1
|
Giannotta G, Murrone A, Giannotta N. COVID-19 mRNA Vaccines: The Molecular Basis of Some Adverse Events. Vaccines (Basel) 2023; 11:747. [PMID: 37112659 PMCID: PMC10145134 DOI: 10.3390/vaccines11040747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Each injection of any known vaccine results in a strong expression of pro-inflammatory cytokines. This is the result of the innate immune system activation, without which no adaptive response to the injection of vaccines is possible. Unfortunately, the degree of inflammation produced by COVID-19 mRNA vaccines is variable, probably depending on genetic background and previous immune experiences, which through epigenetic modifications could have made the innate immune system of each individual tolerant or reactive to subsequent immune stimulations.We hypothesize that we can move from a limited pro-inflammatory condition to conditions of increasing expression of pro-inflammatory cytokines that can culminate in multisystem hyperinflammatory syndromes following COVID-19 mRNA vaccines (MIS-V). We have graphically represented this idea in a hypothetical inflammatory pyramid (IP) and we have correlated the time factor to the degree of inflammation produced after the injection of vaccines. Furthermore, we have placed the clinical manifestations within this hypothetical IP, correlating them to the degree of inflammation produced. Surprisingly, excluding the possible presence of an early MIS-V, the time factor and the complexity of clinical manifestations are correlated to the increasing degree of inflammation: symptoms, heart disease and syndromes (MIS-V).
Collapse
Affiliation(s)
| | - Antonio Murrone
- Oncologia Territoriale, Hospice Cure Palliative ASUFC, 33030 Udine, Italy;
| | - Nicola Giannotta
- Medical and Surgery Sciences, Faculty of Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| |
Collapse
|
2
|
Abstract
BACKGROUND The relationship between different surrogates of insulin resistance and left ventricular geometry in obese children is still unclear. OBJECTIVE We sought to explore the relationship between commonly used measures of insulin sensitivity/resistance (homeostatic model assessment index, serum uric acid, and triglycerides to high-density lipoprotein cholesterol ratio) and left ventricular geometry in normotensive obese children. METHODS In this cross-sectional study, 32 normotensive obese children were examined. Transthoracic echocardiography was used to measure left ventricular mass index and relative wall thickness. Homeostasis model assessment index, serum uric acid level, and a ratio of triglycerides to high-density lipoprotein cholesterol were used as markers of the insulin resistance. Simple and partial correlation analyses (to control for the effects of body mass index) were conducted to explore relationship between studied variables and left ventricular mass index or relative wall thickness as outcome variables. RESULTS We found positive correlations between homeostasis model assessment index and relative wall thickness (r = 0.47, p = 0.03) which remained significant after controlling for the effect of body mass index, z-score (r = 0.48, p = 0.03). The cutoff level of homeostasis model assessment index with the optimum sensitivity (Sn) and specificity (Sp) derived from the receiver operating characteristic (ROC) curves for predicting concentric remodelling was ≥5.51 with Sn = 83.33 and Sp = 68.75. CONCLUSION There is a positive relationship between homeostasis model assessment index and relative wall thickness of obese normotensive children which may help to distinguish at risk obese normotensive children for the development of concentric left ventricular remodelling.
Collapse
|
3
|
Bjelakovic B, Stefanutti C, Bonic D, Vukovic V, Kavaric N, Saranac L, Kocic G, Klisic A, Jevtović Stojmenov T, Lukic S, Jovic M, Bjelakovic M. Serum uric acid and left ventricular geometry pattern in obese children. ATHEROSCLEROSIS SUPP 2019; 40:88-93. [DOI: 10.1016/j.atherosclerosissup.2019.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T. LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci 2019; 233:116745. [PMID: 31404524 DOI: 10.1016/j.lfs.2019.116745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the major risk factors for cardiovascular disease worldwide and is striking more young people, which is characterized by impaired vascular endothelial function. To find the functional lncRNAs associated with hypertension, high throughput lncRNA microarray were used to analyze expression profile of the lncRNAs in the aortic vascular endothelial cells (VECs) of spontaneously hypertensive rats (SHRs). The tail vein injection of siRNA was used to study the influence of lncRNA AK094457 inhibition on endothelial function in vivo. In vitro, endothelial function was studied in endothelial cells transfected with lncRNA AK094457-overexpressed vectors and siRNAs. pPPARγ and iNOS protein levels were detected with Western blot. Elisa assay was used to analyze the secretion of AngII, ET-1, ROS and LDH level. The nitrite/nitrate (NO2-/NO3-) concentration was measured using a colorimetric assay. LncRNA AK094457 was a most upregulated lncRNA in SHRs. It is showed that downregulation of AK094457 significantly reduced rat arterial pressure, increased activation of endothelial PPARγ, and suppressed serum contents of AngII and NO in vivo. Furthermore, results from gain-and-loss of function in primary aortic endothelial cells indicated that AK094457 negatively regulated activation of PPARγ and promoted AngII-mediated endothelial dysfunction, manifested by decreased capacities of cell proliferation and migration, and increased levels of ROS production and LDH release. In conclusion, lncRNA AK094457 is identified as a key regulator in blood pressure and endothelial function, which can increase AngII-induced hypertension and endothelial dysfunction via suppression of PPARγ.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Wu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li Gao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiangrui Qiao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Chen
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Mak SK, Yu CM, Sun WT, He GW, Liu XC, Yang Q. Tetramethylpyrazine suppresses angiotensin II-induced soluble epoxide hydrolase expression in coronary endothelium via anti-ER stress mechanism. Toxicol Appl Pharmacol 2017; 336:84-93. [PMID: 29066182 DOI: 10.1016/j.taap.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
