1
|
Viventi S, Frausin S, Howden SE, Lim SY, Finol-Urdaneta RK, McArthur JR, Abu-Bonsrah KD, Ng W, Ivanusic J, Thompson L, Dottori M. In vivo survival and differentiation of Friedreich ataxia iPSC-derived sensory neurons transplanted in the adult dorsal root ganglia. Stem Cells Transl Med 2021; 10:1157-1169. [PMID: 33734599 PMCID: PMC8284774 DOI: 10.1002/sctm.20-0334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease characterized by degeneration of dorsal root ganglia (DRG) sensory neurons, which is due to low levels of the mitochondrial protein Frataxin. To explore cell replacement therapies as a possible approach to treat FRDA, we examined transplantation of sensory neural progenitors derived from human embryonic stem cells (hESC) and FRDA induced pluripotent stem cells (iPSC) into adult rodent DRG regions. Our data showed survival and differentiation of hESC and FRDA iPSC-derived progenitors in the DRG 2 and 8 weeks post-transplantation, respectively. Donor cells expressed neuronal markers, including sensory and glial markers, demonstrating differentiation to these lineages. These results are novel and a highly significant first step in showing the possibility of using stem cells as a cell replacement therapy to treat DRG neurodegeneration in FRDA as well as other peripheral neuropathies.
Collapse
Affiliation(s)
- Serena Viventi
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Stefano Frausin
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sara E Howden
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent Hospital, Fitzroy, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Keiraville, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Keiraville, Australia
| | - Kwaku Dad Abu-Bonsrah
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Wayne Ng
- School of Medicine, Griffith University, Gold Coast, Australia.,Department of Neurosurgery, Gold Coast University Hospital, Southport, Australia
| | - Jason Ivanusic
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Lachlan Thompson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mirella Dottori
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Keiraville, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Hunter C, Davis T, Loudermilk E, Kapural L, DePalma M. Cooled Radiofrequency Ablation Treatment of the Genicular Nerves in the Treatment of Osteoarthritic Knee Pain: 18- and 24-Month Results. Pain Pract 2019; 20:238-246. [PMID: 31605667 PMCID: PMC7078815 DOI: 10.1111/papr.12844] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
Objective The primary objective of this observational, prospective, multicenter study was to evaluate the long‐term outcomes, including pain, function, and perceived effect of treatment, in subjects undergoing cooled radiofrequency ablation (CRFA) who have pain due to osteoarthritis (OA) of the knee. Methods This analysis included a subset of subjects previously enrolled in a prospective, multicenter randomized study comparing the safety and effectiveness of CRFA and intra‐articular steroid injection in patients with knee OA through 12 months who were contacted to participate in this extension study. Subjects were enrolled if they agreed to participate in up to 2 additional follow‐ups, at 18 and 24 months. Results Eighty‐three subjects from the 5 participating sites underwent CRFA during the original study and were contacted for this extension study. Of the 33 subjects enrolled, 25 were evaluated at 18 months after CRFA treatment, and their mean numeric rating scale (NRS) score was 3.1 ± 2.7, with 12 subjects reporting ≥50% pain relief compared to baseline. At 24 months, 18 subjects reported a mean NRS score of 3.6 ± 2.8, with 11 demonstrating ≥50% pain relief. Functional improvement as measured by the Oxford Knee Score continued to be present, with an overall mean change from baseline of 26.0 ± 9.6 points at 18 months and 29.9 ± 10.4 points at 24 months. Conclusion In this subset of subjects from a randomized controlled trial, CRFA provided sustained pain relief, improved function, and perceived positive effect through 24 months for subjects with OA knee pain with no safety concerns identified.
Collapse
Affiliation(s)
- Corey Hunter
- Ainsworth Institute of Pain Management, New York, New York, U.S.A
| | - Tim Davis
- Orthopedic Pain Specialists, Santa Monica, California, U.S.A
| | - Eric Loudermilk
- Piedmont Comprehensive Pain Management Group, Greenville, South Carolina, U.S.A
| | - Leonardo Kapural
- Center for Clinical Research, Winston Salem, North Carolina, U.S.A
| | | |
Collapse
|
3
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42. [PMID: 29901090 PMCID: PMC6089780 DOI: 10.3892/ijmm_2018.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Correspondence to: Dr Akira Ishisaki, Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan, E-mail:
| |
Collapse
|
4
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42:1484-1494. [PMID: 29901090 DOI: 10.3892/ijmm.2018.3714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 01/11/2023] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita‑ku, Sapporo 060‑0812, Japan
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| |
Collapse
|
5
|
Pecze L, Viskolcz B, Oláh Z. Molecular Surgery Concept from Bench to Bedside: A Focus on TRPV1+ Pain-Sensing Neurons. Front Physiol 2017. [PMID: 28626428 PMCID: PMC5455100 DOI: 10.3389/fphys.2017.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
"Molecular neurosurgery" is emerging as a new medical concept, and is the combination of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose activation results in the selective elimination of a specific subset of neurons in which this receptor is endogenously expressed. In general, a molecular surgery agent is a selective and potent ligand, and the target is a specific cell type whose elimination is desired through the molecular surgery procedure. These target cells have the highest innate sensitivity to the molecular surgery agent usually due to the highest receptor density being in their plasma membrane. The interaction between the ligand and its receptor evokes an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell and finally cell death. One of the best known examples of such an interaction is the effect of ultrapotent vanilloids on TRPV1-expressing pain-sensing neurons. One intrathecal resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery scalpel, RTX removes the neurons responsible for generating pain and inflammation from the peripheral nervous system providing an option in clinical management for the treatment of morphine-insensitive pain conditions. In the future, the molecular surgery concept can also be exploited in cancer research for selectively targeting the specific tumor cell.
