1
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Henriques PC, Aquino NSS, Campideli-Santana AC, Silva JF, Araujo-Lopes R, Franci CR, Coimbra CC, Szawka RE. Hypothalamic Expression of Estrogen Receptor Isoforms Underlies Estradiol Control of Luteinizing Hormone in Female Rats. Endocrinology 2022; 163:6631316. [PMID: 35789268 DOI: 10.1210/endocr/bqac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERβ, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERβ potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.
Collapse
Affiliation(s)
- Patricia C Henriques
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Nayara S S Aquino
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Juneo F Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilheus, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Celso R Franci
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, 14049-900, Universidade de São Paulo, Ribeirao Preto, Brazil
| | - Candido C Coimbra
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
4
|
Haydar Ali Tajuddin A, Kamaruddin N, Sukor N, Azizan EA, Omar AM. Estrogen Receptors in Nonfunctioning Pituitary Neuroendocrine Tumors: Review on Expression and Gonadotroph Functions. J Endocr Soc 2020; 4:bvaa157. [PMID: 33241169 PMCID: PMC7671264 DOI: 10.1210/jendso/bvaa157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Estrogen (17β-estradiol or E2) is a crucial regulator of the synthesis and secretion of pituitary reproductive hormones luteinizing hormone, follicle-stimulating hormone, and prolactin. In this review, we summarize the role of estrogen receptors in nonfunctioning pituitary neuroendocrine tumors (NF-Pitnets), focusing on immunoexpression and gonadotroph cell proliferation and apoptosis. Gonadotroph tumors are the most common subtype of NF-Pitnets. Two major estrogen receptor (ER) isoforms expressed in the pituitary are estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Overall, estrogen actions are mostly exerted through the ERα isoform on the pituitary. The G protein-coupled estrogen receptor (GPER) located at the plasma membrane may contribute to nongenomic effects of estrogen. Nuclear immunoreactivity for ERα and ERβ was highest among gonadotroph and null cell tumors. Silent corticotroph tumors are the least immunoreactive for both receptors. A significantly elevated ERα expression was observed in macroadenomas compared with microadenomas. ERα and ERβ may act in opposite directions to regulate the Slug-E-cadherin pathway and to affect invasiveness of NF-Pitnets. In the cellular pathway, ERs regulate estrogen-induced proliferation and differentiation and impact several signaling pathways including the MAPK and PI3K/Akt pathway. Estrogen was the first-discovered inducer of pituitary tumor transforming gene 1 that was abundantly expressed in NF-Pitnets. ERα can be a potential biomarker for predicting tumor size and invasiveness as well as therapeutic target for NF-Pitnets. Selective estrogen receptor modulators or antiestrogen may represent as an alternative choice for the treatment of NF-Pitnets.
Collapse
Affiliation(s)
- Amalina Haydar Ali Tajuddin
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Endocrine Unit, Faculty of Medicine, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norazmi Kamaruddin
- Endocrine Unit, Faculty of Medicine, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlela Sukor
- Endocrine Unit, Faculty of Medicine, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elena Aisha Azizan
- Endocrine Unit, Faculty of Medicine, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Marzuki Omar
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Dulka EA, Burger LL, Moenter SM. Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice. Endocrinology 2020; 161:5686883. [PMID: 31875912 PMCID: PMC7397485 DOI: 10.1210/endocr/bqz038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.
Collapse
Affiliation(s)
- Eden A Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Suzanne M. Moenter, PhD; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, Michigan 48109-5622; phone: 734-647-1755;
| |
Collapse
|
6
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
7
|
Proietto S, Yankelevich L, Villarreal FM, Inserra PIF, Charif SE, Schmidt AR, Cortasa SA, Corso MC, Di Giorgio NP, Lux-Lantos V, Vitullo AD, Halperin J, Dorfman VB. Pituitary estrogen receptor alpha is involved in luteinizing hormone pulsatility at mid-gestation in the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Gen Comp Endocrinol 2019; 273:40-51. [PMID: 29656043 DOI: 10.1016/j.ygcen.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
The South American plains vizcacha, Lagostomus maximus, is a caviomorph rodent native from Argentina, Bolivia and Paraguay. It shows peculiar reproductive features like pre-ovulatory follicle recruitment during pregnancy with an ovulatory process at around mid-gestation. We have described the activation of the hypothalamic - pituitary - ovarian (HPO) axis during pregnancy. A progressive decrease of progesterone (P4) at mid-pregnancy elicits the delivery of gonadotropin-releasing hormone (GnRH) with the consequent secretion of follicle stimulating hormone (FSH) and estradiol (E2) followed by luteinizing hormone (LH) release resulting in follicular luteinization and the P4 concentration recover. Pituitary gland is the central regulator of the HPO axis being E2 a key hormone involved in the regulation of its activity. In this work we analyzed the action of E2 on the pituitary response to the GnRH wave as well as its involvement on LH secretion at mid-gestation in L. maximus. The expression of GnRHR at the pituitary pars distalis showed a significant decrease at mid-pregnancy compared to early- and term-gestating females. ERα showed a significant increment from mid-gestation whereas ERβ did not show variations throughout pregnancy; whereas the LH expression in the pituitary pars distalis showed a significant increase at mid-gestation, concordantly with serum LH, which was followed by a decrease at term-gestation with similar values than at early-pregnancy. The number of cells with co-localization of ERα and GnRHR showed a decline at mid-pregnancy related to early- and term-gestation, whereas the cells with co-localization of ERα and LH increased at mid- and term-pregnancy. On the other hand, ex vivo measuring of LH pulsatility showed a significant increment in the total mass of LH delivered at mid-pregnancy followed by a decrease at term-gestation. The stimulation of ERα with the PPT specific agonist induced a significant increment in the total mass of LH released, whereas no changes were determined when ERβ was stimulated with its specific agonist MPP. These results suggest that LH pulsatility rise at mid-pregnancy would be enabled by the increase of E2 acting through ERα.
