1
|
Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Prawan A. 13‑ cis‑retinoic acid inhibits the self‑renewal, migration, invasion and adhesion of cholangiocarcinoma cells. Int J Mol Med 2023; 51:20. [PMID: 36660943 PMCID: PMC9911079 DOI: 10.3892/ijmm.2023.5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
13‑cis‑retinoic acid (13CRA), a Food and Drug Administration‑approved drug for severe acne, is currently being investigated for its potential use in skin cancer prevention. 13CRA has been reported to exhibit antitumor effects against various types of cancer cells, both in vitro and in vivo. However, to the best of our knowledge, no information is yet available regarding the effects of 13CRA on cholangiocarcinoma (CCA), a malignancy of the bile duct epithelia. Currently, there are no reliably effective therapeutic options for metastatic CCA. The present study thus aimed to evaluate the effects of 13CRA on the self‑renewal, migration, invasion and adhesion of CCA cells, and also investigated the underlying mechanisms. The results revealed that 13CRA suppressed cell proliferation via the inhibition of the self‑renewal ability of CCA cells. 13CRA induced cell cycle arrest at the G2/M phase in KKU‑100 and KKU‑213B CCA cells through the regulation of cell cycle‑regulatory genes and proteins. 13CRA reduced the cell migratory ability of both cell lines via the modulation of the genes and proteins associated with epithelial‑mesenchymal transition. 13CRA also inhibited the invasive and adhesive abilities of CCA cells via the suppression of genes and proteins associated with the invasion and adhesion of CCA cells. On the whole, these results suggested that 13CRA exerts suppressive effects on CCA cell proliferation, migration, adhesion and invasion.
Collapse
Affiliation(s)
| | | | | | | | - Auemduan Prawan
- Correspondence to: Dr Auemduan Prawan, Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mittraparp Highway, Muang, Khon Kaen 40002, Thailand, E-mail:
| |
Collapse
|
2
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
3
|
Aldehyde Dehydrogenase 2 Family Member (ALDH2) Is a Therapeutic Index for Oxaliplatin Response on Colorectal Cancer Therapy with Dysfunction p53. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1322788. [PMID: 35178443 PMCID: PMC8844434 DOI: 10.1155/2022/1322788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Oxaliplatin resistance is a major issue in the treatment of p53 mutant colorectal cancer (CRC). Finding the specific biomarkers would improve therapeutic efficacy of patients with CRC. In order to figure out the biomarker for CRC patients with mutant p53 access oxaliplatin, a Gene Expression Omnibus dataset (GSE42387) was used to determine differentially expressed genes (DEGs). The Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software were used to predict protein-protein interactions. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to group the DEGs into their common pathways. 138 DEGs were identified with 46 upregulated and 92 downregulated. In the PPI networks, 7 of the upregulated genes and 13 of the downregulated genes were identified as hub genes (high degrees). Four hub genes, aldehyde dehydrogenase 2 family member (ALDH2), aldo-keto reductase family 1 member B1 (AKR1B1), aldo-keto reductase family 1 member B10 (AKR1B10), and monoglyceride lipase (MGLL) were enriched in the most significant pathway, glycerolipid metabolism. Further, we found that low expression of ALDH2 is correlated with poor overall survival and oxaliplatin resistance. Finally, we found that combined treatment with ALDH2 inhibitor and oxaliplatin will reduce the sensitivity to oxaliplatin in p53 mutant HT29 cells. In conclusion, we demonstrate that ALDH2 may be a biomarker for oxaliplatin resistance status in CRC patients and bring new insight into treatment strategy for p53 mutant CRC patients.
Collapse
|
4
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
5
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
6
|
Shi G, Zheng X, Wu X, Wang S, Wang Y, Xing F. All-trans retinoic acid reverses epithelial-mesenchymal transition in paclitaxel-resistant cells by inhibiting nuclear factor kappa B and upregulating gap junctions. Cancer Sci 2018; 110:379-388. [PMID: 30375704 PMCID: PMC6317959 DOI: 10.1111/cas.13855] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Paclitaxel is a widely used chemotherapy drug, but development of resistance leads to treatment failure. Tumor cells that are treated with a sublethal dose of paclitaxel for a long period of time show the epithelial‐mesenchymal transition (EMT) phenotype, which leads to metastasis and resistance. All‐trans retinoic acid (ATRA) is always used in combination with paclitaxel and can reverse EMT in many types of cancer cells. The ability of ATRA to reverse EMT in chemoresistant cells is still unknown. In the present study, the ability of ATRA to reverse EMT in paclitaxel‐resistant cells was investigated. Three colorectal cancer cell lines, HCT116, LoVo and CT26, were treated with sublethal doses of paclitaxel to create resistant cell lines. Western blotting, immunocytochemistry, and “parachute” dye‐coupling assays showed that ATRA reverses EMT, inhibits nuclear factor kappa B (NF‐κΒ), and upregulates gap junctions in paclitaxel‐resistant cells. Scratch wound‐healing and Transwell assays showed that ATRA decreases the migration and invasion abilities of paclitaxel‐resistant cells. In addition, the CT26 cell line was used in the Balb/c pulmonary metastasis model to show that ATRA reduces metastasis of paclitaxel‐resistant cells in vivo. Given these data, ATRA may reverse EMT by inhibiting NF‐κΒ and upregulating gap junctions in paclitaxel‐resistant cells.
Collapse
Affiliation(s)
- Guiling Shi
- Tianjin Union Medical Center, Tianjin, China
| | | | - Xiaojing Wu
- Tianjin Union Medical Center, Tianjin, China
| | - Siqi Wang
- Tianjin Union Medical Center, Tianjin, China
| | - Yijia Wang
- Tianjin Union Medical Center, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China
| |
Collapse
|
7
|
Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem 2018; 441:109-124. [PMID: 28887754 PMCID: PMC5843697 DOI: 10.1007/s11010-017-3178-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022]
Abstract
Lichens are a source of secondary metabolites which possess important biological activities, including antioxidant, antibacterial, anti-inflammatory, and cytotoxic effects. The anticancer activity of lichens was shown in many types of tumors, including colorectal cancers (CRC). Several studies revealed that the application of lichen extracts diminished the proliferation of CRC cells and induced apoptosis. Colon carcinogenesis is associated with aberrations in Wnt signaling. Elevated transcriptional activity of β-catenin induces cell survival, proliferation, and migration. Thus, the inhibition of Wnt signaling is a promising therapeutic strategy in colorectal cancer. The aim of this study was the evaluation of the effects of lichen-derived depsides (atranorin, lecanoric acid, squamatic acid) and depsidones (physodic acid, salazinic acid) and a poly-carboxylic fatty acid-caperatic acid, on Wnt signaling in HCT116 and DLD-1 colorectal cancer cell lines. HCT116 cells were more sensitive to the modulatory effects of the compounds. PKF118-310, which was used as a reference β-catenin inhibitor, dose-dependently reduced the expression of the classical β-catenin target gene-Axin2 in both cell lines. Lecanoric acid slightly reduced Axin2 expression in HCT116 cells while caperatic acid tended to reduce Axin2 expression in both cell lines. Physodic acid much more potently decreased Axin2 expression in HCT116 cells than in DLD-1 cells. Physodic acid and caperatic acid also diminished the expression of survivin and MMP7 in a cell line and time-dependent manner. None of the compounds affected the nuclear translocation of β-catenin. This is the first report showing the ability of caperatic acid and physodic acid to modulate β-catenin-dependent transcription.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland.