Collapse
Affiliation(s)
- László Pecze
- Unit of Anatomy, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary
| | - Zoltán Oláh
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary.,Acheuron Ltd.Szeged, Hungary
| |
Collapse
|
6
|
Sensory change of the reconstructed breast envelope after skin-sparing mastectomy. Eur J Surg Oncol 2016; 42:973-9. [DOI: 10.1016/j.ejso.2016.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/15/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
|
7
|
Meng L, Jiang X, Ji R. Role of neurotrophin in the taste system following gustatory nerve injury. Metab Brain Dis 2015; 30:605-13. [PMID: 25381474 DOI: 10.1007/s11011-014-9626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Taste system is a perfect system to study degeneration and regeneration after nerve injury because the taste system is highly plastic and the regeneration is robust. Besides, degeneration and regeneration can be easily measured since taste buds arise in discrete locations, and nerves that innervate them can be accurately quantified. Neurotrophins are a family of proteins that regulate neural survival, function, and plasticity after nerve injury. Recent studies have shown that neurotrophins play an important role in the developmental and mature taste system, indicating neurtrophin might also regulate taste system following gustatory nerve injury. This review will summarize how taste system degenerates and regenerates after gustatory nerve cut and conclude potential roles of neurotrophin in regulating the process.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
8
|
Czaja K, Fornaro M, Geuna S. Neurogenesis in the adult peripheral nervous system. Neural Regen Res 2015; 7:1047-54. [PMID: 25722694 PMCID: PMC4340017 DOI: 10.3969/j.issn.1673-5374.2012.14.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.
Collapse
Affiliation(s)
- Krzysztof Czaja
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (VCAPP), College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA
| | - Michele Fornaro
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Italy
| |
Collapse
|
9
|
Andres C, Hasenauer J, Ahn HS, Joseph EK, Isensee J, Theis FJ, Allgöwer F, Levine JD, Dib-Hajj SD, Waxman SG, Hucho T. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia. Pain 2013; 154:2216-2226. [PMID: 23867734 DOI: 10.1016/j.pain.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
UNLABELLED Growth factors such as nerve growth factor and glial cell line-derived neurotrophic factor are known to induce pain sensitization. However, a plethora of other growth factors is released during inflammation and tissue regeneration, and many of them are essential for wound healing. Which wound-healing factors also alter the sensitivity of nociceptive neurons is not well known. We studied the wound-healing factor, basic fibroblast growth factor (bFGF), for its role in pain sensitization. Reverse transcription polymerase chain reaction showed that the receptor of bFGF, FGFR1, is expressed in lumbar rat dorsal root ganglia (DRG). We demonstrated presence of FGFR1 protein in DRG neurons by a recently introduced quantitative automated immunofluorescent microscopic technique. FGFR1 was expressed in all lumbar DRG neurons as quantified by mixture modeling. Corroborating the mRNA and protein expression data, bFGF induced Erk1/2 phosphorylation in nociceptive neurons, which could be blocked by inhibition of FGF receptors. Furthermore, bFGF activated Erk1/2 in a dose- and time-dependent manner. Using single-cell electrophysiological recordings, we found that bFGF treatment of DRG neurons increased the current-density of NaV1.8 channels. Erk1/2 inhibitors abrogated this increase. Importantly, intradermal injection of bFGF in rats induced Erk1/2-dependent mechanical hyperalgesia. PERSPECTIVE Analyzing intracellular signaling dynamics in nociceptive neurons has proven to be a powerful approach to identify novel modulators of pain. In addition to describing a new sensitizing factor, our findings indicate the potential to investigate wound-healing factors for their role in nociception.
Collapse
Affiliation(s)
- Christine Andres
- Max Planck Institute for Molecular Genetics, Berlin, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Department of Neurology, Yale University School of Medicine, New Haven, CT, USA Center for Neuroscience and Regeneration Research, New Haven, CT, USA Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA Klinik für Anästhesiologie und Operative Intensivmedizin, Experimentelle Anästhesiologie und Schmerzforschung, Uniklinik Köln, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, Ding G, Chen J, Liu J, Gu X. Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PLoS One 2013; 8:e57000. [PMID: 23437294 PMCID: PMC3578805 DOI: 10.1371/journal.pone.0057000] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/16/2013] [Indexed: 01/28/2023] Open
Abstract
After traumatic injury, peripheral nerves can spontaneously regenerate through highly sophisticated and dynamic processes that are regulated by multiple cellular elements and molecular factors. Despite evidence of morphological changes and of expression changes of a few regulatory genes, global knowledge of gene expression changes and related biological processes during peripheral nerve injury and regeneration is still lacking. Here we aimed to profile global mRNA expression changes in proximal nerve segments of adult rats after sciatic nerve transection. According to DNA microarray analysis, the huge number of genes was differentially expressed at different time points (0.5 h–14 d) post nerve transection, exhibiting multiple distinct temporal expression patterns. The expression changes of several genes were further validated by quantitative real-time RT-PCR analysis. The gene ontology enrichment analysis was performed to decipher the biological processes involving the differentially expressed genes. Collectively, our results highlighted the dynamic change of the important biological processes and the time-dependent expression of key regulatory genes after peripheral nerve injury. Interestingly, we, for the first time, reported the presence of olfactory receptors in sciatic nerves. Hopefully, this study may provide a useful platform for deeply studying peripheral nerve injury and regeneration from a molecular-level perspective.