Collapse
Affiliation(s)
- Sofía Proietto
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lorena Yankelevich
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Martín Villarreal
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Elías Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
8
|
González-García I, Martínez de Morentin PB, Estévez-Salguero Á, Contreras C, Romero-Picó A, Fernø J, Nogueiras R, Diéguez C, Tena-Sempere M, Tovar S, López M. mTOR signaling in the arcuate nucleus of the hypothalamus mediates the anorectic action of estradiol. J Endocrinol 2018; 238:177-186. [PMID: 29914932 PMCID: PMC6055430 DOI: 10.1530/joe-18-0190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Current evidence suggests that estradiol (E2), the main ovarian steroid, modulates energy balance by regulating both feeding and energy expenditure at the central level, through the energy sensor AMP-activated protein kinase (AMPK). We hypothesized that the hypothalamic mechanistic target of rapamycin (mTOR) pathway, a well-established nutrient sensor and modulator of appetite and puberty, could also mediate the anorectic effect of E2. Our data showed that ovariectomy (OVX) elicited a marked downregulation of the mTOR signaling in the arcuate nucleus of the hypothalamus (ARC), an effect that was reversed by either E2 replacement or central estrogen receptor alpha (ERα) agonism. The significance of this molecular signaling was given by the genetic inactivation of S6 kinase B1 (S6K1, a key downstream mTOR effector) in the ARC, which prevented the E2-induced hypophagia and weight loss. Overall, these data indicate that E2 induces hypophagia through modulation of mTOR pathway in the ARC.
Collapse
Affiliation(s)
- Ismael González-García
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Pablo B Martínez de Morentin
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Amparo Romero-Picó
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone LaboratoryHaukeland University Hospital, Bergen, Norway
- KG Jebsen Center for Diabetes ResearchDepartment of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubén Nogueiras
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Department of Cell BiologyPhysiology and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina SofíaCórdoba, Spain
- FiDiPro ProgramUniversity of Turku, Turku, Finland
| | - Sulay Tovar
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Miguel López
- Department of PhysiologyCiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| |
Collapse
|
9
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Qin J, Li L, Jin Q, Guo D, Liu M, Fan C, Li J, Shan Z, Teng W. Estrogen receptor β activation stimulates the development of experimental autoimmune thyroiditis through up-regulation of Th17-type responses. Clin Immunol 2018; 190:41-52. [PMID: 29481981 DOI: 10.1016/j.clim.2018.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/21/2018] [Accepted: 02/17/2018] [Indexed: 12/25/2022]
Abstract
Estrogens play important roles in autoimmune thyroiditis, but it remains unknown which estrogen receptor (ER) subtype mediates the stimulatory effects. Herein we treated ovariectomized mice with ERα or ERβ selective agonist followed by thyroglobulin-immunization to induce experimental autoimmune thyroiditis (EAT), and observed the aggravation of EAT after diarylpropionitrile (DPN, ERβ selective agonist) administration. The mRNA levels of interleukin(IL)-17A, IL-21 and RORγt and percentages of T helper (Th) 17 cells were up-regulated in the splenocytes of DPN-treated mice. Activated ERβ was found directly binding to IL-17A and IL-21 gene promoters, and also indirectly promoting IL-21 and RORγt gene transcription through interaction with NF-κB. The expressions of co-stimulatory molecules were increased on antigen-presenting cells (APCs) after DPN administration. It suggests that ERβ is the predominant ER subtype responsible for EAT development, and its activation may enhance Th17-type responses through genomic pathways and alteration of APCs' activities.
Collapse
Affiliation(s)
- Juan Qin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Li Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Qian Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Miao Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
11
|
Aquino NSS, Araujo-Lopes R, Henriques PC, Lopes FEF, Gusmao DO, Coimbra CC, Franci CR, Reis AM, Szawka RE. α-Estrogen and Progesterone Receptors Modulate Kisspeptin Effects on Prolactin: Role in Estradiol-Induced Prolactin Surge in Female Rats. Endocrinology 2017; 158:1812-1826. [PMID: 28387824 DOI: 10.1210/en.2016-1855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERβ, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge.