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| |
Collapse
|
8
|
Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, Attwood S, García R, Ghassemi S, Fabry B, Del Río Hernández A. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 2016; 7:12630. [PMID: 27600527 PMCID: PMC5023948 DOI: 10.1038/ncomms12630] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homeostasis of the tumour microenvironment. Here the authors show that all-trans retinoic acid reduces retinoic acid receptor beta dependent-actomyosin contractility and restores mechanical quiescence in PSCs.
Collapse
Affiliation(s)
- Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Muge Sarper
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Vera Auernheimer
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Simon Attwood
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rebeca García
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saba Ghassemi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ben Fabry
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Sanchez AM, Shortrede JE, Vargas-Roig LM, Flamini MI. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin. Mol Cell Endocrinol 2016; 430:1-11. [PMID: 27130522 DOI: 10.1016/j.mce.2016.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.
Collapse
Affiliation(s)
- Angel Matías Sanchez
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina
| | - Jorge Eduardo Shortrede
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina
| | - Laura María Vargas-Roig
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina; School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina.
| |
Collapse
|
10
|
Gao B, Shao Q, Choudhry H, Marcus V, Dong K, Ragoussis J, Gao ZH. Weighted gene co-expression network analysis of colorectal cancer liver metastasis genome sequencing data and screening of anti-metastasis drugs. Int J Oncol 2016; 49:1108-18. [PMID: 27571956 DOI: 10.3892/ijo.2016.3591] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022] Open
Abstract
Approximately 9% of cancer-related deaths are caused by colorectal cancer (CRC). CRC patients are prone to liver metastasis, which is the most important cause for the high CRC mortality rate. Understanding the molecular mechanism of CRC liver metastasis could help us to find novel targets for the effective treatment of this deadly disease. Using weighted gene co-expression network analysis on the sequencing data of CRC with and with metastasis, we identified 5 colorectal cancer liver metastasis related modules which were labeled as brown, blue, grey, yellow and turquoise. In the brown module, which represents the metastatic tumor in the liver, gene ontology (GO) analysis revealed functions including the G-protein coupled receptor protein signaling pathway, epithelial cell differentiation and cell surface receptor linked signal transduction. In the blue module, which represents the primary CRC that has metastasized, GO analysis showed that the genes were mainly enriched in GO terms including G-protein coupled receptor protein signaling pathway, cell surface receptor linked signal transduction, and negative regulation of cell differentiation. In the yellow and turquoise modules, which represent the primary non-metastatic CRC, 13 downregulated CRC liver metastasis-related candidate miRNAs were identified (e.g. hsa-miR-204, hsa-miR-455, etc.). Furthermore, analyzing the DrugBank database and mining the literature identified 25 and 12 candidate drugs that could potentially block the metastatic processes of the primary tumor and inhibit the progression of metastatic tumors in the liver, respectively. Data generated from this study not only furthers our understanding of the genetic alterations that drive the metastatic process, but also guides the development of molecular-targeted therapy of colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qin Shao
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Hani Choudhry
- McGill University and Genome Quebec Innovation Centre, Montreal, Québec H3B 1S6, Canada
| | - Victoria Marcus
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Kung Dong
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Montreal, Québec H3B 1S6, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| |
Collapse
|
11
|
Zhang W, Levi L, Banerjee P, Jain M, Noy N. Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling. Oncotarget 2015; 6:35830-42. [PMID: 26416422 PMCID: PMC4742144 DOI: 10.18632/oncotarget.5767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/12/2015] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Kruppel-like factor 2 (KLF2) displays anticarcinogenic activities but the mechanism that underlies this activity is unknown. We show here that KLF2 is markedly downregulated in human breast cancers and that its expression positively correlates with breast cancer patient survival. We show further that KLF2 suppresses tumor development by controlling the transcriptional activity of the vitamin A metabolite retinoic acid (RA). RA regulates gene transcription by activating two types of nuclear receptors: RA receptors (RARs), which inhibit tumor development, and peroxisome proliferator-activated receptor β/δ (PPARβ/δ), which promotes tumorigenesis. The partitioning of RA between these receptors is regulated by two carrier proteins: cellular retinoic acid-binding protein 2 (CRABP2), which delivers RA to RARs, and fatty acid-binding protein 5 (FABP5), which shuttles ligands to PPARβ/δ. We show that KLF2 induces the expression of CRABP2 and RARγ and inhibits the expression FABP5 and PPARβ/δ thereby shifting RA signaling from the pro-carcinogenic FABP5/PPARβ/δ to the growth-suppressing CRABP2/RAR path. The data thus reveal that KLF2 suppresses tumor growth by controlling the transcriptional activities of RA.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Liraz Levi
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Mukesh Jain
- The Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Noa Noy
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Hu L, Chen HY, Han T, Yang GZ, Feng D, Qi CY, Gong H, Zhai YX, Cai QP, Gao CF. Downregulation of DHRS9 expression in colorectal cancer tissues and its prognostic significance. Tumour Biol 2015; 37:837-45. [PMID: 26254099 PMCID: PMC4841860 DOI: 10.1007/s13277-015-3880-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/30/2015] [Indexed: 12/03/2022] Open
Abstract
Dehydrogenase/reductase (SDR family) member 9 (DHRS9) is aberrantly expressed in colorectal cancer (CRC), but its prognostic value is unknown. The aim of the work was to investigate the prognostic significance of DHRS9 expression in CRC. We found that DHRS9 was frequently downregulated in CRC clinical samples at both the messenger RNA (mRNA) and protein levels. Decreased expression of DHRS9 was significantly correlated with increased lymph node metastasis (p = 0.032), advanced tumor–node–metastasis (TNM) stage (p = 0.021), increased disease recurrence (p = 0.001), and death (p = 0.014). Kaplan–Meier analysis indicated that low DHRS9 expression predicted poor disease-free survival (p = 0.003) and disease-specific survival (p = 0.021). Cox multivariate analysis revealed that reduced expression of DHRS9 was an independent unfavorable prognostic indicator for CRC. Furthermore, combination of DHRS9 with TNM stage was a more powerful predictor of poor prognosis than either of the two parameters alone. Our results suggest that decreased expression of DHRS9 correlates with tumor progression and may serve as a potential prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hai-Yang Chen