Collapse
Affiliation(s)
- Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qianqian Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Chunming Wang
- School of computer science and technology, Nantong University, Nantong, China
| | - Guohui Ding
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Chen
- School of computer science and technology, Nantong University, Nantong, China
| | - Jie Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
11
|
Yamashita H, Chen S, Komagata S, Hishida R, Iwasato T, Itohara S, Yagi T, Endo N, Shibata M, Shibuki K. Restoration of contralateral representation in the mouse somatosensory cortex after crossing nerve transfer. PLoS One 2012; 7:e35676. [PMID: 22536423 PMCID: PMC3334974 DOI: 10.1371/journal.pone.0035676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer.
Collapse
Affiliation(s)
- Haruyoshi Yamashita
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Shanlin Chen
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
- Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Seiji Komagata
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Naoto Endo
- Department of Orthopedic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Minoru Shibata
- Department of Plastic Surgery, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
12
|
Schoellnast H, Monette S, Ezell PC, Deodhar A, Maybody M, Erinjeri JP, Stubblefield MD, Single GW, Hamilton WC, Solomon SB. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology 2011; 260:421-7. [PMID: 21642418 DOI: 10.1148/radiol.11103505] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate whether irreversible electroporation (IRE) has the potential to damage nerves in a porcine model and to compare histopathologic findings after IRE with histopathologic findings after radiofrequency ablation (RFA). MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Computed tomography (CT)-guided IRE of 11 porcine sciatic nerves was performed in nine pigs, and histopathologic analysis was performed on the day of ablation or 3, 6, or 14 days after ablation. In addition, acute RFA of six porcine sciatic nerves was performed in six pigs that were harvested on the day of ablation. All nerves and associated muscles and tissues were assessed for histopathologic findings consistent with athermal or thermal injury, respectively, such as axonal swelling, axonal fragmentation and loss, Wallerian degeneration, inflammatory infiltrates, Schwann cell proliferation, and coagulative necrosis. The percentage of fascicles affected was recorded. RESULTS All nerves had an axonal injury. The percentage of affected nerve fascicles after IRE was 50%-100%. Axonal swelling and perineural inflammatory infiltrates were detectable at every time point after ablation. Axonal fragmentation and loss, macrophage infiltration, and Schwann cell proliferation were found 6 and 14 days after ablation. Distal Wallerian axonal degeneration was observed 14 days after ablation. The endoneurium and perineurium architecture remained intact in all cases. RFA specimens at the day of ablation revealed acute coagulative necrosis associated with intense basophilic staining of extracellular matrix, including collagen of the perineurium and epineurium consistent with thermal injury. CONCLUSION IRE has the potential to damage nerves and may result in axonal swelling, fragmentation, and distal Wallerian degeneration. However, preservation of endoneurium architecture and proliferation of Schwann cells may suggest the potential for axonal regeneration. In contrast, RFA leads to thermal nerve damage, causing protein denaturation, and suggests a much lower potential for regeneration.
Collapse
Affiliation(s)
- Helmut Schoellnast
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Andres C, Meyer S, Dina OA, Levine JD, Hucho T. Quantitative automated microscopy (QuAM) elucidates growth factor specific signalling in pain sensitization. Mol Pain 2010; 6:98. [PMID: 21187008 PMCID: PMC3023724 DOI: 10.1186/1744-8069-6-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/27/2010] [Indexed: 01/19/2023] Open
Abstract
Background Dorsal root ganglia (DRG)-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM) for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+)- and IB4(-)-neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked PGE2-induced sensitization. Conclusions QuAM is a suitable if not necessary tool to analyze activation of endogenous signalling in heterogeneous cultures. NGF, GDNF and EGF stimulation of DRG-neurons shows differential Erk1/2 activation responses and a corresponding differential behavioral phenotype. Thus, in addition to expression-markers also signalling-activity can be taken for functional subgroup differentiation and as predictor of behavioral outcome. The anti-nociceptive function of EGF is an intriguing result in the context of tissue damage but also for understanding pain resulting from EGF-receptor block during cancer therapy.
Collapse
Affiliation(s)
- Christine Andres
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Hill CE, Harrison BJ, Rau KK, Hougland MT, Bunge MB, Mendell LM, Petruska JC. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons. THE JOURNAL OF PAIN 2010; 11:1066-73. [PMID: 20627820 DOI: 10.1016/j.jpain.2010.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 12/31/2022]
Abstract
UNLABELLED Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Caitlin E Hill
- University of Miami, The Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Magnaghi V, Procacci P, Tata AM. Chapter 15 Novel Pharmacological Approaches to Schwann Cells as Neuroprotective Agents for Peripheral Nerve Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:295-315. [DOI: 10.1016/s0074-7742(09)87015-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M. Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:27-46. [PMID: 19682632 DOI: 10.1016/s0074-7742(09)87003-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerves are complex organs that can be found throughout the body reaching almost all tissues and organs to provide motor and/or sensory innervation. A parenchyma (the noble component made by the nerve fibers, i.e., axons and Schwann cells) and a stroma (the scaffold made of various connective elements) can be recognized. Although morphological analysis is the most common approach for studying peripheral nerve regeneration, researchers are not always aware of several histological peculiarities of these organs. Therefore, the aim of this review is to describe, at a structural and ultrastructural level, the main features of the parenchyma and the stroma of the normal undamaged nerve as well as the most important morphological changes that occur after nerve damage and during posttraumatic nerve regeneration. The paper is aimed at providing the reader with the basic framework information on nerve morphology. This would enable the correct interpretation of morphological data obtained by many experimental studies on peripheral nerve repair and regeneration such as those outlined in several other papers included in this special issue of the International Review of Neurobiology.