Collapse
Affiliation(s)
- Nayara S S Aquino
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Patricia C Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe E F Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Candido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Celso R Franci
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Adelina M Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
Sena GC, Freitas-Lima LC, Merlo E, Podratz PL, de Araújo JF, Brandão PA, Carneiro MT, Zicker MC, Ferreira AV, Takiya CM, de Lemos Barbosa CM, Morales MM, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol Appl Pharmacol 2017; 319:22-38. [DOI: 10.1016/j.taap.2017.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
|
13
|
Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 2016; 313:204-214. [PMID: 27702603 DOI: 10.1016/j.taap.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200nM to 200μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland.
Collapse
|
14
|
Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D, Martínez-Sánchez N, Ruíz-Pino F, Liu J, Morgan DA, Pinilla L, Gallego R, Saha AK, Kalsbeek A, Fliers E, Bisschop PH, Diéguez C, Nogueiras R, Rahmouni K, Tena-Sempere M, López M. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 2014; 20:41-53. [PMID: 24856932 PMCID: PMC4082097 DOI: 10.1016/j.cmet.2014.03.031] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 02/16/2014] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis.
Collapse
Affiliation(s)
- Pablo B Martínez de Morentin
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ismael González-García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Luís Martins
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ricardo Lage
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Diana Fernández-Mallo
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Noelia Martínez-Sánchez
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004 Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS), Córdoba, 14004, Spain
| | - Ji Liu
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute of Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, 1105 BA, The Netherlands; Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, 230026, P. R. China
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Leonor Pinilla
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004 Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS), Córdoba, 14004, Spain
| | - Rosalía Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Asish K Saha
- Diabetes Research Unit, EBRC-827, Boston Medical Center, Boston, MA 02118, USA
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute of Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, 1105 BA, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Carlos Diéguez
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004 Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS), Córdoba, 14004, Spain
| | - Miguel López
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
15
|
Royston SE, Yasui N, Kondilis AG, Lord SV, Katzenellenbogen JA, Mahoney MM. ESR1 and ESR2 differentially regulate daily and circadian activity rhythms in female mice. Endocrinology 2014; 155:2613-23. [PMID: 24735329 PMCID: PMC5393318 DOI: 10.1210/en.2014-1101] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogenic signaling shapes and modifies daily and circadian rhythms, the disruption of which has been implicated in psychiatric, neurologic, cardiovascular, and metabolic disease, among others. However, the activational mechanisms contributing to these effects remain poorly characterized. To determine the activational impact of estrogen on daily behavior patterns and differentiate between the contributions of the estrogen receptors ESR1 and ESR2, ovariectomized adult female mice were administered estradiol, the ESR1 agonist propylpyrazole triol, the ESR2 agonist diarylpropionitrile, or cholesterol (control). Animals were singly housed with running wheels in a 12-hour light, 12-hour dark cycle or total darkness. Estradiol increased total activity and amplitude, consolidated activity to the dark phase, delayed the time of peak activity (acrophase of wheel running), advanced the time of activity onset, and shortened the free running period (τ), but did not alter the duration of activity (α). Importantly, activation of ESR1 or ESR2 differentially impacted daily and circadian rhythms. ESR1 stimulation increased total wheel running and amplitude and reduced the proportion of activity in the light vs the dark. Conversely, ESR2 activation modified the distribution of activity across the day, delayed acrophase of wheel running, and advanced the time of activity onset. Interestingly, τ was shortened by estradiol or either estrogen receptor agonist. Finally, estradiol-treated animals administered a light pulse in the early subjective night, but no other time, had an attenuated response compared with controls. This decreased phase response was mirrored by animals treated with diarylpropionitrile, but not propylpyrazole triol. To conclude, estradiol has strong activational effects on the temporal patterning and expression of daily and circadian behavior, and these effects are due to distinct mechanisms elicited by ESR1 and ESR2 activation.
Collapse
Affiliation(s)
- S E Royston
- Neuroscience Program (S.E.R., M.M.M.), Medical Scholars Program (S.E.R.), and Departments of Chemistry (N.Y., J.A.K.) and Comparative Biosciences (A.G.K., S.V.L., M.M.M.), University of Illinois Urbana-Champaign, Urbana, Illinois 61802
| | | | | | | | | | | |
Collapse
|
16
|
Jayes FL, Burns KA, Rodriguez KF, Kissling GE, Korach KS. The naturally occurring luteinizing hormone surge is diminished in mice lacking estrogen receptor Beta in the ovary. Biol Reprod 2014; 90:24. [PMID: 24337314 DOI: 10.1095/biolreprod.113.113316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Female ESR2-null mice (betaERKO) display defects in ovarian function and are subfertile. Follicular maturation is impaired and explains smaller litters, but betaERKO also produce fewer litters, which may be partially due to inadequate ovulatory signals. To test this, the amplitude and timing of the naturally occurring luteinizing hormone (LH) surge was measured in individual intact betaERKO and wild-type (WT) mice. Vaginal cytology was evaluated daily, and blood samples were taken from mice in proestrus. The amplitude of the LH surge was severely blunted in betaERKO mice compared to WT, but pituitary LH levels revealed no differences. The betaERKO mice did not produce a preovulatory estradiol surge. To determine if the smaller LH surges and the reduced number of litters in betaERKO were due to the lack of ESR2 in the hypothalamic-pituitary axis or due to the absence of ESR2 in the ovary, ovaries were transplanted from WT into betaERKO mice and vice versa. The size of the LH surge was reduced only in mice lacking ESR2 within the ovary, and these mice had fewer litters. Fertility and size of the LH surge were rescued in betaERKO mice receiving a WT ovary. These data provide the first experimental evidence that the LH surge is impaired in betaERKO females and may contribute to their reduced fertility. ESR2 is not necessary within the pituitary and hypothalamus for the generation of a normal LH surge and for normal fertility, but ESR2 is essential within the ovary to provide proper signals.
