1
|
Xiao HB, Sui GG, Lu XY. Icariin improves eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null mice. Can J Physiol Pharmacol 2016; 95:625-633. [PMID: 28177681 DOI: 10.1139/cjpp-2016-0367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway induces atherogenesis. The present study examined whether icariin improves the eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null (ApoE-/-) mice. In vitro, primary human umbilical vein endothelial cells (HUVECs) were randomly divided into 7 groups: control; vehicle; icariin 10; lyphosphatidylcholine (LPC) group; LPC + icariin 1; LPC + icariin 3; and LPC + icariin 10. In vivo, 80 mice were separated randomly into 4 groups (n = 20): control, ApoE-/-, ApoE-/- + icariin 10, and ApoE-/- + icariin 30. ApoE-/- mice had significantly more atherosclerosis in the aortic root together with increased aortic ROS production, body mass, plasma triglyceride (TG) and total cholesterol (TC) concentration, decreased aortic eNOS expression, and plasma NO concentration. LPC (10 μg/mL) treatment induced a big decline in NO level in the conditioned medium and eNOS expression, and an increase in intracellular reactive oxygen species (ROS) production in HUVECs. Icariin treatment decreased atherogenesis, ROS production, body mass, plasma TG concentration, and plasma TC concentration, and increased NO concentration and eNOS expression. These findings suggested icariin could improve eNOS/NO-pathway to prohibit the atherogenesis of apolipoprotein E-null mice by restraining oxidative stress.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- a College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guo-Guang Sui
- a College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiang-Yang Lu
- b Hunan Province University Key Laboratory for Agricultural Biochemistry and Biotransformation, Hunan Agricultural University, Changsha 410128, China.,c Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
2
|
Protective effects of kaempferol against endothelial damage by an improvement in nitric oxide production and a decrease in asymmetric dimethylarginine level. Eur J Pharmacol 2009; 616:213-22. [PMID: 19549512 DOI: 10.1016/j.ejphar.2009.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 06/04/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
Previous investigations have shown that asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS) and that ADMA is a risk factor for endothelial dysfunction. The objective of this study was to investigate the protective effect of kaempferol, a naturally occurring flavonoid antioxidant agent, against endothelial damage and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE(-/-)) mice treated or not with kaempferol (50 or 100mg/kg, intragastrically) for 4 weeks, and in human umbilical vein endothelial cells (HUVECs) pretreated or not with kaempferol (1, 3 or 10 microM) for 1h and exposed to lysophosphatidylcholine (LPC) (10 microg/mL) for 24h. Kaempferol treatment improved endothelium-dependent vasorelaxation, increased the maximal relaxation value, and decreased the half-maximum effective concentration concomitantly with an increase in nitric oxide plasma concentration, a decrease in ADMA and malondialdehyde (MDA) plasma concentrations, and increase in the expression of aortic endothelial NOS (eNOS) as well as dimethylarginine dimethylaminohydrolase II (DDAH II) in ApoE(-/-) mice. In addition, LPC caused a reduction in NO production, an increase in ADMA concentration concomitantly with a decreased expression of eNOS and DDAH II in HUVECs, and the effect of LPC was abolished by kaempferol. Treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta and in HUVECs. The present results suggest that the protective effect of kaempferol against endothelial damage may be associated with an improvement in NO production and a decrease in ADMA level.
Collapse
|
3
|
Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 2009; 83:547-57. [PMID: 19454490 DOI: 10.1093/cvr/cvp153] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIMS The presence and potential function of transient receptor potential melastatin 7 (TRPM7), a Ca2+-permeable non-selective cation channel of the TRP channel superfamily in human vascular endothelial cells, were examined. METHODS AND RESULTS Whole-cell patch-clamp recordings showed outward-rectifying currents in human umbilical vein endothelial cells (HUVECs), which was potentiated by removing the extracellular Ca2+ and Mg2+, but inhibited by non-specific TRPM7 blocker Gd3+ or 2-aminoethoxydiphenyl borate (2-APB). TRPM7 mRNA was detected in HUVECs by RT-PCR, but TRPM6, its closest homologue, was not. Silencing TRPM7 by small interfering RNA (siRNA) decreased the level of TRPM7 mRNA and the TRPM7-like current. Interestingly, knockdown of TRPM7 with siRNA or inhibition of TRPM7 function with 2-APB increased the phosphorylation of extracellular signal-regulated kinase (ERK) and enhanced growth/proliferation of HUVECs. This enhanced cell growth/proliferation was abolished by an inhibitor of the ERK signalling pathway. In addition to cell growth/proliferation, silencing TRPM7 also increased expression of nitric oxide synthase and nitric oxide production in an ERK pathway-dependent manner. CONCLUSION These observations suggest that TRPM7 channels may play an important role in the function of vascular endothelial cells.