Collapse
Affiliation(s)
- Stefano Geuna
- Department of Clinical and Biological Sciences, San Luigi Gonzaga School of Medicine, University of Turin, Turin 10043, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Nowicki M, Kosacka J, Brossmer R, Spanel-Borowski K, Borlak J. The myelin-associated glycoprotein inhibitor BENZ induces outgrowth and survival of rat dorsal root ganglion cell cultures. J Neurosci Res 2008; 85:3053-63. [PMID: 17722062 DOI: 10.1002/jnr.21422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The novel myelin-associated glycoprotein (MAG) inhibitor BENZ binds to the N-acetylneuraminic acid (Neu5Ac) portion of the N-terminal Ig-like domain of MAG. Treatment of rat dorsal root ganglion (DRG) cell cultures with BENZ-induced outgrowth of neurofilament 200-positive neurites improved survival of neurons and increased the number of GFAP-positive cells, as determined by fluorescence and confocal laser microscopy and by Western immunoblotting. Furthermore, treatment of DRG cell cultures with BENZ repressed gene and protein expression of the small GTPase RhoA but induced expression of Rho GTP-activating proteins 5 and 24, likely to counteract protein kinase A activity. Specifically, expression of inhibitors of neurite outgrowth, for example, Rock2 and PAK4, was repressed, but cofilin 1, a promoter of axonal growth, was induced. We propose that the MAG inhibitor BENZ abrogates the RhoA-ROCK-cofilin pathway to promote neurite outgrowth. Our findings require confirmation by in vivo animal studies.
Collapse
Affiliation(s)
- Marcin Nowicki
- University of Leipzig, Institute of Anatomy, Leipzig, Germany
| | | | | | | | | |
Collapse
|
18
|
Schlegel N, Asan E, Hofmann GO, Lang EM. Reactive changes in dorsal roots and dorsal root ganglia after C7 dorsal rhizotomy and ventral root avulsion/replantation in rabbits. J Anat 2007; 210:336-51. [PMID: 17331182 PMCID: PMC2100279 DOI: 10.1111/j.1469-7580.2007.00695.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.
Collapse
Affiliation(s)
- N Schlegel
- University of Würzburg, Institute for Anatomy and Cell Biology, Germany
| | | | | | | |
Collapse
|
19
|
Sun W, Lin H, Chen B, Zhao W, Zhao Y, Dai J. Promotion of peripheral nerve growth by collagen scaffolds loaded with collagen‐targeting human nerve growth factor‐β. J Biomed Mater Res A 2007; 83:1054-1061. [PMID: 17584895 DOI: 10.1002/jbm.a.31417] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nerve growth factor (NGF) plays a critical role in neuronal development and regeneration. However, the lack of efficient NGF delivery system limits its clinical application. We reported that a peptide deduced from collagenase, TKKTLRT, fused with NGF-beta could develop a collagen based NGF targeting delivery system. Our results showed that this peptide could allow fused NGF-beta bind to collagen specifically. In addition, we found that the polypeptide could result in a 2.3-fold increase in the expression level and a significant improvement of bioactivity of fused NGF-beta. In the in vivo function study, collagen membranes loaded with the collagen binding NGF enhanced the nerve growth. Thus, the targeting wound repair system could be important for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Wenjie Sun
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate School, Chinese Academy of Sciences, Beijing 100080, China
| | - Hang Lin
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Bing Chen
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Wenxue Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
20
|
Winter JO, Cogan SF, Rizzo JF. Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J Biomed Mater Res B Appl Biomater 2007; 81:551-63. [PMID: 17041927 DOI: 10.1002/jbm.b.30696] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Improved sensory and motor prostheses for the central nervous system will require large numbers of electrodes with low electrical thresholds for neural excitation. With the eventual goal of reducing stimulation thresholds, we have investigated the use of biodegradable, neurotrophin-eluting hydrogels (i.e., poly(ethylene glycol)-poly(lactic acid), PEGPLA) as a means of attracting neurites to the surface of stimulating electrodes. PEGPLA hydrogels with release rates ranging from 1.5 to 3 weeks were synthesized. These hydrogels were applied to multielectrode arrays with sputtered iridium oxide charge-injection sites. The coatings had little impact on the iridium oxide electrochemical properties, including charge storage capacity, impedance, and voltage transients during current pulsing. Additionally, we quantitatively examined the ability of neurotrophin-eluting, PEGPLA hydrogels to promote neurite extension in vitro using a PC12 cell culture model. Hydrogels released neurotrophin (nerve growth factor, NGF) for at least 1 week, with neurite extension near that of an NGF positive control and much higher than extension seen from sham, bovine serum albumin-releasing boluses, and a negative control. These results show that neurotrophin-eluting hydrogels can be applied to multielectrode arrays, and suggest a method to improve neuron-electrode proximity, which could result in lowered electrical stimulation thresholds. Reduced thresholds support the creation of smaller electrode structures and high density electrode prostheses, greatly enhancing prosthesis control and function.