Collapse
Affiliation(s)
- Friederike L Jayes
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | | | | | | | |
Collapse
|
17
|
Cheng CL, de Groat WC. Effects of agonists for estrogen receptor α and β on ovariectomy-induced lower urinary tract dysfunction in the rat. Am J Physiol Renal Physiol 2013; 306:F181-7. [PMID: 24259512 DOI: 10.1152/ajprenal.00298.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The postmenopausal hypoestrogen status induces various lower urinary tract dysfunctions. Ovariectomized (OVX) rats exhibit voiding abnormalities, including increased postvoiding residual urine (PVR), decreased voiding efficiency (VE), and altered coordination between the detrusor and external urethral sphincter (EUS). Estradiol replacement partially normalizes voiding function in OVX rats. We determined if selective agonists for estrogen receptor (ER)α and/or ERβ can reverse lower urinary tract dysfunction in OVX rats. Cystometry and EUS electromyograms (EMGs) were recorded 6 wk after bilateral OVX in urethane-anesthetized female Sprague-Dawley rats. Animals received daily subcutaneous injections of selective ERα [propylpyrazole triol (PPT)] or ERβ [diarylpropionitrile (DPN)] agonists or vehicle for 1 wk starting on the fifth week after OVX. PPT (1 mg·kg(-1)·day(-1)) decreased PVR, improved VE, and shortened the EUS EMG active period (AP) during voiding. DPN (2 or 5 mg·kg(-1)·day(-1)) did not alter cystometric parameters or EUS EMG activity. Combined PPT + DPN treatment elicited changes in PVR, VE, and AP, similar to those induced by PPT alone, but also increased the EUS EMG silent period and volume threshold for triggering micturition. PPT increased uterine weight fourfold and decreased body weight by 11%. DPN increased uterine weight 30-45% but decreased body weight by 3-5%. Reduced voiding efficiency in OVX rats can be reversed by 1-wk drug treatment that selectively targets ERα and reduces AP during EUS bursting. Combined pharmacological activation of ERα and ERβ further enhanced EUS bursting by increasing the EUS EMG silent period and also facilitated bladder storage mechanisms by increasing the volume threshold.
Collapse
Affiliation(s)
- Chen-Li Cheng
- Div. of Urology, Dept. of Surgery, Taichung Veterans General Hospital, 1650, Taiwan Blvd. Section 4, Taichung, Taiwan 40705, Republic of China.
| | | |
Collapse
|
18
|
He Y, Wiseman SB, Wang N, Perez-Estrada LA, El-Din MG, Martin JW, Giesy JP. Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9701-9708. [PMID: 22856545 DOI: 10.1021/es3019258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oil sands process-affected water (OSPW) produced by the surface mining oil sands industry in Alberta, Canada, is toxic to aquatic organisms. Ozonation of OSPW attenuates this toxicity. Altered concentrations of sex steroid hormones, impaired reproductive performance, and less prominent secondary sexual characteristics have been reported for fish exposed to OSPW. However, the mechanism(s) by which these effects occur and whether ozonation can attenuate these effects in fish was unknown. The objective of this in vivo study was to investigate the endocrine-disrupting effects of OSPW and ozone-treated OSPW on the abundances of transcripts of genes in the brain-gonad-liver (BGL) axis in male and female fathead minnows (Pimephales promelas). Abundances of transcripts of genes important for synthesis of gonadotropins were greater in brains from both male and female fish exposed to untreated OSPW compared to that of control fish. In gonads from male fish exposed to untreated OSPW the abundances of transcripts of gonadotropin receptors and several enzymes of sex hormone steroidogenesis were greater than in control fish. The abundances of transcripts of estrogen-responsive genes were greater in livers from male fish exposed to untreated OSPW than in control fish. In female fish exposed to untreated OSPW there was less abundance of transcripts of gonadotropin receptors in gonads, as well as less abundance of transcripts of estrogen-responsive genes in livers. Many effects were either fully or partially attenuated in fish exposed to ozone-treated OSPW. The results indicate that (1) OSPW has endocrine-disrupting effects at all levels of BGL axis, (2) OSPW has different effects in male and female fish, (3) ozonation attenuates the effects of OSPW on abundances of transcripts of some genes, and the attenuation is more prominent in males than in females, but effects of ozonation on endocrine-disrupting effects of OSPW were less clear than in previous in vitro studies. The results provide a mechanistic basis for the endocrine-disrupting effects of OSPW from other studies.