Collapse
Affiliation(s)
- Koichi Inoue
- Robert S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Ave. Portland, OR 97232, USA
| | | |
Collapse
|
4
|
Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S, Lachapelle P, Lavoie JC, Chemtob S, Hardy P. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 2007; 294:R467-76. [PMID: 18046016 DOI: 10.1152/ajpregu.00432.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that lymphocyte-derived microparticles (LMPs) impair endothelial cell function. However, no data currently exist regarding the contribution of LMPs in the regulation of angiogenesis. In the present study, we investigated the effects of LMPs on angiogenesis in vivo and in vitro and demonstrated that LMPs strongly suppressed aortic ring microvessel sprouting and in vivo corneal neovascularization. In vitro, LMPs considerably diminished human umbilical vein endothelial cell survival and proliferation in a concentration-dependent manner. Mechanistically, the antioxidants U-74389G and U-83836E were partially protective against the antiproliferative effects of LMPs, whereas the NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium significantly abrogated these effects. Moreover, LMPs increased not only the expression of the NOX subunits gp91(phox), p22(phox), and p47(phox), but also the production of ROS and NOX-derived superoxide (O(2)(-)). Importantly, LMPs caused a pronounced augmentation in the protein expression of the CD36 antiangiogenic receptor while significantly downregulating the protein levels of VEGF receptor type 2 and its downstream signaling mediator, phosphorylated ERK1/2. In summary, LMPs potently suppress neovascularization in vivo and in vitro by augmenting ROS generation via NOX and interfering with the VEGF signaling pathway.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine,Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cooney R, Hynes SO, Duffy AM, Sharif F, O'Brien T. Adenoviral-mediated gene transfer of nitric oxide synthase isoforms and vascular cell proliferation. J Vasc Res 2006; 43:462-72. [PMID: 16921253 DOI: 10.1159/000095163] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 06/06/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Many vascular diseases are associated with reduced nitric oxide (NO) bioavailability. Nitric oxide synthase (NOS) gene therapy to the vasculature is a possible treatment for vascular disease as a means of increasing NO bioavailability, and this may be achieved using any of the NOS isoforms. The aim of our study was to compare the effects of adenoviral-mediated overexpression of the most commonly used NOS isoforms eNOS and iNOS on vascular cell proliferation. METHODS Human coronary artery smooth muscle cells (HCSMCs) and human umbilical vein endothelial cells (HUVECs) were transduced with adenoviral vectors encoding eNOS or iNOS at a multiplicity of infection of 100. Control cells were exposed to AdNull (empty vector) or diluent alone. Transgene expression was sought by Western blotting. The Greiss assay was used to measure nitrite levels. Cell proliferation was assessed by cell counting on days 0, 3 and 6. Apoptosis was sought using FACS analysis. Angiogenesis was measured using a commercially available in vitro kit. RESULTS Expression of both isoforms was detected in transduced cells by Western blot at all three time points. NOS transduction resulted in increased nitrite levels with higher levels seen in iNOS- compared to eNOS-transduced cells. Cell proliferation was diminished in AdeNOS- and AdiNOS-transduced cells compared with non-transduced cells on days 3 and 6 in both HCSMCs and HUVECs. Apoptosis was not detected in either cell line with either of the isoforms at any timepoint studied. Both eNOS and iNOS gene transfer caused a reduction in angiogenesis. CONCLUSIONS NOS gene transfer to both endothelial and vascular smooth muscle cells is antiproliferative and antiangiogenic. The biological effect is identical with both isoforms and there is no evidence to support a differential effect on endothelial and vascular smooth muscle cell biology.