- Department of Oncology, 150th Hospital of PLA, Luoyang, China
| | - Tao Han
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang, China
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Ye Qi
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Hui Gong
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Qing-Ping Cai
- Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Chun-Fang Gao
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| |
Collapse
|
13
|
Liang C, Yang L, Guo S. All- trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol Lett 2015; 9:2833-2838. [PMID: 26137156 DOI: 10.3892/ol.2015.3120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a derivative of vitamin A that can induce differentiation and apoptosis, as well as inhibit proliferation, in glioma cells. However, the effect of ATRA on the migration and invasiveness of glioma remains poorly understood. In addition, although it is universally accepted that ATRA can induce apoptosis and inhibit proliferation in glioma cells, the association between the concentration and effects of ATRA remain unclear. Therefore, the present study investigated the effects of ATRA treatment on the migration, invasion, apoptosis and proliferation of glioma cells. The U87 and SHG44 glioma cell lines were treated with various concentrations of ATRA, consisting of 0, 5, 10, 20 and 40 µmol/l. A scratch wound healing assay and a Matrigel invasion assay were used to investigate cell migration and invasion, respectively. Flow cytometry was performed to investigate apoptosis and cell cycle distribution. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression of matrix metalloproteinase (MMP)-2 and -9 in each cell treatment group. Following treatment with ATRA, the migration, invasion and proliferation of the glioma cells were significantly inhibited, and the apoptosis rate was significantly increased compared with that of the blank control group. Furthermore, a dose-effect association was identified between each effects and ATRA treatment. The mRNA and protein expression of MMP-2 in U87 glioma cells was not significantly affected following treatment with low concentrations of ATRA, consisting of 5 and 10 µmol/l ATRA, compared with the expression in the control group (P>0.05). However, treatment with high concentrations of ATRA, consisting of 20 and 40 µmol/l ATRA, significantly downregulated the expression levels of MMP-2 in U87 cells. In contrast to U87 cells, the administration of ATRA treatment to SHG44 glioma cells resulted in a significant and dose-dependent downregulation in MMP-2 mRNA and protein expression (P<0.01). In addition, significant downregulation of MMP-9 expression was identified in the two glioma cell lines (P<0.01). The results of the present study indicate that treatment with ATRA may inhibit migration, invasion and proliferation, and promote apoptosis in glioma cells. Furthermore, the current study indicates that the inhibition of glioma cell invasion by ATRA may be partially associated with its effect ability to downregulate MMP expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Modifying Effects of Dietary Factors on (−)-Epigallocatechin-3-gallate-induced Pro-matrix Metalloproteinase-7 Production in HT-29 Human Colorectal Cancer Cells. Biosci Biotechnol Biochem 2014; 71:2442-50. [DOI: 10.1271/bbb.70213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Flamini MI, Gauna GV, Sottile ML, Nadin BS, Sanchez AM, Vargas-Roig LM. Retinoic acid reduces migration of human breast cancer cells: role of retinoic acid receptor beta. J Cell Mol Med 2014; 18:1113-23. [PMID: 24720764 PMCID: PMC4508151 DOI: 10.1111/jcmm.12256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is the most common malignancy in women and the appearance of distant metastases produces the death in 98% of cases. The retinoic acid receptor β (RARβ) is not expressed in 50% of invasive breast carcinoma compared with normal tissue and it has been associated with lymph node metastasis. Our hypothesis is that RARβ protein participates in the metastatic process. T47D and MCF7 breast cancer cell lines were used to perform viability assay, immunobloting, migration assays, RNA interference and immunofluorescence. Administration of retinoic acid (RA) in breast cancer cells induced RARβ gene expression that was greatest after 72 hrs with a concentration 1 μM. High concentrations of RA increased the expression of RARβ causing an inhibition of the 60% in cell migration and significantly decreased the expression of migration-related proteins [moesin, c-Src and focal adhesion kinase (FAK)]. The treatment with RARα and RARγ agonists did not affect the cell migration. On the contrary, the addition of the selective retinoid RARβ-agonist (BMS453) significantly reduced cell migration comparable to RA inhibition. When RARβ gene silencing was performed, the RA failed to significantly inhibit migration and resulted ineffective to reduce moesin, c-Src and FAK expressions. RARβ is necessary to inhibit migration induced by RA in breast cancer cells modulating the expression of proteins involved in cell migration.
Collapse
Affiliation(s)
- Marina Ines Flamini
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Research Council of Argentina, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Pham DNT, Leclerc D, Lévesque N, Deng L, Rozen R. β,β-carotene 15,15'-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am J Clin Nutr 2013; 98:413-22. [PMID: 23803888 DOI: 10.3945/ajcn.113.060996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND β,β-Carotene 15,15'-monooxygenase (BCMO1) converts β-carotene to retinaldehyde. Increased β-carotene consumption is linked to antitumor effects. Retinoic acid reduces the invasiveness in cancer, through inhibition of matrix metalloproteinases (MMPs). In our studies of a mouse model that develops intestinal tumors after low dietary folate, we found reduced BCMO1 expression in normal preneoplastic intestine of folate-deficient tumor-prone mice. OBJECTIVE Our goal was to determine whether BCMO1 expression could influence transformation potential in human colorectal carcinoma cells, by examining the effect of BCMO1 modulation on cellular migration and invasion, and on expression of MMPs. DESIGN LoVo colon carcinoma cells were transfected with BCMO1 small interfering RNA (siRNA) or scrambled siRNA. Migration and invasion were measured, and the expression of BCMO1, MMP7, and MMP28 was assessed by quantitative reverse-transcriptase polymerase chain reaction. These variables were also measured after treatment of cells with retinoic acid, 5-aza-2'-deoxycytidine, folate-depleted/high-methionine medium, and β-carotene. RESULTS Retinoic acid decreased the migration, invasion, and expression of MMP28 mRNA. Transfection of cells with BCMO1 siRNA inhibited BCMO1 expression, enhanced migration and invasion, and increased expression of MMP7 and MMP28. 5-Aza-2'-deoxycytidine decreased, whereas folate-depleted/high-methionine medium increased invasiveness. β-Carotene increased BCMO1 expression and reduced invasiveness with a decrease in expression of MMP7 and MMP28. CONCLUSIONS Inhibition of BCMO1 expression is associated with increased invasiveness of colon cancer cells and increased expression of MMP7 and MMP28. β-Carotene can upregulate BCMO1 and reverse these effects. These novel associations suggest a critical role for BCMO1 in cancer and provide a mechanism for the proposed antitumor effects of β-carotene.