Collapse
Affiliation(s)
- Yuhe He
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Song X, Pan ZZ. Estrogen receptor-beta agonist diarylpropionitrile counteracts the estrogenic activity of estrogen receptor-alpha agonist propylpyrazole-triol in the mammary gland of ovariectomized Sprague Dawley rats. J Steroid Biochem Mol Biol 2012; 130:26-35. [PMID: 22266284 DOI: 10.1016/j.jsbmb.2011.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 02/07/2023]
Abstract
Although estrogen can bind both types of estrogen receptors, estrogen receptor-alpha (ERα) is dominant in mediating estrogenic activity in the mammary gland and uterus. Excessive estrogenic activity such as estrogen-based postmenopausal hormone replacement therapy increases the risk for breast and endometrial cancers. The adverse effect of estrogen on uterine endometrium can be opposed by progestins; however, estrogen-plus-progestin regimen imposes substantially greater risk for breast cancer than estrogen alone. In this study, we used ERα-selective agonist propylpyrazole-triol (PPT) and ERβ-selective agonist diarylpropionitrile (DPN) to activate ERα and estrogen receptor-beta (ERβ) separately in an ovariectomized rat model and determined whether PPT-activated ERα function in the mammary gland can be suppressed by DPN activated ERβ. Ovariectomized rats were randomly divided into six groups and treated with DMSO (control), DPN, PPT, PPT/DPN, PPT/Progesterone, and PPT/Progesterone/DPN, respectively. In the mammary gland, PPT but not DPN increased cell proliferation and amphiregulin gene expression; importantly, the stimulatory effect of PPT on mammary cell proliferation and amphiregulin gene expression can be suppressed by DPN. In the uterus, the effect of PPT on uterine weight and endometrial cell proliferation was not inhibited by DPN but can be inhibited by progesterone. These data provide in vivo evidence that PPT activated ERα activity in the mammary gland can be opposed by ERβ-selective agonist DPN, which may be explored for the development of better hormone replacement therapy regimen with less risk for breast cancer.
Collapse
Affiliation(s)
- Xiaozheng Song
- Department of Animal Science, Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
20
|
Sánchez-Criado JE, Trudgen K, Millán Y, Blanco A, Monterde J, Garrido-Gracia JC, Gordon A, Aguilar R, Martín de las Mulas J, Ko C. Estrogen receptor (ESR) 2 partially offsets the absence of ESR1 in gonadotropes of pituitary-specific Esr1 knockout female mice. Reproduction 2012; 143:549-58. [DOI: 10.1530/rep-11-0214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen receptor 1 and 2 (ESR1 and 2) mediate estrogen (E) action on gonadotrope function. While much is known about the effects of ESR1 on the gonadotrope, there is still some controversy regarding the effects of ESR2. To investigate the role of ESR2 in the gonadotrope, 45-day-old female mice of two different genotypes were used: wild type (WT) and pituitary (gonadotropes and thyrotropes)-specific Esr1 knockout (KO). All mice were ovariectomized (OVX) and 15 days later injected over 3 days with 2.5 μg 17β-estradiol (E2), 0.2 mg of the selective ESR1 or 2 agonists, propylpyrazole triol and diarylpropionitrile, respectively, or 0.1 ml oil. The day after treatment, anterior pituitary glands were dissected out for evaluation of gonadotrope ultrastructural morphology and pituitary immunohistochemical expression of progesterone receptor (Pgr (Pr)). Blood was collected and serum LH levels were assessed. Activation of ESR1 in WT mice resulted in the following: i) uterine ballooning and vaginal cornification, ii) negative feedback on LH secretion, iii) increased number of homogeneous (functional) gonadotropes, and iv) pituitary Pgr expression (35.9±2.0% of pituitary cells). Activation of ESR1 in KO mice induced normal uterine, vaginal, and LH secretion responses, but failed to increase the number of functional gonadotropes, and induced significantly lower Pgr expression (21.0±3.0% of pituitary cells) than in WT mice. Whilst activation of ESR2 had no significant effects in WT mice, it doubled the number of functional gonadotropes exhibited by KO mice injected with oil. It is concluded that E2 exerted its action in KO mouse gonadotropes via ESR2.