Activation of soluble epoxide hydrolase (sEH) is associated with endothelial dysfunction in hypertension, though the underlying mechanisms are inadequately understood and the role of endoplasmic reticulum (ER) stress is yet to be studied in detail. Tetramethylpyrazine (TMP), a major bioactive ingredient of Chinese herb Chuanxiong, is well-known for its cardiovascular benefits. Nevertheless, whether TMP may protect vascular endothelium from ER stress and whether regulation of sEH is involved remain unknown. This study aimed at investigating the role of ER stress in angiotensin-II (Ang-II)-induced sEH dysregulation and elucidating the significance of ER stress regulation in the vasoprotective effect of TMP. Porcine primary coronary artery endothelial cells (PCECs) were used for western blot, ELISA, and reverse-transcription PCR analysis. Porcine coronary arteries were assessed in a myograph for endothelial dilator function. Ang-II induced expression of ER stress molecules in PCECs meanwhile enhanced sEH expression and decreased 11,12-EET. Exposure of PCECs to the chemical ER stress inducer tunicamycin also increased sEH expression. Inhibition of ER stress suppressed sEH upregulation, resulting in an increase of 11,12-EET. The impairment of endothelium-dependent vasorelaxation induced by Ang-II or tunicamycin was ameliorated by inhibitors of ER stress or sEH. TMP showed comparable inhibitory effect to ER stress inhibitors on the expression of ER stress molecules, the dysregulation of sEH/EET, and the impairment of endothelial dilator function. We demonstrated that ER stress mediates Ang-II-induced sEH upregulation in coronary endothelium. TMP has potent anti-ER stress capacity through which TMP normalizes sEH expression and confers protective effect against Ang-II on endothelial function of coronary arteries.
Collapse
Affiliation(s)
- Shiu-Kwong Mak
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Cheuk-Man Yu
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wen-Tao Sun
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Cheng Liu
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
6
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
7
|
Choi YJ, Yoon Y, Lee KY, Kang YP, Lim DK, Kwon SW, Kang KW, Lee SM, Lee BH. Orotic Acid Induces Hypertension Associated with Impaired Endothelial Nitric Oxide Synthesis. Toxicol Sci 2015; 144:307-317. [DOI: 10.1093/toxsci/kfv003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
8
|
Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, Xu H, Fang M, Gao Y, Chen Q, Xu Y. Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol 2015; 80:23-33. [DOI: 10.1016/j.yjmcc.2014.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
|
9
|
Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One 2014; 9:e109763. [PMID: 25302498 PMCID: PMC4193823 DOI: 10.1371/journal.pone.0109763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.
Collapse
Affiliation(s)
- Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Rudnicka
- Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pérez-Girón JV, Palacios R, Martín A, Hernanz R, Aguado A, Martínez-Revelles S, Barrús MT, Salaices M, Alonso MJ. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2014; 306:H1582-93. [PMID: 24727493 DOI: 10.1152/ajpheart.00924.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glitazones have anti-inflammatory properties by interfering with the transcription of proinflammatory genes, such as cyclooxygenase (COX)-2, and with ROS production, which are increased in hypertension. This study analyzed whether pioglitazone modulates COX-2 expression in hypertension by interfering with ROS and endothelin (ET)-1. In vivo, pioglitazone (2.5 mg·kg(-1)·day(-1), 28 days) reduced the greater levels of COX-2, pre-pro-ET-1, and NADPH oxidase (NOX) expression and activity as well as O2 (·-) production found in aortas from spontaneously hypertensive rats (SHRs). ANG II increased COX-2 and pre-pro-ET-1 levels more in cultured vascular smooth muscle cells from hypertensive rats compared with normotensive rats. The ETA receptor antagonist BQ-123 reduced ANG II-induced COX-2 expression in SHR cells. ANG II also increased NOX-1 expression, NOX activity, and superoxide production in SHR cells; the selective NOX-1 inhibitor ML-171 and catalase reduced ANG II-induced COX-2 and ET-1 transcription. ANG II also increased c-Jun transcription and phospho-JNK1/2, phospho-c-Jun, and p65 NF-κB subunit nuclear protein expression. SP-600125 and lactacystin, JNK and NF-κB inhibitors, respectively, reduced ANG II-induced ET-1, COX-2, and NOX-1 levels and NOX activity. Pioglitazone reduced the effects of ANG II on NOX activity, NOX-1, pre-pro-ET-1, COX-2, and c-Jun mRNA levels, JNK activation, and nuclear phospho-c-Jun and p65 expression. In conclusion, ROS production and ET-1 are involved in ANG II-induced COX-2 expression in SHRs, explaining the greater COX-2 expression observed in this strain. Furthermore, pioglitazone inhibits ANG II-induced COX-2 expression likely by interfering with NF-κB and activator protein-1 proinflammatory pathways and downregulating ROS production and ET-1 transcription, thus contributing to the anti-inflammatory properties of glitazones.
Collapse
Affiliation(s)
- Jose V Pérez-Girón
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| | - Roberto Palacios
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| | - Angela Martín
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| | - Raquel Hernanz
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| | - Andrea Aguado
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Sonia Martínez-Revelles
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - María T Barrús
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - María J Alonso
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain; and
| |
Collapse
|
11
|
Aurelio A, Durante A. Contrast-induced nephropathy in percutaneous coronary interventions: pathogenesis, risk factors, outcome, prevention and treatment. Cardiology 2014; 128:62-72. [PMID: 24557146 DOI: 10.1159/000358042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022]
Abstract
Contrast-induced nephropathy (CIN) is a well-known adverse event of therapeutic and diagnostic procedures requiring the administration of contrast medium (CM). The lack of a universal CIN definition and glomerular filtration rate markers that vary have resulted in a variety of reported incidences. The development of CIN is associated with an increase in the length of hospital stay and the risk of death. Preexisting renal dysfunction, age, diabetes, congestive heart failure and the volume of CM administered are all associated with a risk for developing CIN. The literature suggests the use of low-osmolarity CM and supports volume supplementation before administration. Moreover, other strategies to avoid CIN, including treatment with N-acetylcysteine and sodium bicarbonate have variable levels of evidence. This review examines the main components of the pathogenesis and risk factors of CIN and possible preventive measures and therapies.