Collapse
Affiliation(s)
- Diep Ngoc Thi Pham
- Departments of Human Genetics and Pediatrics, McGill University, and the Montreal Children's Hospital site of the McGill University Health Centre Research Institute, Montreal, Canada
| | | | | | | | | |
Collapse
|
17
|
Woo YJ, Jang KL. All-trans retinoic acid activates E-cadherin expression via promoter hypomethylation in the human colon carcinoma HCT116 cells. Biochem Biophys Res Commun 2012; 425:944-9. [DOI: 10.1016/j.bbrc.2012.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 01/22/2023]
|
18
|
Todaro LB, Veloso MJ, Campodónico PB, Puricelli LI, Farías EF, Bal de Kier Joffé ED. A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression. Breast Cancer 2012; 20:342-56. [PMID: 22374508 DOI: 10.1007/s12282-012-0342-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/30/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND The effect of retinoic acid (RA) on breast cancer progression is controversial. Our objective was to obtain information about breast cancer progression, taking advantage of the ER-negative murine mammary adenocarcinoma model LM38 (LM38-LP constituted by luminal (LEP) and myoepithelial-like cells (MEP), LM38-HP mainly composed of spindle-shaped epithelial cells, and LM38-D2 containing only large myoepithelial cells), and to validate the role of the retinoic acid receptors (RARs) in each cell-type compartment. MATERIALS AND METHODS We studied the expression and functionality of the RARs in LM38 cell lines. We analyzed cell growth and cell cycle distribution, apoptosis, the activity of proteases, motility properties, and expression of the molecules involved in these pathways. We also evaluated tumor growth and dissemination in vivo under retinoid treatment. RESULTS LM38 cell lines expressed most retinoic receptor isotypes that were functional. However, only the bi-cellular LM38-LP cells responded to retinoids by increasing RARβ2 and CRBP1 expression. The growth of LM38 cell sublines was inhibited by retinoids, first by inducing arrest in MEP cells, then apoptosis in LEP cells. Retinoids induced inhibitory effects on motility, invasiveness, and activity of proteolytic enzymes, mainly in the LM38-LP cell line. In in-vivo assays with the LM38-LP cell line, RA treatment impaired both primary tumor growth and lung metastases dissemination. CONCLUSION These in-vivo and in-vitro results show that to achieve maximum effects of RA on tumor progression both the LEP and MEP cell compartments have to be present, suggesting that the interaction between the LEP and MEP cells is crucial to full activation of the RARs.
Collapse
Affiliation(s)
- Laura Beatriz Todaro
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, 5481 San Martín Ave, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Chung KD, Jeong YI, Chung CW, Kim DH, Kang DH. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells. Int J Pharm 2011; 422:454-61. [PMID: 22093956 DOI: 10.1016/j.ijpharm.2011.10.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 01/15/2023]
Abstract
The aim of this study is to investigate antitumor activity of all-trans retinoic acid (RA)-incorporated glycol chitosan (GC) nanoparticles. RA-incorporated GC nanoparticles were prepared by electrostatic interaction between RA and amine group of GC. RA-incorporated GC nanoparticles have spherical shape and their particle size was 317 ± 34.5 nm. They were simply reconstituted into aqueous solution without changes of intrinsic properties. RA-incorporated GC nanoparticles were evidently inhibited the proliferation of HuCC-T1 cholangiocarcinoma cells at higher than 20 μg/ml of RA concentration while empty GC vegicles did not affect to the viablity of tumor cells. Apoptosis and necrosis analysis of tumor cells with treatment of RA or RA-incorporated GC nanoparticles also supported these results. Invasion test using Matrigel also showed that invasion of tumor cells was significantly inhibited at higher than 20 μg/ml of RA concentration. Wound healing assay also showed that RA-incorporated GC nanoparticles were inhibited migration of tumor cells as similar to RA itself. Our results suggested that RA-incorporated GC nanoparticles is a promising vehicles for RA delivery to HuCC-T1 cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Kyu-Don Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Cosco D, Molinaro R, Morittu V, Cilurzo F, Costa N, Fresta M. Anticancer activity of 9-cis-retinoic acid encapsulated in PEG-coated PLGA-nanoparticles. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50064-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Cierniewski CS, Papiewska-Pajak I, Malinowski M, Sacewicz-Hofman I, Wiktorska M, Kryczka J, Wysocki T, Niewiarowska J, Bednarek R. Thymosin β4 regulates migration of colon cancer cells by a pathway involving interaction with Ku80. Ann N Y Acad Sci 2010; 1194:60-71. [PMID: 20536451 DOI: 10.1111/j.1749-6632.2010.05480.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fang YJ, Pan ZZ, Li LR, Lu ZH, Zhang LY, Wan DS. MMP7 expression regulated by endocrine therapy in ERbeta-positive colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:132. [PMID: 19785773 PMCID: PMC2762977 DOI: 10.1186/1756-9966-28-132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/29/2009] [Indexed: 12/20/2022]
Abstract
Background Many studies have shown that colon cancer is an estrogen-dependent carcinoma. This study explored the efficacy of endocrine therapy in colon cancer cells with high metastatic potential (HT29). We investigated the proliferation of HT29 cells after exposure to endocrine therapy (tamoxifen) and 5-FU. Methods Apoptosis was evaluated using flow cytometry. The expression of matrix metalloproteinases 7 (MMP-7) and estrogen receptor beta (ERβ) was measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. The migration capability of treated cells was determined with wound scratch assay. Results Tamoxifen alone, 5-FU alone, and the combination of the two drugs can significantly inhibit HT29 cell proliferation and migration, block the cells in G2/M phase and induce cell apoptosis. These drugs also can down-regulate MMP7 and ERβ expression. Conclusion Our findings suggest that endocrine therapy is an efficient therapy for inhibiting ERβ-positive colon cancer cell proliferation and migration via down-regulation of MMP7.
