and memory T-cell functions by type I interferon. Immunology 2011; 132:466-74. [PMID: 21320124 PMCID: PMC3075500 DOI: 10.1111/j.1365-2567.2011.03412.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN-α/β) is comprised of a family of highly related molecules that exert potent antiviral activity by interfering with virus replication and spread. IFN-α/β secretion is tightly regulated through pathogen sensing pathways that are operative in most somatic cells. However, specialized antigen-presenting plasmacytoid dendritic cells are uniquely equipped with the capacity to secrete extremely high levels of IFN-α/β, suggesting a key role for this cytokine in priming adaptive T-cell responses. Recent studies in both mice and humans have demonstrated a role for IFN-α/β in directly influencing the fate of both CD4(+) and CD8(+) T cells during the initial phases of antigen recognition. As such, IFN-α/β, among other innate cytokines, is considered an important 'third signal' that shapes the effector and memory T-cell pool. Moreover, IFN-α/β also serves as a counter-regulator of T helper type 2 and type 17 responses, which may be important in the treatment of atopy and autoimmunity, and in the development of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Jonathan P Huber
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA
| | | |
Collapse
|