Collapse
Affiliation(s)
- Andrea Aurelio
- San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
12
|
Schmid DI, Schwertz H, Jiang H, Campbell RA, Weyrich AS, McIntyre TM, Zimmerman GA, Kraiss LW. Translational control of JunB, an AP-1 transcription factor, in activated human endothelial cells. J Cell Biochem 2013; 114:1519-28. [PMID: 23297064 DOI: 10.1002/jcb.24493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
Abstract
Stimulated endothelial cells (EC) assume an activated phenotype with pro-inflammatory and prothrombotic features, requiring new gene and protein expression. New protein synthesis in activated EC is largely regulated by transcriptional events controlled by a variety of transcription factors. However, post-transcriptional control of gene expression also influences phenotype and allows the cell to alter protein expression in a faster and more direct way than is typically possible with transcriptional mechanisms. We sought to demonstrate that post-transcriptional control of gene expression occurs during EC activation. Using thrombin-activated EC and a high-throughput, microarray-based approach, we identified a number of gene products that may be regulated through post-transcriptional mechanisms, including the AP-1 transcription factor JunB. Using polysome profiling, cytoplasts and other standard cell biologic techniques, JunB is shown to be regulated at a post-transcriptional level during EC activation. In activated EC, the AP-1 transcription factor JunB, is regulated on a post-transcriptional level. Signal-dependent control of translation may regulate transcription factor expression and therefore, subsequent transcriptional events in stimulated EC.
Collapse
Affiliation(s)
- Douglas I Schmid
- Division of Vascular Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol 2013; 378:59-69. [PMID: 22684034 PMCID: PMC3478427 DOI: 10.1016/j.mce.2012.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023]
Abstract
Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K)--and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT₂ receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT₁ receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT₁ receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT₁ and AT₂ receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Blood Flow Velocity
- Capillaries/metabolism
- Capillaries/pathology
- Capillaries/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Insulin/metabolism
- Insulin Resistance
- MAP Kinase Signaling System
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Nitric Oxide/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | | |
Collapse
|
14
|
Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT1–ROS–MAPK signal pathway. Inflamm Res 2012; 61:1031-7. [DOI: 10.1007/s00011-012-0496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/04/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022] Open
|
15
|
Pivotal Role of Protein Kinase C
δ
in Angiotensin II–Induced Endothelial Cyclooxygenase-2 Expression. Arterioscler Thromb Vasc Biol 2011; 31:1169-76. [DOI: 10.1161/atvbaha.110.216044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective—
The purpose of this study was to examine the hypothesis that angiotensin II (Ang II) induced endothelial cyclooxygenase-2 (COX-2) expression, which in turn mediated the generation of proinflammatory cytokines.
Methods and Results—
Western blot analysis on primary rat endothelial cells showed Ang II induced COX-2 expression, which was abolished by cotreatment of p38 mitogen-activated protein kinase (SB 202190) and extracellular signal–regulated kinase 1/2 (PD 98059) inhibitors. Protein kinase C
δ
(PKC
δ
) inhibitor (rottlerin) prevented extracellular signal–regulated kinase 1/2 phosphorylation and COX-2 expression. The pivotal role of PKC
δ
was further supported by a similar stimulatory effect of the PKC activator on COX-2 expression, signified by Ang II–stimulated translocation of PKC
δ
to the plasma membrane, and confirmed by PKC
δ
phosphorylation at Tyr311. Small interfering RNA targeting PKC
δ
diminished COX-2 expression, which was further abrogated by SB 202190. Human mesenteric arteries incubated with Ang II showed increased levels of endothelial COX-2 and monocyte chemoattractant protein-1; the former was inhibited by SB 202190 plus rottlerin, whereas the latter was prevented by COX-2 inhibitor.
Conclusion—
The present study pinpoints a novel role of PKC
δ
in Ang II–induced endothelial COX-2 upregulation and identifies a COX-2-dependent proatherosclerotic cytokine monocyte chemoattractant protein-1. The findings raise the possibility of curtailing endothelial COX-2 expression as a means of limiting or preventing vascular inflammation.
Collapse
|
16
|
Groeschel M, Braam B. Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am J Physiol Renal Physiol 2010; 300:F1-10. [PMID: 20980410 DOI: 10.1152/ajprenal.00208.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The renin-angiotensin system (RAS) is classically considered to be a protective system for volume balance and is activated during states of volume depletion. Interestingly, one of the major pathways activating the system is the sympathetic nervous system, also the primary mediator of the acute stress response. When one further examines the cells mediating the immune site of the response, which is primarily an inflammatory response leading to defense at a locally injured area, these cells all express the ANG II type 1 receptor (AGTR1). Scattered throughout the literature are reports indicating that acute and chronic stress can activate renin and increase plasma levels of components of the RAS. Moreover, there are reports describing that ANG II can modulate the distribution and function of immune cells. Since the inflammatory response is also implicated to be central in the initiation and progression of vascular damage, we propose in this review that recurrent acute stress and chronic stress can induce a state with inflammation, due to ANG II-mediated activation of inflammatory cells, specifically monocytes and lymphocytes. Such a proposal would explain a lot of the observations regarding RAS components in inflammatory cells. Despite its attractiveness, substantial research in this area would be required to substantiate this hypothesis.