Collapse
Affiliation(s)
- Jessica O Winter
- Center for Innovative Visual Rehabilitation, Boston VA Hospital, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
21
|
Masgutov R, Raginov I, Fomina G, Kozlova M, Chelyshev Y. Stimulation of the rat's sciatic nerve regeneration by local treatment with Xymedon. Cell Mol Neurobiol 2006; 26:1413-21. [PMID: 16729249 PMCID: PMC11520723 DOI: 10.1007/s10571-006-9055-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 03/13/2006] [Indexed: 11/28/2022]
Abstract
1. The possibility of a neuro-protective effect of Xymedon as a pharmacological stimulator of nerve regeneration has been studied through Schwann cells (SCs) located in the potential area of regenerating nerve fibers' growth. 2. Xymedon was injected into the silicone chamber connecting the central and peripheral stumps of the rat's sciatic nerve. Carboxymethyl cellulose was used as a depositioned medium. 3. A 0.95% concentration of Xymedon increased the sciatic nerve functional index (SFI) values on the 14th, 21st and 28th day after the operation. By day 30, the total number of survival neurons in the L5 dorsal root ganglion (DRG) on the ipsilateral side increased with the following changes in Xymedon concentration: [see text] The number of surviving sensory neurons in the group with 0.95% Xymedon increased by 36% (p < 0.05) compared with animals with depositioned medium but Xymedon free. 4. It is suggested that the positive effects of Xymedon on neural regeneration and recovery of motor function support the potential use of Xymedon for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Ruslan Masgutov
- Histology, Cytology and Embryology Department, Kazan State Medical University (KSMU), Kazan, Russia.
| | | | | | | | | |
Collapse
|
22
|
Donnerer J, Liebmann I. The NK 1 Receptor Antagonist SR140333 Inhibits Capsaicin-Induced ERK Phosphorylation in Sensory Neurons. Pharmacology 2006; 77:144-9. [PMID: 16788306 DOI: 10.1159/000094022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 01/07/2023]
Abstract
Primary sensory neurons respond to a vigorous excitation via the capsaicin receptor/TRPV1 cation channel by a phosphorylation of the Jak/STAT pathway as measured by phospho-STAT3, and of the Ras/Raf-MAPK pathway as measured by phospho-MAPK/ERK1/2. In the present investigation a possible involvement of NK1 receptors in the capsaicin-induced activation of these signal transduction pathways was investigated by protein extraction and Western immunoblotting. Phospho-MAPK/ERK1/2 and phospho-STAT3 were determined in the dorsal root ganglia (DRG) and in the sciatic nerve of rats at 3 and 6 h following a systemic capsaicin treatment without or with the pretreatment of the selective NK1 receptor antagonist SR140333 (1 mg/kg s.c.; 3 h before capsaicin). Capsaicin evoked a threefold increase in phospho-ERK in the sciatic nerve and a two- to threefold increase in the DRG at 3 h and 6 h after the treatment. SR140333 markedly attenuated the capsaicin-induced increase in phosphorylated ERK. In the sciatic nerve the difference was significant at each individual time point (3 and 6 h, p < 0.001). In the DRG the difference was significant when the data at 3 h and 6 h were combined (p < 0.05), but not when individual time points were considered. Capsaicin evoked a four- to fivefold increase in phospho-STAT3 in the sciatic nerve and a twofold increase in the DRG at 3 and 6 h after the treatment. SR140333 less markedly attenuated the capsaicin-induced increase in phosphorylated STAT3: whereas in the sciatic nerve the difference was significant when the data at 3 h and 6 h were combined (p < 0.05), no such treatment effect of SR140333 was observed in the DRG. The expression of TRPV1 mRNA, a specific marker of capsaicin-sensitive small sensory neurons, was investigated by RT-PCR 4 days after the capsaicin treatment. Treatment of rats with SR140333 had no influence on the long-term downregulation of TRPV1 mRNA by capsaicin. Based on the present results and previous findings it can be postulated that the capsaicin-induced ERK phosphorylation in sensory neurons is not a direct effect by capsaicin, but that rather substance P release from the stimulated sensory neurons with an NK1-mediated nerve growth factor (NGF) production is involved.
Collapse
Affiliation(s)
- J Donnerer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, Austria.
| | | |
Collapse
|
23
|
Nozdrachev AD, Kolosova LI, Moiseeva AB, Ryabchikova OV. The role of defensin NP-1 in restoring the functions of an injured nerve trunk. ACTA ACUST UNITED AC 2006; 36:313-5. [PMID: 16465499 DOI: 10.1007/s11055-006-0018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 11/29/2022]
Abstract
This report presents results from studies on the actions of neutrophil defensin NP-1 on the initial stage of regeneration of the lesioned sciatic nerve in rats. The effects of defensin on the growth rate and functional characteristics of regenerating nerve fibers were assessed by recording total action potentials 21 days after transection and microsurgical suturing of the nerve. These experiments showed that defensin increased the rate of growth of regenerating nerve fibers by 30%: the distance over which nerve spike conductivity was restored in the lesioned nerve increased from 7.2 +/- 1.2 (control) to 10.5 +/- 0.8 mm (experiment) from the suturing site (p < 0.05). In addition, an increase in the excitation conduction rate along the regenerating nerve fibers by 20% compared with control was observed. Overall, the results provide evidence for the positive effects of defensin on restoration of the functions of the lesioned nerve trunk.