Collapse
Affiliation(s)
- Ronan Cooney
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
6
|
Suwannaprapha P, Chaisri U, Riyong D, Maneerat Y. Improvement of Function and Morphology of Tumor Necrosis Factor-.ALPHA. Treated Endothelial Cells With 17-.BETA. Estradiol A Preliminary Study for a Feasible Simple Model for Atherosclerosis. Circ J 2005; 69:730-8. [PMID: 15914954 DOI: 10.1253/circj.69.730] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells (EC) to produce endothelial nitric oxide synthase (eNOS) by tumor necrosis factor-alpha (TNF-alpha) causes critical features of vascular inflammation associated with several disease states (eg, atherosclerosis including increased platelet aggregation and adhesion on EC, elevated adhesion molecules and enhanced inflammatory cells binding to EC). 17-beta estradiol (E2) can stimulate eNOS production and improve the critical features of atherosclerosis. Using TNF-alpha and E2, we attempted to develop an in vitro vascular model for studying atherosclerosis. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVEC) grown in transwells were cocultured with smooth muscle cells in a 24-well plate to mimic the major components of the vascular wall. The model was incubated with TNF-alpha (10 ng/ml) for 12 h, prior exposed to E2 (100 pg/ml) for 6-12 h, then investigated by transmission and scanning electron microscopes. The result indicated recovered morphology with good tight junction, and decreased platelet adhesion was noted in defective HUVEC after E2 treatment. CONCLUSION 17-beta estradiol was represented as an antiatherosclerogenic agent to demonstrate feasibility of the model. Although our finding focused only on the endothelium, this would be the basis for our future studies to develop ex vivo continuous perfusion of human vessel segments for a further atherosclerosis study.
Collapse
Affiliation(s)
- Parin Suwannaprapha
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
7
|
Chen HH, Wang DL. Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol Pharmacol 2004; 65:1130-40. [PMID: 15102941 DOI: 10.1124/mol.65.5.1130] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) has been shown to inhibit migration of cells in which various matrix metalloproteinases (MMPs) are involved. The underlying molecular mechanisms of this inhibition remain elusive. Endothelial cells (ECs) constitutively produce MMP-2. The effect of NO on MMP-2 expression was examined. A dose-dependent inhibition of MMP-2 mRNA level was demonstrated in ECs treated with NO. ECs infected with adenovirus carrying endothelial NO synthase (Ade-NOS) reduced MMP-2 expression. The inhibitory effect of NO on MMP-2 expression was a transcriptional event because NO reduced MMP-2 promoter activity. NO treatment of ECs consequently suppressed MMP-2 secretion revealed by zymographic assay. Functional analysis of MMP-2 promoter (1716 base pairs) indicated that the p53-binding site (-1659 to -1629) was crucial for MMP-2 promoter activity. Activating transcription factor 3 (ATF3) has been reported to act as a transcriptional repressor for p53. ECs treated with NO induced ATF3 expression. Consistently, Ade-NOS-infected ECs showed an increase of ATF3 level. Moreover, ECs either over-expressed ATF3 or, when treated with an ATF3 activator (MG-132; carbobenzoxy-l-leucyl-l-leucyl-l-leucinal), resulted in a repression of MMP-2 promoter activity. Because of MMP-2 suppression by NO, ECs treated with NO inhibited endothelial migration, a phenomenon similar to that of ECs treated with MMP-2 antibody or MG-132. These results indicate that NO-attenuating endothelial migration is mediated at least in part by its reduction of MMP-2 expression via the up-regulation of ATF3. This study provides a molecular basis that supports the notion that NO acts as a negative regulator in endothelial migration.
Collapse
Affiliation(s)
- Hsuan-Hsu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
8
|
Hynes SO, Smith LA, Richardson DM, Kovesdi I, O'Brien T, Katusic ZS. In vivo expression and function of recombinant GTPCH I in the rabbit carotid artery. Am J Physiol Heart Circ Physiol 2004; 286:H570-4. [PMID: 14551046 DOI: 10.1152/ajpheart.00669.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.
Collapse
Affiliation(s)
- Sean O Hynes
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
9
|
Jiang DJ, Hu GY, Jiang JL, Xiang HL, Deng HW, Li YJ. Relationship between protective effect of xanthone on endothelial cells and endogenous nitric oxide synthase inhibitors. Bioorg Med Chem 2003; 11:5171-7. [PMID: 14604680 DOI: 10.1016/j.bmc.2003.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1,3,5,6-tetrahydroxyxanthone was synthesized. The relationship between protective effect of xanthone on endothelial cells and endogenous nitric oxide synthase inhibitors was investigated. Endothelial cells were treated with ox-LDL (100 microg/mL) for 48 h. Adhesion of monocytes to endothelial cells and release of lactate dehydrogenase (LDH) was determined. Levels of tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO) and asymmetric dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase) in conditioned medium and activity of dimethylarginine dimethylaminohydrolase (DDAH) in endothelial cells were measured. Incubation of endothelial cells with ox-LDL (100 microg/mL) for 48 h markedly enhanced the adhesion of monocytes to endothelial cells, increased the release of LDH, the levels of TNF-alpha, MCP-1 and ADMA, and decreased the content of NO and the activity of DDAH. Xanthone (1,3,5,6-tetrahydroxyxanthone) (1, 3 or 10 micromol/L) significantly inhibited the increased adhesion of monocytes to endothelial cells and attenuated the increased levels of LDH, MCP-1 and ADMA induced by ox-LDL. Xanthone (1,3,5,6-tetrahydroxyxanthone) (3 or 10 micromol/L) significantly attenuated the increased level of TNF-alpha and decreased level of NO and activity of DDAH by ox-LDL. The present results suggest that xanthone (1,3,5,6-tetrahydroxyxanthone) preserves endothelial cells and inhibits the increased adhesion of monocytes to endothelial cells induced by ox-LDL, and that the protective effect of xanthone (1,3,5,6-tetrahydroxyxanthone) on endothelial cells is related to reduction of ADMA concentration via increase of DDAH activity.