Collapse
Affiliation(s)
- Michael Groeschel
- Department of Physiology, University of Alberta, and University of Alberta Hospital, Department of Medicine/Division of Nephrology and Immunology, 11-132 CSB Clinical Sciences Bldg., Edmonton, Alberta, Canada T6G 2G3
| | | |
Collapse
|
17
|
Abstract
Experimental findings in vitro and in vivo illustrate enhanced hypoxia and the formation of reactive oxygen species (ROS) within the kidney following the administration of iodinated contrast media, which may play a role in the development of contrast media-induced nephropathy. Clinical studies indeed support this possibility, suggesting a protective effect of ROS scavenging or reduced ROS formation with the administration of N-acetyl cysteine and bicarbonate infusion, respectively. Furthermore, most risk factors, predisposing to contrast-induced nephropathy are prone to enhanced renal parenchymal hypoxia and ROS formation. In this review, the association of renal hypoxia and ROS-mediated injury is outlined. Generated during contrast-induced renal parenchymal hypoxia, ROS may exert direct tubular and vascular endothelial injury and might further intensify renal parenchymal hypoxia by virtue of endothelial dysfunction and dysregulation of tubular transport. Preventive strategies conceivably should include inhibition of ROS generation or ROS scavenging.
Collapse
|
18
|
Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis 2010; 212:206-12. [PMID: 20538278 DOI: 10.1016/j.atherosclerosis.2010.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 04/21/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease in the vessel. As an inflammatory cytokine, C-reactive protein (CRP) participates in atherogenesis. Although angiotensin II (AngII) is known to evoke inflammatory response in vascular endothelial cells (VECs), there is no direct evidence to demonstrate the proinflammatory effect of AngII on VECs through CRP. The present study focused on effect of AngII on CRP expression and the signal pathway in human aortic endothelial cells (HAECs). METHODS AND RESULTS mRNA and protein expression was identified by RT-PCR and Western blot, respectively. Reactive oxygen species (ROS) were observed by a fluorescence microscope. The results showed that AngII significantly increased mRNA and protein expression of CRP in HAECs in time- and concentration-dependent ways. Anti-IL-1beta and anti-IL-6 neutralizing antibodies did not affect AngII-induced CRP expression. Losartan reduced AngII-induced CRP expression in mRNA and protein levels in HAECs. Losartan and TIFA decreased AngII-stimulated ROS generation, and antioxidant NAC completely abolished AngII-induced CRP expression in HAECs. The further study indicated that losartan, NAC, PD98059, SP600125 significantly inhibited ERK1/2 and JNK phosphorylation, and PD98059, SP600125, PDTC completely antagonized AngII-induced CRP expression in HAECs. CONCLUSIONS The present study demonstrates that AngII has ability to induce CRP expression in HAECs through AT(1)-ROS-ERK1/2 and JNK-NF-kappaB signal pathway, which strengthens understanding of the proinflammatory and proathroscerotic actions of AngII.
Collapse
|
19
|
Abstract
Exposing rodents to brief episodes of hypoxia mimics the hypoxemia and the cardiovascular and metabolic effects observed in patients with obstructive sleep apnoea (OSA), a condition that affects between 5% and 20% of the population. Apart from daytime sleepiness, OSA is associated with a high incidence of systemic and pulmonary hypertension, peripheral vascular disease, stroke and sudden cardiac death. The development of animal models to study sleep apnoea has provided convincing evidence that recurrent exposure to intermittent hypoxia (IH) has significant vascular and haemodynamic impact that explain much of the cardiovascular morbidity and mortality observed in patients with sleep apnoea. However, the molecular and cellular mechanisms of how IH causes these changes is unclear and under investigation. This review focuses on the most recent findings addressing these mechanisms. It includes a discussion of the contribution of the nervous system, circulating and vascular factors, inflammatory mediators and transcription factors to IH-induced cardiovascular disease. It also highlights the importance of reactive oxygen species as a primary mediator of the systemic and pulmonary hypertension that develops in response to exposure to IH.
Collapse
Affiliation(s)
- Laura V González Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | |
Collapse
|
20
|
Xu H, Duan J, Dai S, Wu Y, Sun R, Ren J. alpha-Zearalanol attenuates oxLDL-induced ET-1 gene expression, ET-1 secretion and redox-sensitive intracellular signaling activation in human umbilical vein endothelial cells. Toxicol Lett 2008; 179:163-8. [PMID: 18579320 DOI: 10.1016/j.toxlet.2008.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
alpha-Zearalanol (alpha-ZAL), a phytochemical with both antioxidant and estrogen-like properties, has been shown to retard progression of atherosclerosis and regulate cardiovascular function in part through suppression of endothelin-1 (ET-1) secretion. However, the precise nature behind alpha-ZAL-elicited inhibition on ET-1 cascade is not largely known. Oxidized low density lipoprotein (oxLDL) plays a critical role in the expression and secretion of ET-1 as well as the onset and progression of atherosclerosis through accumulation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinase stress signaling cascade. Therefore, this study was designed to examine the effect of alpha-ZAL on oxLDL-induced extracellular signal-regulated kinase (ERK) phosphorylation, ROS generation, activation of the transcriptional factor activator protein-1 (AP-1), expression, secretion and promoter activity of ET-1 in human umbilical vein endothelial cells (HUVEC). ROS generation was monitored using 2,7-dichlorofluorescin fluorescence. ET-1 expression and promoter activity were evaluated by RT-PCR and luciferase assays, respectively. oxLDL (35 microg/ml) significantly enhanced ERK phosphorylation, ROS generation, AP-1 activity, mRNA expression, secretion and promoter activity of ET-1 in HUVECs, all of which were abrogated by alpha-ZAL and the antioxidant N-acetyl-l-cysteine. Collectively, these data favor the notion that alpha-ZAL antagonizes oxLDL-induced upregulation of ET-1 gene expression and secretion via suppression of oxLDL-induced ROS accumulation, ERK phosphorylation, and activation of the endothelial transcriptional factor AP-1.