Collapse
|
21
|
Kim HJ, Gieske MC, Trudgen KL, Hudgins-Spivey S, Kim BG, Krust A, Chambon P, Jeong JW, Blalock E, Ko C. Identification of estradiol/ERα-regulated genes in the mouse pituitary. J Endocrinol 2011; 210:309-21. [PMID: 21700660 DOI: 10.1530/joe-11-0098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogen acts to prime the pituitary prior to the GnRH-induced LH surge by undiscovered mechanisms. This study aimed to identify the key components that mediate estrogen action in priming the pituitary. RNA extracted from the pituitaries of metestrous (low estrogen) and proestrus (high estrogen) stage mice, as well as from ovariectomized wild-type and estrogen receptor α (ERα) knockout mice treated with 17β-estradiol (E(2)) or vehicle, was used for gene expression microarray. Microarray data were then aggregated, built into a functional electronic database, and used for further characterization of E(2)/ERα-regulated genes. These data were used to compile a list of genes representing diverse biological pathways that are regulated by E(2) via an ERα-mediated pathway in the pituitary. This approach substantiates ERα regulation of membrane potential regulators and intracellular vesicle transporters, among others, but not the basic components of secretory machinery. Subsequent characterization of six selected genes (Cacna1a, Cacna1g, Cited1, Abep1, Opn3, and Kcne2) confirmed not only ERα dependency for their pituitary expression but also the significance of their expression in regulating GnRH-induced LH secretion. In conclusion, findings from this study suggest that estrogen primes the pituitary via ERα by equipping pituitary cells with critical cellular components that potentiate LH release on subsequent GnRH stimulations.
Collapse
Affiliation(s)
- Hyun Joon Kim
- Division of Reproductive Sciences, Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Heinzlmann A, Köves K, Kovács M, Csernus V. Sexual dimorphism in the effect of concomitant progesterone administration on changes caused by long-term estrogen treatment in pituitary hormone immunoreactivities of rats. Med Sci Monit 2011; 17:BR62-73. [PMID: 21358595 PMCID: PMC3524720 DOI: 10.12659/msm.881440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/09/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Since in clinical practice long-term estrogen (E) treatment is frequently applied, our aim was to study the effect of concomitant progesterone (P) administration on changes caused by long-term estrogen treatment in the secretion of LH, FSH, PRL and GH. MATERIAL/METHODS Diethylstilbestrol (DES), P or both in silastic capsules were implanted under the skin of prepubertal Sprague-Dawley male and female rats. Animals survived for two or five months. We have also studied whether the changed hormone secretion caused by DES can return to normal level 1 or 2 months after removing DES capsule. RESULTS 1.) The males more rapidly responded than females with decreasing basal LH release upon treatments. The basal FSH release was decreased only in males. The effect of DES persisted in males; however, in females basal LH and FSH levels were upregulated after removal of DES capsule. 2.) The basal GH levels were low in each group. The body weight and length were depressed by DES in both genders and P little blunted this effect. The body weight and length in males remained low after removal of DES capsule, in females it was nearly similar to intact rats. 3.) There was no sexual dimorphism in the effect of steroids on PRL secretion. In both genders DES extremely enhanced the PRL levels, P prevented the effect of DES. PRL levels returned to intact value after removal of DES influence. 4.) Removal of DES capsule reversed the changes in the immunohistochemical appearance of hormone immunoreactivities. CONCLUSIONS There was sexual dimorphism in the change of basal gonadotropic hormone and GH secretion but not of PRL upon DES and DES+P treatments. P was basically protective and this role may be mediated by P receptors locally in the pituitary gland.
Collapse
Affiliation(s)
- Andrea Heinzlmann
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Köves
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Valér Csernus
- Department of Human Anatomy, Pécs University, Pécs, Hungary
| |
Collapse
|
23
|
Gutiérrez S, Petiti JP, Sosa LDV, Fozzatti L, De Paul AL, Masini-Repiso AM, Torres AI. 17β-oestradiol acts as a negative modulator of insulin-induced lactotroph cell proliferation through oestrogen receptor α, via nitric oxide/guanylyl cyclase/cGMP. Cell Prolif 2010; 43:505-14. [PMID: 20887556 DOI: 10.1111/j.1365-2184.2010.00700.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES 17β-oestradiol interacts with growth factors to modulate lactotroph cell population. However, contribution of isoforms of the oestrogen receptor in these activities is not fully understood. In the present study, we have established participation of α and β oestrogen receptors in effects of 17β-oestradiol on lactotroph proliferation induced by insulin and shown involvement of the NO/sGC/cGMP pathway. MATERIALS AND METHODS Cell cultures were prepared from anterior pituitaries of female rats to evaluate lactotroph cell proliferation using bromodeoxyuridine (BrdUrd) detection, protein expression by western blotting and cGMP by enzyme immunoassay. RESULTS In serum-free conditions, 17β-oestradiol and α and β oestrogen receptor agonists (PPT and DPN) failed to increase numbers of lactotroph cells undergoing mitosis. Co-incubation of 17β-oestradiol/insulin and PPT/insulin significantly decreased lactotroph mitogenic activity promoted by insulin alone. Both ICI 182780 and NOS inhibitors (L-NMMA and L-NAME) induced reversal of the anti-proliferative effect promoted by 17β-oestradiol/insulin and PPT/insulin. Moreover, 17β-oestradiol, PPT and insulin increased sGC α1 protein expression and inhibited β1, whereas co-incubation of 17β-oestradiol/insulin or PPT/insulin induced increases of the two isoforms α1 and β1. 17β-oestradiol and insulin reduced cGMP production, while 17β-oestradiol/insulin co-incubation increased this cyclic nucleotide. CONCLUSIONS Our results suggest that 17β-oestradiol is capable of arresting lactotroph proliferation induced by insulin through ER α with participation of the signalling NO/sGC/cGMP pathway.