Collapse
Affiliation(s)
- De-Jian Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
10
|
Deng W, Bivalacqua TJ, Chattergoon NN, Hyman AL, Jeter JR, Kadowitz PJ. Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol 2003; 285:C1322-9. [PMID: 12878489 DOI: 10.1152/ajpcell.00141.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is an attractive target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold great promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated eNOS gene transfer into ex vivo expanded MSCs, rat MSCs (rMSCs) were isolated, expanded ex vivo, and transduced with Ad5RSVeNOS, an adenoviral vector containing the eNOS gene under the control of the Rous sarcoma virus promoter. The presence of eNOS protein in Ad5RSVeNOS-transduced rMSCs was confirmed by immunohistochemical and Western blot analysis. Transduction efficiency was dose dependent, and eNOS transgene expression in rMSCs persisted for > or =21 days in culture. The rMSCs retained multipotential differentiation capability after adenoviral-mediated eNOS gene transfer. Furthermore, intracavernosal injection of Ad5RSVeNOS-transduced rMSCs increased the expression of eNOS in the corpus cavernosum, and stem cells were identified within corporal sinusoids. These findings demonstrate that replication-deficient recombinant adenovirus can be used to engineer ex vivo expanded rMSCs and that high-level eNOS transgene expression can be achieved, pointing out the clinical potential of using this novel adult stem cell-based gene therapy method for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Weiwen Deng
- Department of Pharmacology, SL83, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mohan S, Hamuro M, Sorescu GP, Koyoma K, Sprague EA, Jo H, Valente AJ, Prihoda TJ, Natarajan M. IkappaBalpha-dependent regulation of low-shear flow-induced NF-kappa B activity: role of nitric oxide. Am J Physiol Cell Physiol 2003; 284:C1039-47. [PMID: 12620896 DOI: 10.1152/ajpcell.00464.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the role of inhibitor kappaBalpha (IkappaBalpha) in the activation of nuclear factor kappaB (NF-kappaB) observed in human aortic endothelial cells (HAEC) undergoing a low shear stress of 2 dynes/cm(2). Low shear for 6 h resulted in a reduction of IkappaBalpha levels, an activation of NF-kappaB, and an increase in kappaB-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion. Overexpression of IkappaBalpha in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation of IkappaBalpha is the major factor in the low shear-induced activation of NF-kappaB in HAEC. We then investigated the role of nitric oxide (NO) in the regulation of IkappaBalpha/NF-kappaB. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-kappaB activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 microM) or sodium nitroprusside (1 mM) before low shear stress significantly increased cytoplasmic IkappaBalpha and concomitantly reduced NF-kappaB binding activity and kappaB-dependent VCAM-1 promoter activity. Together, these data suggest that NO may play a major role in the regulation of IkappaBalpha levels in HAEC and that the application of low shear flow increases NF-kappaB activity by attenuating NO generation and thus IkappaBalpha levels.