Collapse
Affiliation(s)
- Yu-Jing Fang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Adachi Y, Li R, Yamamoto H, Min Y, Piao W, Wang Y, Imsumran A, Li H, Arimura Y, Lee CT, Imai K, Carbone DP, Shinomura Y. Insulin-like growth factor-I receptor blockade reduces the invasiveness of gastrointestinal cancers via blocking production of matrilysin. Carcinogenesis 2009; 30:1305-13. [PMID: 19493905 DOI: 10.1093/carcin/bgp134] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. We have previously shown significant therapeutic activity for recombinant adenoviruses expressing dominant-negative insulin-like growth factor-I receptor (IGF-IR/dn), including suppression of tumor invasion. In this study, we sought to evaluate the mechanism of inhibition of invasion and the relationship between IGF-IR and matrix metalloproteinase (MMP) activity in GI carcinomas. We analyzed the role of IGF-IR on invasion in three GI cancer cell lines, colorectal adenocarcinoma, HT29; pancreatic adenocarcinoma, BxPC3 and gastric adenocarcinoma, MKN45, using a modified Boyden chamber method and subcutaneous xenografts in nude mice. The impact of IGF-IR signaling on the expression of MMPs and the effects of blockade of matrilysin or IGF-IR on invasiveness were assessed using recombinant adenoviruses, a tyrosine kinase inhibitor NVP-AEW541 and antisense matrilysin. Invasive subcutaneous tumors expressed several MMPs. IGF-IR/dn reduced the expression of these MMPs but especially matrilysin (MMP-7). Insulin-like growth factor (IGF) stimulated secretion of matrilysin and IGF-IR/dn blocked IGF-mediated matrilysin induction in three GI cancers. Both IGF-IR/dn and inhibition of matrilysin reduced in vitro invasion to the same degree. NVP-AEW541 also reduced cancer cell invasion both in vitro and in murine xenograft tumors via suppression of matrilysin. Thus, blockade of IGF-IR is involved in the suppression of cancer cell invasion through downregulation of matrilysin. Strategies of targeting IGF-IR may have significant therapeutic utility to prevent invasion and progression of human GI carcinomas.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/pathology
- Adenocarcinoma/prevention & control
- Animals
- Blotting, Western
- Female
- Fluorescent Antibody Technique
- Gastrointestinal Neoplasms/enzymology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/prevention & control
- Genes, Dominant
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Infusions, Subcutaneous
- Matrix Metalloproteinase 7/genetics
- Matrix Metalloproteinase Inhibitors
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Somatomedins/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yasushi Adachi
- First Department of Internal Medicine, Sapporo Medical University, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genome-wide distribution of histone H3 acetylation in all-trans retinoic acid induced neuronal differentiation of SH-SY5Y cells. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0109-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Park EY, Wilder ET, Chipuk JE, Lane MA. Retinol decreases phosphatidylinositol 3-kinase activity in colon cancer cells. Mol Carcinog 2008; 47:264-74. [PMID: 17918208 DOI: 10.1002/mc.20381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we showed that retinol inhibited all-trans-retinoic acid (ATRA)-resistant human colon cancer cell invasion via a retinoic acid receptor-independent mechanism. Because phosphatidylinositol 3-kinase (PI3K) regulates cell invasion, the objective of the current study was to determine if retinol affected PI3K activity. Following 24 h of serum starvation, the ATRA resistant human colon cancer cell lines HCT-116 and SW620 were treated with 0, 1, or 10 microM retinol. Thirty minutes of retinol treatment resulted in a significant decrease in PI3K activity in both cell lines. To determine the mechanism by which retinol reduces PI3K activity, the levels and heterodimerization of the regulatory subunit, p85, and the catalytic subunit, p110, of PI3K were examined. Retinol treatment did not alter p85 or p110 protein levels or the heterodimerization of these subunits at any time point examined. To determine if retinol affected the ability of PI3K to phosphorylate the substrate, phosphatidylinositol (PI), PI3K was immunoprecipitated from control cells and incubated with 10 microg PI and increasing concentrations of retinol or 10 microg retinol and increasing concentrations of PI. Retinol decreased PI3K activity in a dose-responsive manner and increased PI suppressed the inhibitory effect of retinol on PI3K activity. Finally, the PI3K inhibitor, LY294002, mimicked the ability of retinol to decrease cell invasion. Computational modeling revealed that retinol may inhibit PI3K activity in a manner similar to that of wortmannin. Thus, a decrease in PI3K activity due to retinol treatment may confer the ability of retinol to inhibit ATRA-resistant colon cancer cell invasion.
Collapse
Affiliation(s)
- Eun Young Park
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
26
|
Gershtein ES, Korotkova EA, Shcherbakov AM, Prorokov VV, Golovkov DA, Kushlinskii NE. Matrix metalloproteinases 7 and 9 and their types 1 and 4 tissue inhibitors in tumors and plasma of patients with colorectal cancer. Bull Exp Biol Med 2008; 143:459-62. [PMID: 18214300 DOI: 10.1007/s10517-007-0156-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzyme immunoassays showed significantly elevated content of matrix metalloproteinase 7 and type 1 tissue inhibitor of metalloproteinases in tumors compared to adjacent histologically unchanged mucosa of patients with colorectal cancer; the levels of metalloproteinase 9 and type 4 tissue inhibitor of metalloproteinases were virtually the same in the tumors and mucosa. Plasma concentrations of the studied proteins did not correlate with their levels in the tumor, did not surpass the normal, and did not decease after removal of the primary tumor in the majority of patients.
Collapse
Affiliation(s)
- E S Gershtein
- N. N. Blokhin National Cncer Research Center, Russian Academy of Medical Sciences, Moscow.
| | | | | | | | | | | |
Collapse
|
27
|
Zuidervaart W, Pavey S, van Nieuwpoort FA, Packer L, Out C, Maat W, Jager MJ, Gruis NA, Hayward NK. Expression of Wnt5a and its downstream effector beta-catenin in uveal melanoma. Melanoma Res 2008; 17:380-6. [PMID: 17992121 DOI: 10.1097/cmr.0b013e3282f1d302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Upregulation of the Wnt5a pathway has been reported in some cutaneous melanomas but its role in uveal melanoma has not been assessed. We thus sought to determine whether activation of the Wnt-signalling pathway occurred in uveal melanoma through upregulation of some of the key downstream effectors, and whether expression of these components was associated with tumour characteristics and clinical outcome. Expression of Wnt5a, MMP7, and beta-catenin was determined in 40 primary uveal melanomas by immunohistochemistry and correlated with patient prognosis. The proportion of cells immunoreactive for Wnt5a, MMP7, and beta-catenin was higher in tumours from patients with shorter survival and this difference was statistically significant for Wnt5a (P<0.01) and beta-catenin (P=0.02). These data show for the first time activation of the Wnt/beta-catenin-signalling pathway in uveal melanoma and suggest that components of this pathway might be useful prognostic markers as well as attractive therapeutic targets to treat this disease.