Collapse
Affiliation(s)
- Haishan Xu
- Faculty of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Reactive oxygen species mediate oxidized low-density lipoprotein-induced endothelin-1 gene expression via extracellular signal-regulated kinase in vascular endothelial cells. J Hypertens 2008; 26:956-63. [DOI: 10.1097/hjh.0b013e3282f56bb7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Godfraind T. Antioxidant effects and the therapeutic mode of action of calcium channel blockers in hypertension and atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2006; 360:2259-72. [PMID: 16321796 PMCID: PMC1569592 DOI: 10.1098/rstb.2005.1774] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drugs currently known as calcium channel blockers (CCB) were initially called calcium antagonists because of their ability to inhibit calcium-evoked contractions in depolarized smooth muscles. Blocking the entry of calcium reduces the active tone of vascular smooth muscle and produces vasodilatation. This pharmacological property has been the basis for the use of CCBs in the management of hypertension and coronary heart disease. A major question is whether drugs reducing blood pressure have other effects that help prevent the main complications of hypertension, such as atherosclerosis, stroke, peripheral arterial disease, heart failure and end-state renal disease. Experimental studies that focus on this question are reviewed in the present paper.
Collapse
Affiliation(s)
- Théophile Godfraind
- Faculté de Médecine, Université Catholique de Louvain Laboratoire de Pharmacologie UCL5410, 1200 Bruxelles, Belgium.
| |
Collapse
|
23
|
Rojas A, Figueroa H, Re L, Morales MA. Oxidative stress at the vascular wall. Mechanistic and pharmacological aspects. Arch Med Res 2006; 37:436-48. [PMID: 16624640 DOI: 10.1016/j.arcmed.2005.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/14/2005] [Indexed: 02/07/2023]
Abstract
During the process of energy production in aerobic respiration, vascular cells produce reactive oxygen species (ROS). A growing body of evidence indicates that oxidative stress refers to a condition in which cells are subjected to excessive levels of ROS. Overall vascular function is dependent upon a fine balance of oxidant and antioxidant mechanisms, which determine endothelial functions. Considerable experimental and clinical data indicate that intracellular oxidant milieu is also involved in several redox-sensitive cellular signaling pathways such as ion transport systems, protein phosphorylation, and gene expression and thus also plays important roles as modulator of vascular cell functions such as cell growth, apoptosis, migration, angiogenesis and cell adhesion. Overproduction of ROS under pathophysiologic conditions is integral in the development of cardiovascular diseases. This fact has raised an intensive search of new pharmacological approaches to improve vascular hemostasis and particularly those intended to decrease oxidative stress or augment the antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Armando Rojas
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile.
| | | | | | | |
Collapse
|
24
|
Wong KL, Lin JW, Liu JC, Yang HY, Kao PF, Chen CH, Loh SH, Chiu WT, Cheng TH, Lin JG, Hong HJ. Antiproliferative Effect of Isosteviol on Angiotensin-II-Treated Rat Aortic Smooth Muscle Cells. Pharmacology 2006; 76:163-9. [PMID: 16479148 DOI: 10.1159/000091417] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/25/2005] [Indexed: 11/19/2022]
Abstract
Isosteviol is a derivative of stevioside, a constituent of Stevia rebaudiana, which is commonly used as a noncaloric sugar substitute in Japan and Brazil. The aims of this study were to examine whether isosteviol alters angiotensin-II-induced cell proliferation in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with isosteviol, then stimulated with angiotensin II, after which [(3)H]thymidine incorporation and endothelin-1 secretion were examined. Isosteviol (1-100 micromol/l) inhibits angiotensin-II-induced DNA synthesis and endothelin-1 secretion. Measurements of 2'7'-dichlorofluorescin diacetate, a redox-sensitive fluorescent dye, showed an isosteviol-mediated inhibition of intracellular reactive oxygen species generated by the effects of angiotensin II. The inductive properties of angiotensin II on extracellular signal-regulated kinase (ERK) phosphorylation were found reversed with isosteviol and antioxidants such as N-acetylcysteine. In summary, we speculate that isosteviol inhibits angiotensin-II-induced cell proliferation and endothelin-1 secretion via attenuation of reactive oxygen species generation. Thus, this study provides important insights that may contribute to the effects of isosteviol on the cardiovascular system.