Collapse
Affiliation(s)
- Sumathy Mohan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Quan S, Yang L, Shenouda S, Jiang H, Balazy M, Schwartzman ML, Shibahara I, Shinohara K, Abraham NG. Functional expression of human heme oxygenase-1 (HO-1) driven by HO-1 promoter in vitro and in vivo. J Cell Biochem 2002. [DOI: 10.1002/jcb.10147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Jiang JL, Li NS, Li YJ, Deng HW. Probucol preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. Br J Pharmacol 2002; 135:1175-82. [PMID: 11877324 PMCID: PMC1573227 DOI: 10.1038/sj.bjp.0704563] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Oxide low-density lipoprotein (ox-LDL) is believed to play an important role in early events of atherogenesis, and asymmetric dimethylarginine (ADMA) is associated with the development of endothelial dysfunction. The present study examined the effect of a single injection of native low-density lipoprotein (LDL) on endothelium function and the serum level of ADMA and the effect of probucol on endothelium function and ADMA level in rats. 2. Endothelial injury was induced by intravenous injection of LDL at the dose of 2, 4, or 6 mg kg(-1) for 24, 48, or 72 h, and vasodilator responses to acetylcholine in the aortic rings and serum levels of ADMA, nitrite/nitrate (NO) and malondialdehyde (MDA) were determined. 3. Pretreatment with LDL markedly reduced endothelium-dependent relaxation in a concentration-dependent manner. Inhibition of vasodilator responses to acetylcholine by LDL was abolished in the presence of L-arginine (3 x 10(-4) M). Serum levels of ADMA and MDA were significantly elevated in the rats pretreated with LDL, while serum level of nitrite/nitrate was markedly decreased. 4. Pretreatment with probucol significantly improved endothelium-dependent relaxation, decreased concentrations of ADMA and MDA and increased nitrite/nitrate level in the rats treated with LDL. A similar effect was seen in the rats pretreated with an antioxidant vitamin E. 5. These results suggest that a single injection of native LDL causes endothelial dysfunction by elevation of ADMA levels and that the protective effect of probucol on endothelial cells is related to reduction of ADMA concentration.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Arginine/analogs & derivatives
- Arginine/blood
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Lipoproteins, LDL/pharmacology
- Male
- Malondialdehyde/blood
- Muscle, Smooth, Vascular/drug effects
- Nitric Oxide Synthase/antagonists & inhibitors
- Probucol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Jun-Lin Jiang
- Department of Pharmacology, Xiang-Ya Medical college, Central South University, Changsha, Hunan 410078, People's Republic of China
| | - Nian-sheng Li
- Department of Pharmacology, Xiang-Ya Medical college, Central South University, Changsha, Hunan 410078, People's Republic of China
| | - Yuan-Jian Li
- Department of Pharmacology, Xiang-Ya Medical college, Central South University, Changsha, Hunan 410078, People's Republic of China
| | - Han-Wu Deng
- Department of Pharmacology, Xiang-Ya Medical college, Central South University, Changsha, Hunan 410078, People's Republic of China
- Author for correspondence:
| |
Collapse
|
14
|
Zanetti M, Zwacka R, Engelhardt J, Katusic Z, O'Brien T. Superoxide anions and endothelial cell proliferation in normoglycemia and hyperglycemia. Arterioscler Thromb Vasc Biol 2001; 21:195-200. [PMID: 11156852 DOI: 10.1161/01.atv.21.2.195] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Oxygen free radicals are believed to play a key role in cellular proliferation, and increased concentrations of these molecules have been implicated in the pathogenesis of endothelial dysfunction in diabetes mellitus. Our aim was to study the role of superoxide anions in endothelial cell proliferation under conditions of normoglycemia and hyperglycemia. Human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) exposed to adenoviral vectors encoding CuZnSOD (AdCuZnSOD), ss-galactosidase (Adssgal), or diluent (control) were cultured in normal glucose (NG, 5.5 mmol/L) or high glucose (HG, 28 mmol/L) medium. Cell proliferation was compared by use of [(3)H]thymidine incorporation and cell count in transduced and control cells in the setting of NG and HG. Transgene expression was detected in transduced cells by X-gal staining and by Western analysis and SOD activity assay in AdCuZnSOD-transduced cells. Superoxide production was significantly (P:<0.05) decreased in AdCuZnSOD-transduced cells cultured in both NG and HG medium. In NG, AdCuZnSOD-transduced endothelial cells had decreased proliferation compared with control cells. After 48 hours in HG, superoxide levels were increased and DNA synthesis was decreased (P:<0.05) in control and Adssgal-transduced but were not affected in AdCuZnSOD-transduced cells. In addition, after 7 days in HG, cell counts were reduced (P:<0.05) in control (73+/-2.5%) and Adssgal-transduced (75+/-3.4%) but not in AdCuZnSOD-transduced cells (89+/-3.4%). These results suggest that either a deficiency or an excess of superoxide anions inhibits endothelial cell proliferation, and the inhibitory effect of increased superoxide due to hyperglycemia can be reversed by CuZnSOD overexpression.
Collapse
Affiliation(s)
- M Zanetti
- Endocrine Research Unit, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|