Collapse
Affiliation(s)
- Wieke Zuidervaart
- Department of Ophthalmology, Skin Research Lab, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Park EY, Wilder ET, Lane MA. Retinol inhibits the invasion of retinoic acid-resistant colon cancer cells in vitro and decreases matrix metalloproteinase mRNA, protein, and activity levels. Nutr Cancer 2007; 57:66-77. [PMID: 17516864 DOI: 10.1080/01635580701268238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinol inhibits the growth of all-trans-retinoic acid (ATRA)-resistant human colon cancer cell lines through a retinoic acid receptor (RAR)-independent mechanism. The objectives of the current study were to determine if retinol inhibited the invasion of ATRA-resistant colon cancer cells independent of RAR and the effects of retinol on matrix metalloproteinases (MMPs). Retinol inhibited the migration and invasion of two ATRA-resistant colon cancer cell lines, HCT-116 and SW620, in a dose-dependent manner. To determine if transcription, particularly RAR-mediated transcription, or translation of new genes was required for retinol to inhibit cell invasion, cells were treated with retinol and cycloheximide, actinomycin D, or an RAR pan-antagonist. Treatment of cells with retinol and cycloheximide, actinomycin D, or an RAR pan-antagonist did not block the ability of retinol to inhibit cell invasion. In addition, retinol decreased MMP-1 mRNA levels in both cell lines, MMP-2 mRNA levels in the SW620 cell line, and MMP-7 and -9 mRNA levels in the HCT-116 cell line. Retinol also decreased the activity of MMP-2 and -9 and MMP-9 protein levels while increasing tissue inhibitor of MMP-1 media levels. In conclusion, retinol reduces the metastatic potential of ATRA-resistant colon cancer cells via a novel RAR-independent mechanism that may involve decreased MMP mRNA levels and activity.
Collapse
Affiliation(s)
- Eun Young Park
- Department of Human Ecology, Institute of Cellular and Molecular Biology, The University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
29
|
Kawabata K, Murakami A, Ohigashi H. Citrus auraptene targets translation of MMP-7 (matrilysin) via ERK1/2-dependent and mTOR-independent mechanism. FEBS Lett 2006; 580:5288-94. [PMID: 16979634 DOI: 10.1016/j.febslet.2006.08.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/25/2006] [Accepted: 08/31/2006] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase (MMP)-7 is considered to play essential roles in cancer progression. We examined the efficacy of auraptene, a citrus coumarin derivative, for suppressing MMP-7 expression in the human colorectal adenocarcinoma cell line HT-29. Auraptene remarkably inhibited the production of proMMP-7 protein, without affecting its mRNA expression level. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), showed similar results, suggesting that auraptene suppresses mTOR-dependent proMMP-7 translation. Interestingly, however, auraptene showed no effects on the activation of Akt/mTOR signaling, whereas the phosphorylation levels of 4E binding protein (4EBP)1 and eukaryotic translation initiation factor (eIF)4B were substantially decreased. In addition, auraptene remarkably dephosphorylated constitutively activated extracellular signal-regulated kinase (ERK)1/2. Transfection of ERK1/2 siRNA led to a significant reduction of proMMP-7 protein production as well as of the phosphorylation of eIF4B. These results demonstrate that auraptene targets the translation step for proMMP-7 protein synthesis by disrupting ERK1/2-mediated phosphorylation of 4EBP1 and eIF4B.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
30
|
Carragher NO, Walker SM, Scott Carragher LA, Harris F, Sawyer TK, Brunton VG, Ozanne BW, Frame MC. Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 2006; 25:5726-40. [PMID: 16652152 DOI: 10.1038/sj.onc.1209582] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cells can invade three-dimensional matrices by distinct mechanisms, recently defined by their dependence on extracellular proteases, including matrix metalloproteinases. Upon treatment with protease inhibitors, some tumour cells undergo a 'mesenchymal to amoeboid' transition that allows invasion in the absence of pericellular proteolysis and matrix degradation. We show here that in HT1080 cells, this transition is associated with weakened integrin-dependent adhesion, consistently reduced cell surface expression of the alpha2beta1 integrin collagen receptor and impaired signalling downstream, as judged by reduced autophosphorylation of focal adhesion kinase (FAK). On examining cancer cells that use defined invasion strategies, we show that distinct from mesenchymal invasion, amoeboid invasion is independent of intracellular calpain 2 proteolytic activity that is usually needed for turnover of integrin-linked adhesions during two-dimensional planar migration. Moreover, an inhibitor of Rho/ROCK signalling, which specifically impairs amoeboid-like invasion, restores cell surface expression of alpha2beta1 integrin, downstream FAK autophosphorylation and calpain 2 sensitivity--features of mesenchymal invasion. These findings link weakened integrin function to a lack of requirement for calpain 2-mediated integrin adhesion turnover during amoeboid invasion. In keeping with the need for integrin adhesion turnover, mesenchymal invasion is uniquely sensitive to Src inhibitors. Thus, the need for a major pathway that controls integrin adhesion turnover defines and distinguishes cancer cell invasion strategies.
Collapse
Affiliation(s)
- N O Carragher
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Genter MB, Warner BM, Krell HW, Bolon B. Reduction of alachlor-induced olfactory mucosal neoplasms by the matrix metalloproteinase inhibitor Ro 28-2653. Toxicol Pathol 2006; 33:593-9. [PMID: 16178123 DOI: 10.1080/01926230500244522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chronic exposure to the chloracetanilide herbicide alachlor has been shown to cause olfactory mucosal neoplasms. Genomic analysis of olfactory mucosa from rats given alachlor (126 mg/kg/d) for from 1 day to 18 mo suggested that matrix metalloproteinases MMP-2 and MMP-9 were upregulated in the month following initiation of treatment. The present studies were designed to confirm this latter finding and to explore the potential role of MMPs in alachlor-induced olfactory carcinogenesis. Zymographic analysis of olfactory mucosal extracts confirmed that MMP-2 activity is higher in the olfactory mucosa of alachlor-treated rats. Therefore, rats were fed alachlor (126 mg/kg/d in the diet for 1 year) either with or without the MMP-2/MMP-9 inhibitor Ro 28-2653 (100 mg/kg daily by gavage for the first 2 months of alachlor treatment). The number of olfactory mucosal neoplasms was reduced by 25% after 1 year of alachlor treatment in rats that received both alachlor and Ro 28-2653. The morphology of alachlor-induced olfactory tumors was similar whether or not Ro 28-2653 had been given; the MMP inhibitor itself had no impact on olfactory mucosal histology. These data confirm that olfactory mucosal MMP-2 activity is increased following short-term alachlor exposure and show that administration of an MMP-2/9 inhibitor reduced the incidence of olfactory neoplasms in alachlor-treated rats, thereby implicating MMP-2 activity as a mediator of alachlor-induced carcinogenicity.