Collapse
Affiliation(s)
- A D Nozdrachev
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034, St. Petersburg, Russia
| | | | | | | |
Collapse
|
24
|
Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 2006; 32:143-54. [PMID: 16713293 DOI: 10.1016/j.mcn.2006.03.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/10/2006] [Accepted: 03/23/2006] [Indexed: 12/17/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
25
|
Pelled G, Dodd SJ, Koretsky AP. Catheter confocal fluorescence imaging and functional magnetic resonance imaging of local and systems level recovery in the regenerating rodent sciatic nerve. Neuroimage 2006; 30:847-56. [PMID: 16343952 DOI: 10.1016/j.neuroimage.2005.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/14/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022] Open
Abstract
The goal of the present work was to develop minimally invasive imaging techniques to monitor local regeneration of peripheral nerves and to determine the extent of return to function of brain cortical regions associated with that nerve. The sciatic nerve crush model was applied to Sprague-Dawley rats and conventional histological staining for myelin, axons and cell architecture was carried out, as well as traditional behavioral testing, to verify that nerve regeneration was occurring. The rate of sciatic nerve regeneration was measured by determining the distance a lipophilic, fluorescence probe (DiO) would move along the nerve's membrane following a direct injection into the sciatic nerve. This movement was monitored using a catheter based, confocal fluorescence microscope. Two to five days after the crush, the dye moved 1.4 + 0.6 mm/day, as compared to a distance of 5.3 + 0.5 mm/day in the normal nerve. Between 9 and 13 days following the crush, the distance the dye moved increases to 5.5 + 0.5 mm/day, similar to the control, and by 15 days following the crush, the distance increased to 6.5 + 0.9 mm/day. Functional Magnetic Resonance Imaging (fMRI) measurements were performed on alpha-chloralose anesthetized rats to monitor the return of somatosensory cortical functions, which were activated by the stimulation of the lesioned peripheral nerve. fMRI results showed the return of cortical activation around 15 days following the crush procedure. However, the somatosensory cortical region activated by stimulating the crushed hindpaw was significantly smaller in extent than the intact hindpaw stimulation. These findings demonstrate that fluorescence imaging and fMRI can integrate local and system level correlates of nerve regeneration in a non-destructive manner, thus enabling serial imaging of individual animals.
Collapse
Affiliation(s)
- Galit Pelled
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Galkowska H, Olszewski WL, Wojewodzka U, Rosinski G, Karnafel W. Neurogenic factors in the impaired healing of diabetic foot ulcers. J Surg Res 2006; 134:252-8. [PMID: 16580687 DOI: 10.1016/j.jss.2006.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 01/10/2006] [Accepted: 02/03/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND We hypothesize that the reduced innervation of skin can be observed both in clinically neuropathic and non-neuropathic diabetic foot ulcers and can contribute to low inflammatory cell infiltration. MATERIALS AND METHODS Twenty patients with type 2 diabetes and active foot ulcers, without clinical evidence of peripheral sensory neuropathy (n = 12) and with sensory neuropathy (n = 8) were involved in this study. Biopsies from ulcer margin were examined immunohistochemically. RESULTS Studies revealed presence of protein gene product 9.5 (PGP9.5)+ nerve endings only in reticular dermis in 3 of 12 non-neuropathic subjects, however, regenerating GAP-43+ endings were seen in dermis of almost all specimens. Lack of substance P+ nerve endings was characteristic for both groups. The reduced distribution of calcitonin gene-related peptide+ nerves in epidermis and dermis was seen mainly in neuropathic group. In neo-epidermis lack of nerve growth factor expression was observed in both groups, whereas neurotrophin 3 immunostaining was characteristic for neuropathic specimens (P < 0.03). Expression of trkA and trkC receptors did not differ significantly between groups. Low inflammatory cell infiltration and moderate presence of fibroblasts was characteristic for all studied specimens. CONCLUSIONS The observed reduction of foot skin innervation and neurogenic factors expression can be correlated with low inflammatory cell accumulation and subsequently leads to the observed chronicity of diabetic foot ulcer healing process in both neuropathic and non-neuropathic patients.
Collapse
Affiliation(s)
- Hanna Galkowska
- Department of Surgical Research and Transplantology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
27
|
Donnerer J, Liebmann I, Schicho R. ERK and STAT3 phosphorylation in sensory neurons during capsaicin-induced impairment and nerve growth factor treatment. Pharmacology 2005; 75:116-21. [PMID: 16141720 DOI: 10.1159/000088015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 06/16/2005] [Indexed: 01/09/2023]
Abstract
Distinct signal transduction pathways have been shown to regulate injury responses and regeneration in peripheral nerves. In the present investigation, the time courses of the induction of phospho-MAPK/ERK1/2 and of phospho-STAT3 were investigated in the dorsal root ganglia (DRG) and in the sciatic nerve of rats following a systemic capsaicin treatment without or with concomitant intraplantar NGF injections. Western blots were probed with polyclonal antibodies that specifically detect phosphorylated ERK 1/2 and STAT3. Phosphorylation of ERK clearly peaked in the sciatic nerve and in the lumbar DRGs at 6 and 10 h after the capsaicin treatment. In the following 8 days phospho-ERK decreased to very low levels and was found recovered to basal values at the time point 16 days. An additional intraplantar nerve growth factor (NGF) injection at time points 20, 44 and 92 h after the capsaicin treatment, and collection of tissues 4 h later, markedly increased the level of phospho-ERK in the sciatic nerve as well as in the DRG, as compared to the samples taken from rats at the same time points with a capsaicin treatment only. Posphorylated STAT3, which was almost non-detectable in the control sciatic nerve, clearly peaked at 6 h after the capsaicin treatment and decreased again during the following days to almost undetectable levels. The intraplantar NGF injections slightly stimulated phosho-STAT3 in the sciatic nerve. A basal level of phosphorylated STAT3 was present in DRGs of control animals, it remained at a high level up to 6 h after the capsaicin treatment, then markedly decreased and recovered on day 8 and day 16. NGF increased STAT3 phosphorylation in DRG on day 1 and day 2 above the level observed in samples taken from rats at the same time points with a capsaicin treatment only. The present study demonstrates that a capsaicin impairment of small diameter primary sensory neurons followed by an NGF treatment evokes a characteristic pattern of ERK and STAT3 activation indicative of neuronal degeneration and regeneration.