Collapse
Affiliation(s)
- Kar-Lok Wong
- Department of Anesthesia, China Medical University and Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mitogen activated protein kinase signaling in the kidney: target for intervention? ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Lee WS, Yang HY, Kao PF, Liu JC, Chen CH, Cheng TH, Chan P. Tetramethylpyrazine downregulates angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. Clin Exp Pharmacol Physiol 2006; 32:845-50. [PMID: 16173946 DOI: 10.1111/j.1440-1681.2005.04275.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Tetramethylpyrazine (TMP) is one of the active ingredients of the Chinese herb Ligusticum wallichii Franchat. It is well documented that TMP exerts a cardiovascular protective effect. The aims of the present study were to examine whether TMP alters angiotenisn (Ang) II-induced endothelin (ET)-1 gene expression and to identify the putative underlying signalling pathways in vascular endothelial cells. 2. Cultured vascular endothelial cells were pre-incubated with TMP, stimulated with AngII and ET-1 gene expression was then examined. The effects of TMP pretreatment on AngII-induced extracellular signal-regulated kinase (ERK) phosphorylation were investigated to elucidate the intracellular mechanism responsible for the effects of TMP on ET-1 gene expression. 3. Tetramethylpyrazine inhibited AngII-induced ET-1 gene expression, as revealed by nothern blotting and a promoter activity assay. Tetramethylpyrazine also inhibited the AngII-induced increase in intracellular reactive oxygen species (ROS), as measured by the redox sensitive fluorescent dye 2' 7'-dichlorofluorescin diacetate and ERK phosphorylation. 4. In summary, we have demonstrated, for the first time, that TMP inhibits AngII-induced ROS generation, ERK phosphorylation and ET-1 gene expression in vascular endothelial cells. Thus, the present study delivers important new insights into the molecular pathways that may contribute to the proposed beneficial effects of TMP in the cardiovascular system.
Collapse
Affiliation(s)
- Wen-Sen Lee
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lob H, Rosenkranz AC, Breitenbach T, Berkels R, Drummond G, Roesen R. Antioxidant and nitric oxide-sparing actions of dihydropyridines and ACE inhibitors differ in human endothelial cells. Pharmacology 2005; 76:8-18. [PMID: 16220025 DOI: 10.1159/000088854] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/22/2005] [Indexed: 11/19/2022]
Abstract
The effects of dihydropyridine Ca2+ channel blockers (DHP) and ACE inhibitors on superoxide formation and nitric oxide (NO) bioavailability were compared in human EA.Hy926 endothelial cells (EC). EC were stimulated 4 h with angiotensin II (Ang II, 10 nM) +/- study drugs. Specific superoxide formation was measured by lucigenin-enhanced chemiluminescence, reduction of cytochrome c and rhodamine-123 fluorescence. Free NO release was determined with an amperometric NO sensor. NADPH oxidase subunits expression was examined with Western Blot. In untreated EC the intracellular superoxide is -64.3 +/- 6.0% decreased compared to Ang II stimulated EC. Elevated extracellular superoxide formation was on a -43.0 +/- 1.7% lower level in untreated EC. The DHP Ca2+-channel agonist BayK8644 and ACE inhibitors captopril and ramiprilat led extracellular superoxide concentration to control level. Enalaprilat blocked extracellular superoxide, the DHP amlodipine and nisoldipine prevented intracellular increases only (n = 8-9, p < 0.05). Icatibant (HOE 140), a kinin-B2 receptor antagonist, attenuated antioxidant actions of all tested agents except of nisoldipine. Ang II-induced superoxide was elevated by the phorbolester PMA and blocked by the protein kinase C (PKC) inhibitor chelerythrine. Suppression of substance P-evoked NO release by Ang II (>70%, n = 6) was reversed by the PKC inhibitor chelerythrine, the DHP amlodipine and nisoldipine and the ACE inhibitor ramiprilat. Further, Ang II reduces Nox-4 expression by 34.5 +/- 4.9. Nox-2 expression was not regulated. DHP and ACE inhibitors exert different antioxidant effects in human EC stimulated with Ang II, but both improve NO bioavailability via bradykinin and modulation of redox-regulating enzymes.
Collapse
Affiliation(s)
- Heinrich Lob
- Department of Pharmacology, University Hospital, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Kyselovic J, Martinka P, Batova Z, Gazova A, Godfraind T. Calcium channel blocker inhibits Western-type diet-evoked atherosclerosis development in ApoE-deficient mice. J Pharmacol Exp Ther 2005; 315:320-8. [PMID: 16020630 DOI: 10.1124/jpet.105.089847] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium channel blockers slow the progression of atherosclerosis. The purpose of the present experiments was to examine the action of lacidipine in a condition that accelerates the development of atherosclerosis in order to test the hypothesis that the protective action of lacidipine in atherosclerosis is unrelated to the reduction of blood pressure. Male ApoE-deficient mice (6 weeks old) were exposed either to normal chow (ND) or to a Western-type diet (WD, adjusted calorie diet containing 42% from fat) for 8 weeks. Western-type diet induced a reduction of nitric oxide (NO)-mediated endothelium-dependent relaxation to acetylcholine (Max relaxation % = 55.8 +/- 2 for ND and 46.6 +/- 2 for WD, n = 8, p < 0.05). Dose-relaxation curves to S-nitroso-N-acetylpenicillamine (SNAP) NO donor were also significantly rightward-shifted (n = 7, ANOVA, p < 0.01) in WD compared with ND arteries. Chronic treatment of WD mice with lacidipine (1 and 3 mg/kg/day) increased significantly the acetylcholine-evoked relaxation (to 76.6 +/- 3.5%, n = 6, ANOVA, p < 0.001) and prevented the loss of responsiveness to SNAP in mice exposed to WD. Plasma renin activity and endothelin-1 plasma levels as well as thiobarbituric acid-reactive substance levels in kidneys were significantly lower in WD mice treated with lacidipine than in untreated ones. In mice exposed to WD lacidipine reduced extension of atherosclerotic lesions, renal injury and increase in blood pressure. Experimental data indicate that inhibition of Western-type diet-evoked alterations is related to both antioxidant and vasoactive properties of lacidipine.