Collapse
Affiliation(s)
- Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | |
Collapse
|
32
|
Nadauld LD, Shelton DN, Chidester S, Yost HJ, Jones DA. The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. J Biol Chem 2005; 280:30490-5. [PMID: 15967793 DOI: 10.1074/jbc.m504973200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA) is a potent signaling molecule that plays important roles in multiple and diverse developmental processes. The contribution of retinoic acid to promoting the development and differentiation of the vertebrate intestine and the factors that regulate RA production in the gut remain poorly defined. Herein, we report that the novel retinol dehydrogenase, rdh1l, is required for proper gut development and differentiation. rdh1l is expressed ubiquitously during early development but becomes restricted to the gut by 3 days postfertilization. Knockdown of rdh1l results in a robust RA-deficient phenotype including lack of intestinal differentiation, which can be rescued by the addition of exogenous retinoic acid. We report that adenomatous polyposis coli (APC) mutant zebrafish harbor an RA-deficient phenotype including aberrant intestinal differentiation and that these mutants can be rescued by treatment with retinoic acid or injection of rdh1l mRNA. Further, we have found that although APC mutants are deficient in rdh1l expression, they harbor increased expression of raldh2 suggesting the control of RA production by APC is via retinol dehydrogenase activity. These results provide genetic evidence that retinoic acid is required for vertebrate gut development and that the tumor suppressor APC controls the production of RA in the gut by regulating the expression of the retinol dehydrogenase, rdh1l.
Collapse
Affiliation(s)
- Lincoln D Nadauld
- Department of Oncological Sciences, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
33
|
Leelawat K, Ohuchida K, Mizumoto K, Mahidol C, Tanaka M. All-trans retinoic acid inhibits the cell proliferation but enhances the cell invasion through up-regulation of c-met in pancreatic cancer cells. Cancer Lett 2004; 224:303-10. [PMID: 15914280 DOI: 10.1016/j.canlet.2004.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/29/2004] [Accepted: 10/14/2004] [Indexed: 01/21/2023]
Abstract
All-trans retinoic acid (ATRA) inhibits proliferation of cancer. However, the effects of ATRA on scattering and invasion of pancreatic cancer cells remain unknown. Also, the effects of ATRA on c-Met expression in pancreatic cancer have never been addressed so far. The effects of ATRA on a pancreatic cancer cell line, Capan-1, were determined by proliferation assay, scattering assay and invasion assay. In addition, the expression of c-Met in pancreatic cancer cell lines treated with ATRA was investigated by real-time PCR and western blotting. The growth-inhibitory effect of ATRA was found when the cells were cultured with 5 microM ATRA for 3 days. In cell scattering assay, ATRA-treated pancreatic cancer cells were found to spread out from their colonies. In invasion assay, cells treated with ATRA invaded the matrigel more than vehicle-treated cells. The expression of c-Met was up-regulated both in the mRNA and protein levels after the treatment of ATRA. The highest expression was found at 48 h after the treatment. ATRA induced scattering and invasion of pancreatic cancer cells, although it inhibited proliferation of those cells. In addition, ATRA also increased the protein level of c-Met. These findings may indicate that the use of retinoic acid as an anti-cancer therapeutic drug needs some additional treatments to control cell invasion or scattering.
Collapse
Affiliation(s)
- Kawin Leelawat
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Department of Surgery, Rajavithi Hospital, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
34
|
Delage B, Groubet R, Pallet V, Bairras C, Higueret P, Cassand P. Vitamin A prevents high fat diet-induced ACF development and modifies the pattern of expression of peroxisome proliferator and retinoic acid receptor m-RNA. Nutr Cancer 2004; 48:28-36. [PMID: 15203375 DOI: 10.1207/s15327914nc4801_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Some dietary compounds, among them fats, are modulators of colon cancer risk. This study reports the modulating effects of n-6, with or without vitamin A, on promotion of colon preneoplasic lesions induced by 1,2-dimethylhydrazine (DMH) and on the expression of nuclear receptors (PPARgamma, RXRalpha, and RARbeta). One group of male Fisher rats was fed a basic diet (5% safflower oil) and two groups were fed a high-fat diet (HFD, 25% safflower oil). Of these, one was supplemented with 200 IU vitamin A for 5 mo. The safflower oil contained polyunsaturated fatty acids, mainly linoleic acid (73%). The data showed an increasing effect of safflower oil-enriched diet on aberrant crypt foci occurrence and multiplicity. This effect was impaired by vitamin A supplementation. In addition, an HFD-related up-regulation of PPARgamma and a concomitant down-regulation of RARbeta mRNA expression were observed with or without chemical initiation and were prevented by vitamin A. Moreover, when treated with DMH, HFD rats exhibited a dramatically decreased expression of RXRalpha mRNA (-49%). It was hypothesized that HFD, leading to hyperexpression of PPARgamma, would produce an alteration of retinoic acid signaling and, in this way, create a background modulating colon cancer risk.
Collapse
MESH Headings
- 1,2-Dimethylhydrazine
- Animals
- Colon/metabolism
- Colonic Neoplasms/chemically induced
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Dietary Fats/administration & dosage
- Dietary Fats/adverse effects
- Fatty Acids, Omega-6/administration & dosage
- Intestinal Mucosa/metabolism
- Male
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Peroxisome Proliferators/metabolism
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Inbred F344
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Safflower Oil/administration & dosage
- Safflower Oil/chemistry
- Vitamin A/metabolism
Collapse
Affiliation(s)
- Barbara Delage
- Laboratory of Nutrition and Cellular Signalling, University Bordeaux 1, Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Jette C, Peterson PW, Sandoval IT, Manos EJ, Hadley E, Ireland CM, Jones DA. The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. J Biol Chem 2004; 279:34397-405. [PMID: 15190067 DOI: 10.1074/jbc.m314021200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Development of normal colon epithelial cells proceeds through a systematic differentiation of cells that emerge from stem cells within the base of colon crypts. Genetic mutations in the adenomatous polyposis coli (APC) gene are thought to cause colon adenoma and carcinoma formation by enhancing colonocyte proliferation and impairing differentiation. We currently have a limited understanding of the cellular mechanisms that promote colonocyte differentiation. Herein, we present evidence supporting a lack of retinoic acid biosynthesis as a mechanism contributing to the development of colon adenomas and carcinomas. Microarray and reverse transcriptase-PCR analyses revealed reduced expression of two retinoid biosynthesis genes: retinol dehydrogenase 5 (RDH5) and retinol dehydrogenase L (RDHL) in colon adenomas and carcinomas as compared with normal colon. Consistent with the adenoma and carcinomas samples, seven colon carcinoma cell lines also lacked expression of RDH5 and RDHL. Assessment of RDH enzymatic activity within these seven cell lines showed poor conversion of retinol into retinoic acid when compared with normal cells such as normal human mammary epithelial cells. Reintroduction of wild type APC into an APC-deficient colon carcinoma cell line (HT29) resulted in increased expression of RDHL without affecting RDH5. APC-mediated induction of RDHL was paralleled by increased production of retinoic acid. Investigations into the mechanism responsible for APC induction of RDHL indicated that beta-catenin fails to repress RDHL. The colon-specific transcription factor CDX2, however, activated an RDHL promoter construct and induced endogenous RDHL. Finally, the induction of RDHL by APC appears dependent on the presence of CDX2. We propose a novel role for APC and CDX2 in controlling retinoic acid biosynthesis and in promoting a retinoid-induced program of colonocyte differentiation.