Collapse
Affiliation(s)
- S Gutiérrez
- Center of Electron Microscopy, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina.
| | | | | | | | | | | | | |
Collapse
|
24
|
Soldati R, Wargon V, Cerliani JP, Giulianelli S, Vanzulli SI, Gorostiaga MA, Bolado J, do Campo P, Molinolo A, Vollmer G, Lanari C. Inhibition of mammary tumor growth by estrogens: is there a specific role for estrogen receptors alpha and beta? Breast Cancer Res Treat 2010; 123:709-24. [PMID: 20012353 DOI: 10.1007/s10549-009-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023]
Abstract
To evaluate the extent to which each estrogen receptor (ER) subtype contributes to the stimulation or to the inhibition of mammary tumor growth, we evaluated the effects of specific agonists in MC4-L2 cells, which are stimulated by 17β-estradiol (E(2)), and in mammary carcinomas of the MPA mouse breast cancer model, which are inhibited by E(2). Both express ERα and ERβ. In MC4-L2 cells, 4,4',4"-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα agonist) and (4-hydroxy-phenyl)-propionitrile (DPN; ERβ agonist) stimulated cell proliferation, whereas the opposite occurred in C4-HI primary cultures. The inhibitory effect was associated with a decrease in ERα and cyclin D1 expression and an increase in progesterone receptor (PR) expression as well as in the Bax/Bcl-xl ratio. In vivo, mice carrying C4-HI or 32-2-HI tumors were treated with E(2), PPT or DPN (3 mg/kg/day) or with vehicle. PPT and DPN inhibited tumor size, as did E(2), during the first 72 h. After a few days, DPN-treated tumors started to grow again, while PPT-treated tumors remained quiescent for a longer period of time. A pronounced decrease in the mitotic index and an increase in the apoptotic index was associated with tumor regression. All treated tumors showed: (a) an increase in integrin α6 and Bax expression, (b) an increased stromal laminin redistribution, and (c) a decrease in ERα, Bcl-xl and Bcl-2 expression (P < 0.001). Apoptosis-inducing factor (Aif) expression was increased in DPN-treated tumors, while active caspase 9 was up-regulated in PPT-treated mice, demonstrating the involvement of the intrinsic apoptotic pathway in estrogen-induced regression in this model. In conclusion, our data indicate that although there may be some preferences for activation pathways by the different agonists, the stimulatory or inhibitory effects triggered by estrogens are cell-context dependent rather than ER isoform dependent.
Collapse
Affiliation(s)
- Rocío Soldati
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine, National Research Council of Argentina (CONICET), 1428 Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. Anim Reprod Sci 2010; 121:267-72. [DOI: 10.1016/j.anireprosci.2010.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/30/2010] [Accepted: 06/02/2010] [Indexed: 11/21/2022]
|
26
|
Gordon A, Aguilar R, Garrido-Gracia JC, Bellido C, Millán Y, Guil-Luna S, García-Velasco JA, Bellido-Muñoz E, de las Mulas JM, Sánchez-Criado JE. Human follicular fluid from superovulated women inhibits progesterone receptor-dependent gonadotropin-releasing hormone self-priming in an estrous cycle-dependent manner in the rat. J Endocrinol Invest 2010; 33:564-70. [PMID: 20479571 DOI: 10.1007/bf03346649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
These experiments investigated the involvement of gonadotrope progesterone receptor (PR) in the effects of the putative gonadotropin surge-attenuating factor (GnSAF) on gonadotropin (LH and FSH) secretion. Human follicular fluids (hFF) used in this study were aspirated from follicles in gonadotropin-treated women for in vitro fertilization. Samples were subjected to two-fold charcoal extraction of steroid hormones and two-fold inhibin immunoprecipitation. Gonadotropin secretion parameters were assessed by specific radioimmunoassays. In the first experiment, the effects of hFF on both basal and GnRH-stimulated gonadotropin secretion and GnRH self-priming were studied in incubated hemipituitaries from rats on each day of the 4-day estrous cycle. hFF inhibited only GnRH self-priming in pituitaries from rats in diestrus. In the second experiment, immunohistochemical PR expression and action were evaluated in pituitaries from rats in diestrus. PR-positive (PR10A9 antibody) gonadotropes were detected (4-5/field 40x), and antiprogestins added to the incubation media blocked the ligand-independent (GnRH) activation of PR effects on GnRH selfpriming. Finally, the third experiment evaluated the effects of hFF on P-induced potentiation of GnRH-stimulated LH secretion. GnSAF bioactivity, as evidenced by inhibition of PR-induced potentiation of GnRH-stimulated LH secretion, was found in diestrous pituitaries incubated with hFF. The results indicate that GnSAF attenuated GnRH-dependent LH secretion in diestrus through the inhibition of PR-dependent GnRH self-priming.