Collapse
Affiliation(s)
- Jan Kyselovic
- Department of Pharmacology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
29
|
Ohtsu H, Frank GD, Utsunomiya H, Eguchi S. Redox-dependent protein kinase regulation by angiotensin II: mechanistic insights and its pathophysiology. Antioxid Redox Signal 2005; 7:1315-26. [PMID: 16115037 DOI: 10.1089/ars.2005.7.1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are proposed to induce cardiovascular diseases, such as atherosclerosis, hypertension, restenosis, and fibrosis, through several mechanisms. One such mechanism involves ROS acting as intracellular second messengers, which lead to induction of unique signal transductions. Angiotensin II (AngII), a potent cardiovascular pathogen, stimulates ROS production through the G protein-coupled AngII type 1 receptor expressed in its target organs, such as vascular tissues, heart, and kidney. Recent accumulating evidence indicates that through ROS production, AngII activates downstream ROS-sensitive kinases that are critical in mediating cardiovascular remodeling. Each of these ROS-sensitive kinases could potentially mediate its own specific function. In this review, we will focus our discussion on the current findings that suggest novel mechanisms of how AngII mediates activation of these redox-sensitive kinases in target organs, as well as the pathological significance of their activation.
Collapse
Affiliation(s)
- Haruhiko Ohtsu
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
30
|
Chen J, Li D, Schaefer R, Mehta JL. Cross-talk between dyslipidemia and renin-angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies with the combined use of rosuvastatin and candesartan. Atherosclerosis 2005; 184:295-301. [PMID: 16005008 DOI: 10.1016/j.atherosclerosis.2005.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/07/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
There is increasing evidence of cross-talk between dyslipidemia and renin-angiotensin system (RAS) in atherogenesis. Both dyslipidemia and RAS activation enhance the expression of a newly described receptor for oxidized-low density lipoprotein (ox-LDL), lectin-like ox-LDL receptor-1 (LOX-1). We postulated that the blockade of dyslipidemia with rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor and RAS with candesartan, an angiotensin II type 1 receptor blocker, would have a synergistic inhibitory effect on LOX-1 expression and atherogenesis. Apo-E knockout mice were fed a high-cholesterol diet (1% cholesterol, HC-diet) alone, or HC-diet with rosuvastatin (1mg/(kgd)), candesartan (1mg/(kgd)) or with both. Twelve weeks later the extent of atherosclerosis was determined by Sudan IV staining. Apo-E knockout mice on HC-diet had extensive atherosclerosis. Both rosuvastatin and candesartan decreased the extent of atherosclerosis (by 23 and 26%, respectively), despite the HC-diet; however, the combination of rosuvastatin and candesartan reduced atherosclerosis further (by 67%). Rosuvastatin decreased plasma levels of total cholesterol by over 50%, whereas candesartan had no effect. LOX-1 protein expression was found to be markedly up-regulated in HC-diet-fed apo-E knockout mice. While rosuvastatin and candesartan each had a small inhibitory effect on the expression of LOX-1 in the atherosclerotic tissues, the combination totally blocked the up-regulation of LOX-1. P38 mitogen-activated protein kinase (MAPK) expression and phosphorylation were increased in apo-E knockout mice, attenuated by rosuvastatin or candesartan alone, and completely blocked by the combination of the two agents. P44/42 MAPK expression and phosphorylation were not affected by the HC-diet, rosuvastatin, candesartan, or their combination. This study demonstrates the potent effect of rosuvastatin and candesartan on atherogenesis, as well as on the expression of LOX-1 and on the activation of p38 MAPK, but not p44/42 MAPK.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
31
|
Frank GD, Eguchi S, Motley ED. The role of reactive oxygen species in insulin signaling in the vasculature. Antioxid Redox Signal 2005; 7:1053-61. [PMID: 15998260 DOI: 10.1089/ars.2005.7.1053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is an abundance of evidence suggesting that insulin resistance plays a significant role in the vasculature, the precise mechanistic role involved still remains unclear. In this review, we discuss the current background of insulin resistance in the context of insulin signaling and action in the vasculature. Also, studies suggest that insulin resistance, diabetes, and cardiovascular disease all share a common involvement with oxidative stress. Recently, we reported that lysophosphatidylcholine, a major bioactive product of oxidized low-density lipoprotein, and angiotensin II, a vasoactive hormone and a potent inducer of reactive oxygen species (ROS), negatively regulate insulin signaling in vascular smooth muscle cells (VSMCs). In endothelial cells, insulin stimulates the release of nitric oxide, which results in VSMC relaxation and inhibition of atherosclerosis. Other data suggest that angiotensin II inhibits the vasodilator effects of insulin through insulin receptor substrate-1 phosphorylation at Ser312 and Ser616. Moreover, ROS impair insulin-induced vasorelaxation by neutralizing nitric oxide to form peroxynitrite. Thus, evidence is growing to enable us to better understand mechanistically the relationship between insulin/insulin resistance and ROS in the vasculature, and the impact they have on cardiovascular disease.