Collapse
Affiliation(s)
- J Donnerer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
28
|
McGraw J, Gaudet AD, Oschipok LW, Kadoya T, Horie H, Steeves JD, Tetzlaff W, Ramer MS. Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp Neurol 2005; 195:103-14. [PMID: 15893752 DOI: 10.1016/j.expneurol.2005.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Galectin-1 (Gal1) is an endogenously-expressed protein important for the embryonic development of the full complement of primary sensory neurons and their synaptic connections in the spinal cord. Gal1 also promotes axonal regeneration following peripheral nerve injury, but the regulation of Gal1 by axotomy in primary afferent neurons has not yet been examined. Here, we show by immunohistochemistry and in situ hybridization that Gal1 expression is differentially regulated by peripheral nerve injury and by dorsal rhizotomy. Following peripheral nerve injury, the proportion of Gal1-positive DRG neurons was increased. An increase in the proportion of large-diameter DRG neurons immunopositive for Gal1 was paralleled by an increase in the depth of immunoreactivity in the dorsal horn, where Gal1-positive terminals are normally restricted to laminae I and II. Dorsal rhizotomy did not affect the proportions of neurons containing Gal1 mRNA or protein, but did deplete the ipsilateral dorsal horn of Gal1 immunoreactivity, indicating that it is transported centrally by dorsal root axons. Dorsal rhizotomy also resulted in an increase in Gal1 mRNA the nerve peripheral to the PNS-CNS interface (likely within Schwann cells and/or macrophages), and to a lesser extent within deafferented spinal cord regions undergoing Wallerian degeneration. This latter increase was notable in the dorsal columns and along the prior trajectories of myelinated afferents into the deeper dorsal horn. These results show that neuronal and glial expressions of Gal1 are tightly correlated with regenerative success. Thus, the differential expression pattern of Gal1 following peripheral axotomy and dorsal rhizotomy suggests that endogenous Gal1 may be a factor important to the regenerative response of injured axons.
Collapse
Affiliation(s)
- J McGraw
- ICORD (International Collaboration On Repair Discoveries), Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Agudo M, Robinson M, Cafferty W, Bradbury EJ, Kilkenny C, Hunt SP, McMahon SB. Regulation of neuropilin 1 by spinal cord injury in adult rats. Mol Cell Neurosci 2005; 28:475-84. [PMID: 15737738 DOI: 10.1016/j.mcn.2004.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/05/2004] [Accepted: 10/19/2004] [Indexed: 11/16/2022] Open
Abstract
Using RT-PCR, in situ hybridization, Western blotting, and immunofluorescence, we have analyzed the expression of neuropilin 1 (Np1) in two models of spinal cord injury (spinal cord hemisection and dorsal column crush) and following dorsal root rhizotomy in adult rats. Our results show that Np1 RNA and protein are up-regulated in the spinal cord after all these lesions but remain unaltered in the adjacent dorsal root ganglia. In control animals, Np1 levels in the spinal cord are low and appear to be localized mainly in blood vessels, motoneurons, and in the superficial layers of the dorsal horn. After DCC and rhizotomy, Np1 is expressed de novo around the injury and in the deafferentated dorsal horn, respectively, mainly by OX42-positive microglial cells. Both lesions affect the sensory projections, and interestingly a consistent increase of Np1 signal is additionally seen in the dorsal horn where these projections terminate. Unexpectedly, this increase is bilateral after unilateral rhizotomy.
Collapse
Affiliation(s)
- Marta Agudo
- Neuro Restoration CARD, Wolfson Centre Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Peters EMJ, Hendrix S, Gölz G, Klapp BF, Arck PC, Paus R. Nerve growth factor and its precursor differentially regulate hair cycle progression in mice. J Histochem Cytochem 2005; 54:275-88. [PMID: 16009967 DOI: 10.1369/jhc.4a6585.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Department of Internal Medicine, Psychosomatics, University-Medicine Berlin Charité, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Donnerer J, Liebmann I, Schicho R. Differential regulation of 3-beta-hydroxysteroid dehydrogenase and vanilloid receptor TRPV1 mRNA in sensory neurons by capsaicin and NGF. Pharmacology 2004; 73:97-101. [PMID: 15492487 DOI: 10.1159/000081625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/14/2004] [Indexed: 11/19/2022]
Abstract
It was the aim of the present study to investigate by RT-PCR the regulation of the mRNA of the neurosteroid-synthesizing enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and of the vanilloid receptor TRPV1 in dorsal root ganglia (DRGs) of rats during the process of capsaicin denervation of primary sensory neurons and the following regeneration. The expression of 3beta-HSD in DRG was increased 3 days after the capsaicin treatment, and it remained at that level during a 22 day observation period. The expression of TRPV1, a specific marker of capsaicin-sensitive small sensory neurons connected to C- and Adelta-fibers, was markedly reduced 3 days after the capsaicin treatment. It slowly recovered during the 22 days observation period reaching almost control levels on day 22. When the capsaicin-treated rats received 5 intraplantar injections of nerve growth factor (NGF), the prototypical neurotrophin for capsaicin-sensitive neurons, on day 1, 2, 3, 5 and 6, both the 3beta-HSD and the TRPV1 mRNA had returned to control levels at the time point 8 days after capsaicin. The present results demonstrate that both 3beta-HSD and TRPV1 are markers for neurodegeneration and neuroregeneration in capsaicin-sensitive primary afferent neurons, and that NGF is an effective tool to induce recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- J Donnerer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
32
|
IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 2004; 25:1583-92. [PMID: 14697860 DOI: 10.1016/s0142-9612(03)00504-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Disruption of peripheral nerves due to trauma is a frequently occurring clinical problem. Gaps in the nerve are bridged by guiding the regenerating nerves along autologous grafts or artificial guides. This review gives an overview on the different methods of nerve repair techniques. Conventional suturing techniques are discussed as well as the use of e.g. biological, synthetic, non-degradable or degradable nerve guides. Functional assessment showed that repair of a gap with a bio-degradable guide is superior to that with autologous grafts. But still, long lasting changes were observed in the Sciatic Function Index (SFI), abnormal walking patterns, disturbed Electro Myo Graphic (EMG) patterns, next to shifts in the histochemical properties of the muscles and longlasting abnormalities in neuromuscular contacts. These phenomena are explained by an at-random reinnervation. When transecting the nerve at young ages, this did not lead to enhanced recovery. Rearing rats operated at adult age in an enriched environment, also had no beneficial effect. Future research should aim at developing longer guides, possibly lined with Schwann cells, or additives, improving specific reinnervation of the former target areas.