Collapse
Affiliation(s)
- Cicely Jette
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Wei HB, Han XY, Fan W, Chen GH, Wang JF. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa. World J Gastroenterol 2003; 9:1725-8. [PMID: 12918108 PMCID: PMC4611531 DOI: 10.3748/wjg.v9.i8.1725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of retinoic acid (RA) on cell proliferation kinetics and retinoic acid receptor (RAR) expression of colorectal mucosa.
METHODS: One hundred sixty healthy male Wistar rats were randomly divided into 4 groups. Rats in groups I and II were subcutaneously injected with dimethylhydrazine (DMH) (20 mg/kg, once a week,) for 7 to 13 weeks, while groups III and IV were injected with normal saline. Rats in groups II and III were also treated with RA (50 mg/kg, every day, orally) from 7th to 15th week, thus group IV was used as a control. The rats were killed in different batches. The expressions of proliferating cell nuclear antigen (PCNA), nucleolar organizer region-associated protein (AgNOR) and RAR were detected.
RESULTS: The incidence of colorectal carcinoma was different between groups I (100%) and II (15%) (P < 0.01). The PCNA indices and mean AgNOR count in group II were significantly lower than those in group I (F = 5.418 and 4.243, P < 0.01). The PCNA indices and mean AgNOR count in groups I and II were significantly higher than those in the groups III and IV (in which carcinogen was not used) (F = 5.927 and 4.348, P < 0.01). There was a tendency in group I that the longer the induction with DMH the higher PCNA index and AgNOR count expressed (F = 7.634 and 6.826, P < 0.05). However, there was no such tendency in groups II, III and IV (F = 1.662 and 1.984, P > 0.05). The levels of RAR in normal and cancerous tissues in groups treated with RA were significantly higher than those in groups not treated with RA (F = 6.343 and 6.024, P < 0.05).
CONCLUSION: RA decreases the incidence of colorectal carcinoma induced by DMH. Colorectal cancer tissue is associated with abnormal expression of PCNA, AgNOR and RAR. RA inhibits the expression of PCNA and AgNOR, and increases RAR concentration in colorectal tissues.
Collapse
Affiliation(s)
- Hong-Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
37
|
Clements WM, Lowy AM, Groden J. Adenomatous polyposis coli/beta-catenin interaction and downstream targets: altered gene expression in gastrointestinal tumors. Clin Colorectal Cancer 2003; 3:113-20. [PMID: 12952568 DOI: 10.3816/ccc.2003.n.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrointestinal cancer affects 250,000 Americans a year with nearly half of those cases being colorectal cancer. The Wnt pathway is activated in most spontaneous and familial colorectal cancers and has been implicated in tumor formation at other sites in the gastrointestinal tract. In human tumors, the Wnt pathway is most often altered by mutations affecting certain components of this signal transduction cascade-the adenomatous polyposis coli (APC) tumor suppressor gene or the ss-catenin gene. Perturbations in the function of either protein lead to altered gene regulation through the interaction of ss-catenin with T-cell factor (Tcf)/lymphoid enhancer binding protein (Lef) transcription factors. This review will discuss the Wnt pathway, examine the mutations of its components that are found in human cancer, and discuss the known downstream gene targets.
Collapse
Affiliation(s)
- Wilson M Clements
- Howard Hughes Medical Institute, and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
38
|
Genter MB, Burman DM, Vijayakumar S, Ebert CL, Aronow BJ. Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa. Physiol Genomics 2002; 12:35-45. [PMID: 12419858 DOI: 10.1152/physiolgenomics.00120.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alachlor induces olfactory mucosal tumors in rats in a highly ordered temporal process. We used GeneChip analysis to test the hypothesis that histological progression and oncogenic transformation are accompanied by gene expression changes that might yield clues as to the molecular pathogenesis of tumor formation. Acute alachlor exposure caused upregulation of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitor of metalloproteinase-1, carboxypeptidase Z, and other genes related to extracellular matrix homeostasis. Heme oxygenase was upregulated acutely and maintained elevated expression. Expression of ebnerin, related to the putative human tumor suppressor gene DMBT1, progressively increased in alachlor-treated olfactory mucosa. Progression from adenomas to adenocarcinoma was correlated with upregulation of genes in the wnt signaling pathway. Activated wnt signaling was confirmed by immunohistochemical localization of beta-catenin to nuclei of adenocarcinomas, but not earlier lesions. These observations suggest that initiation and progression of alachlor-induced olfactory mucosal tumors is associated with alterations in extracellular matrix components, induction of oxidative stress, upregulation of ebnerin, and final transformation to a malignant state by wnt pathway activation.
Collapse
Affiliation(s)
- Mary Beth Genter
- Departmet of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Matrix metalloproteinases (MMPs) appear to play a key role in the development and progression of human malignancies. MMPs mediate the destruction of the extracellular matrix, which is an important early step in tumor invasion and metastasis. Growing evidence suggests that MMPs also have angiogenic activity and participate in the early stages of tumorigenesis and primary tumor growth. Investigations in experimental animal models have confirmed the importance of MMPs in the pathogenesis of colorectal cancer, and studies in humans show a direct association between increased MMP expression and tumor invasiveness, development of metastases, and shortened survival. In this review, the physiologic role of MMPs in normal tissues is examined and data supporting the role of MMPs in the pathogenesis of colorectal cancer are reviewed. The results of clinical trials with MMP inhibitors in colorectal cancer and promising areas for future investigation are also discussed.
Collapse
Affiliation(s)
- Angela G Mysliwiec
- Department of Hematology/Oncology, Brooke Army Medical Center, San Antonio, TX, USA
| | | |
Collapse
|