Collapse
Affiliation(s)
- Gerald D Frank
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
32
|
Papparella I, Ceolotto G, Lenzini L, Mazzoni M, Franco L, Sartori M, Ciccariello L, Semplicini A. Angiotensin II-induced over-activation of p47phox in fibroblasts from hypertensives: which role in the enhanced ERK1/2 responsiveness to angiotensin II? J Hypertens 2005; 23:793-800. [PMID: 15775784 DOI: 10.1097/01.hjh.0000163148.97459.9d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Fibroblasts are involved in the remodeling of the heart and of the vasculature associated to arterial hypertension, and an abnormal extracellular signal-regulated kinase 1/2 (ERK1/2) activation by angiotensin II (Ang II) plays a pivotal role in this process. However, the intracellular pathways leading to cell hypertrophy and hyperplasia, as well as to collagen production, are still incompletely known. OBJECTIVE To investigate the role of superoxide anion (O2) and of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase in Ang II-stimulated ERK1/2 over-activation in fibroblasts from hypertensive patients. METHODS O2 production was measured in skin fibroblasts from hypertensives (HT, n = 11) and from normotensive controls (NT, n = 10) by electron spin resonance technique. ERK1/2 phosphorylation and p47phox NAD(P)H oxidase subunit translocation were measured by western blot. RESULTS Ang II (1 micromol/l) induced a larger p47phox subunit translocation and increased intracellular O2 production to a larger extent in HT in comparison to NT and this effect was blocked by apocynin, an inhibitor of the NAD(P)H oxidase. Ang II increased ERK1/2 phosphorylation more in HT than in NT. The Ang II-induced ERK1/2 phosphorylation was inhibited by apocynin in a dose-dependent manner in NT, but not in HT. CONCLUSIONS The chain of cellular events leading to increased ERK1/2 responsiveness to Ang II in hypertension include an exaggerated response of p47phox, NAD(P)H oxidase and O2, but it is partially resistant to apocynin. Therefore, NAD(P)H-dependent reactive oxygen species (ROS) production is not the only determinant of the exaggerated ERK1/2 responsiveness in fibroblasts of hypertensives (HT).
Collapse
Affiliation(s)
- Italia Papparella
- Department of Clinical and Experimental Medicine, University of Padova Medical School, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chao HH, Juan SH, Liu JC, Yang HY, Yang E, Cheng TH, Shyu KG. Resveratrol inhibits angiotensin II-induced endothelin-1 gene expression and subsequent proliferation in rat aortic smooth muscle cells. Eur J Pharmacol 2005; 515:1-9. [PMID: 15878161 DOI: 10.1016/j.ejphar.2005.03.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 03/31/2005] [Indexed: 02/07/2023]
Abstract
Resveratrol is a phytoestrogen naturally found in grapes and is the major constituent of wine thought to have a cardioprotective effect. The aims of this study were to examine whether resveratrol alters angiotenisn II-induced cell proliferation and endothelin-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with resveratrol then stimulated with angiotensin II, after which [3H]thymidine incorporation and endothelin-1 gene expression were examined. The intracellular mechanism of resveratrol in cellular proliferation and endothelin-1 gene expression was elucidated by examining the phosphorylation level of angiotensin II-induced extracellular signal-regulated kinase (ERK). The inhibitory effects of resveratrol (1-100 microM) on angiotensin II-induced DNA synthesis and endothelin-1 gene expression were demonstrated with Northern blot and promoter activity assays. Measurements of 2'7'-dichlorofluorescin diacetate, a redox-senstive fluorescent dye, showed a resveratrol-mediated inhibition of intracellular reactive oxygen species generated by the effects of angiotensin II. The inductive properties of angiotensin II and H2O2 on ERK phosphorylation and activator protein-1-mediated reporter activity were found reversed with resveratrol and antioxidants such as N-acetyl-cysteine. In summary, we speculate that resveratrol inhibits angiotensin II-induced cell proliferation and endothelin-1 gene expression, and does so in a manner which involves the disruption of the ERK pathway via attenuation of reactive oxygen species generation. Thus, this study provides important insight into the molecular pathways that may contribute to the proposed beneficial effects of resveratrol on the cardiovascular system.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Binding Sites/genetics
- Blotting, Northern
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression/drug effects
- Hydrogen Peroxide/pharmacology
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Resveratrol
- Stilbenes/pharmacology
- Transcription Factor AP-1/metabolism
- Transfection
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC; Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Chander V, Singh D, Tirkey N, Chander H, Chopra K. Amelioration of cyclosporine nephrotoxicity by irbesartan, A selective AT1 receptor antagonist. Ren Fail 2005; 26:467-77. [PMID: 15526904 DOI: 10.1081/jdi-200031731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cyclosporine A (CsA), a fungal undecapeptide, is the most common immunosuppressive drug used in organ transplantation and autoimmune diseases. However, nephrotoxicity is the major adverse effect of CsA use. The molecular mechanisms of CsA nephrotoxicity are not well characterized, but more recent studies suggest an involvement of angiotensin II (ANG II) and reactive oxygen species in the development of cyclosporine nephrotoxicity. Induction of heat shock proteins (HSPs) is one of the best-described cellular responses to heat stress, hypoxia, and exposure to oxidants. HSPs have beneficial roles in protein processing and protection against cell injury. There is emerging evidence that ANG II induces oxidative stress in vitro and in vivo. This study was thus designed to investigate the role of Angiotensin II type I (AT1) receptor antagonist, irbesartan, on CsA-induced nephrotoxicity. Five groups of rats were employed in this study: group 1 served as control, group 2 rats were treated with CsA (20 mg kg(-1), subcutaneously for 21 days), and groups 3, 4, and 5 received CsA along with irbesartan (10, 25, and 50 mg kg(-1), perorally 24 hr before and 21 days concurrently), respectively. Renal function was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, and urea clearance. The renal oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels, and enzymatic activity of catalase, glutathione reductase, and superoxide dismutase. Renal morphological alterations were assessed by histopathological examination. CsA administration for 21 days resulted in a marked renal oxidative stress and significantly deranged the renal functions as well as renal morphology. All these factors were significantly improved by irbesartan (50 mg kg(-1)) treatment. HSP72, HSP47, and HSP25 were clearly induced and expressed in CsA-treated animals. The induction and expression of HSP25 was markedly protected by treatment with irbesartan, whereas the induction and expression of HSP47 and HSP72 remained unaltered with the irbesartan treatment. These results clearly demonstrate the pivotal role of ANG II-induced oxidative stress and therapeutic potential of AT, receptor antagonist in ameliorating CsA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Vikas Chander
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|