Collapse
Affiliation(s)
- J IJkema-Paassen
- Department of Medical Physiology, University of Groningen, Ant. Deusinglaan 1, bldg 3215, Groningen 9713 AV, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Kang Y, Notomi T, Saito M, Zhang W, Shigemoto R. Bidirectional interactions between h-channels and Na+-K+ pumps in mesencephalic trigeminal neurons. J Neurosci 2004; 24:3694-702. [PMID: 15071118 PMCID: PMC6729745 DOI: 10.1523/jneurosci.5641-03.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na(+)-K(+) pump current (I(p)) and the h-current (I(h)) flowing through hyperpolarization-activated channels (h-channels) participate in generating the resting potential. These two currents are thought to be produced independently. We show here bidirectional interactions between Na(+)-K(+) pumps and h-channels in mesencephalic trigeminal neurons. Activation of I(h) leads to the generation of two types of ouabain-sensitive I(p) with temporal profiles similar to those of instantaneous and slow components of I(h), presumably reflecting Na(+) transients in a restricted cellular space. Moreover, the I(p) activated by instantaneous I(h) can facilitate the subsequent activation of slow I(h). Such counteractive and cooperative interactions were also disclosed by replacing extracellular Na(+) with Li(+), which is permeant through h-channels but does not stimulate the Na(+)-K(+) pump as strongly as Na(+) ions. These observations indicate that the interactions are bidirectional and mediated by Na(+) ions. Also after substitution of extracellular Na(+) with Li(+), the tail I(h) was reduced markedly despite an enhancement of I(h) itself, attributable to a negative shift of the reversal potential for I(h) presumably caused by intracellular accumulation of Li(+) ions. This suggests the presence of a microdomain where the interactions can take place. Thus, the bidirectional interactions between Na(+)-K(+) pumps and h-channels are likely to be mediated by Na(+) microdomain. Consistent with these findings, hyperpolarization-activated and cyclic nucleotide-modulated subunits (HCN1/2) and the Na(+)-K(+) pumpalpha3 isoform were colocalized in plasma membrane of mesencephalic trigeminal neurons having numerous spines.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
34
|
Ward RS, Tuckett RP, English KB, Johansson O, Saffle JR. Substance P axons and sensory threshold increase in burn-graft human skin. J Surg Res 2004; 118:154-60. [PMID: 15100004 DOI: 10.1016/s0022-4804(03)00350-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our knowledge of afferent nerve fiber reinnervation of grafted skin following third-degree burn is limited by a lack of quantitative histological and psychophysical assessment from the same cutaneous area. The current study compares fiber profile and functional recovery measurements in injured and control skin from the same subject. MATERIALS AND METHODS Nerve regeneration and modality-specific sensory thresholds were compared using immunocytochemical labeling with protein gene product 9.5 antibody to stain all axons and anti-substance P to label substance P axons (which are predominantly unmyelinated), as well as computerized instrumentation to obtain psychophysical estimates. RESULTS Compared to control skin, threshold measures of pinprick (P < 0.001), warming (P < 0.001), touch (P < 0.001), and vibration (P < 0.01) were significantly elevated in burn-graft skin and correlated with histological analysis of skin biopsies obtained from the same site. Immunohistochemical staining of all axons innervating the dermis and epidermis revealed a significant reduction in burn-graft relative to control skin (54% decrease, P < 0.0001). In contrast, the incidence of substance P nerve fibers was significantly elevated in burn-graft (177% increase, P < 0.05) and appeared to correlate with patient reports of pruritus and pain. CONCLUSIONS Observations support the hypothesis that sensory regeneration is fiber-size-dependent in burn-graft skin. The findings that substance P fiber growth increased while total fiber count decreased and that thermal threshold showed the greatest degree of functional recovery suggest that unmyelinated neurons have the greater ability to transverse scar tissue and reinnervate grafted skin following third-degree burn injury.
Collapse
Affiliation(s)
- R Scott Ward
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|