Collapse
Affiliation(s)
- A Gordon
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mohler ML, Narayanan R, Coss CC, Hu K, He Y, Wu Z, Hong SS, Hwang DJ, Miller DD, Dalton JT. Estrogen receptor beta selective nonsteroidal estrogens: seeking clinical indications. Expert Opin Ther Pat 2010; 20:507-34. [PMID: 20302450 DOI: 10.1517/13543771003657164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Nonsteroidal estrogens have been known since the 1930s. However, the relatively recent (1996) discovery of estrogen receptor subtype beta (ERbeta) suggested a possible paradigm shift away from SERM-like selectivity. Selective ERbeta agonism would potentially allow expansion of estrogenic targeting into new indications (discussed herein) currently precluded by the thrombogenic and hyperproliferative effects of nonselective estrogens. AREAS COVERED IN THIS REVIEW ERbeta agonist design has been very successful. Pharmacophores for ERbeta selective nonsteroidal estrogens are generally diphenolic compounds that achieve an inter-phenolic distance and geometry similar to 17beta-estradiol with few restraints on the nature of the element linking the phenols (or phenol mimetics). The tremendously chemodiverse ERbeta agonist patent literature is reviewed, segregating the agonists into structurally similar compounds based on their interphenolic linking elements. WHAT THE READER WILL GAIN A comprehensive understanding of the chemotype landscape of this field and an assessment of its maturation. TAKE HOME MESSAGE Subtype selective ERbeta agonist therapy seems very promising. However, more clinical testing is needed to firmly establish its therapeutic potential. At this point, ERbeta is a promising target in search of an indication.
Collapse
|
28
|
The response of creatine kinase specific activity in rat pituitary to estrogenic compounds and vitamin d less-calcemic analogs. Int J Cell Biol 2010; 2009:273651. [PMID: 20111624 PMCID: PMC2809427 DOI: 10.1155/2009/273651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/24/2009] [Indexed: 11/18/2022] Open
Abstract
We examined the response of rat female pituitary at different metabolic stages to treatments with estrogenic compounds and vitamin D analogs. Immature or ovariectomized (Ovx) female rats responded by increased creatine kinase specific activity (CK) to estradiol-17β (E2), genistein (G), daidzein (D), biochainin A (BA), quecertin (Qu), carboxy- G (cG), carboxy- BA (cBA), and raloxifene (Ral). The response was inhibited when Ral was injected together with the estrogens. CK was increased when hormones were injected daily into Ovx rats for 4 different time periods. Pretreatment with the less-calcemic vitamin D analogs JK 1624 F2-2 (JKF) or QW 1624 F2-2 (QW) followed by estrogenic injection resulted in increased response and sensitivity to E2 and loss of inhibition of E2 by Ral. CK was also increased by feeding with E2 or licorice or its components dose- and time- dependent in immature or Ovxrats. Diabetic female rats did not respond to increased doses of E2. In conclusion, rat female pituitary is estrogens-responsive organ, suggesting to considerits response for HRT in postmenopausal women for both beneficial and hazardous aspects.
Collapse
|
29
|
Gordon A, Garrido-Gracia JC, Aguilar R, Sánchez-Criado JE. Ovarian stimulation with FSH in the rat reduces proestrous GnRH-dependent LH secretion through a dual mechanism: Inhibition of LH synthesis and release. Neurosci Lett 2009; 460:219-22. [DOI: 10.1016/j.neulet.2009.05.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/24/2009] [Accepted: 05/19/2009] [Indexed: 11/27/2022]
|
30
|
Gordon A, Aguilar R, Garrido-Gracia JC, Guil-Luna S, Sanchez-Cespedes R, Millan Y, Martin de las Mulas J, Sanchez-Criado JE. Activation of estrogen receptor- induces gonadotroph progesterone receptor expression and action differently in young and middle-aged ovariectomized rats. Hum Reprod 2009; 24:2618-28. [DOI: 10.1093/humrep/dep237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Byrnes EM, Babb JA, Bridges RS. Differential expression of oestrogen receptor alpha following reproductive experience in young and middle-aged female rats. J Neuroendocrinol 2009; 21:550-7. [PMID: 19500225 PMCID: PMC3104393 DOI: 10.1111/j.1365-2826.2009.01874.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reproductive experience (i.e. pregnancy and lactation) alters a number of physiological and behavioural endpoints, many of which are related to reproductive function and are regulated by oestrogen. For example, reproductive experience significantly attenuates the oestradiol-induced prolactin surge on the afternoon of pro-oestrous and circulating oestradiol levels are reduced at this time. Although parity-related effects on oestrogen receptor (ER) alpha have been observed within the anterior pituitary, there are currently no data regarding possible parity-induced alterations in ERalpha in the brain. Thus, the present study aimed to examine the effect of parity on the expression of ERalpha in reproductively relevant brain regions. Moreover, because previous findings have demonstrated that the long-term effects of reproductive experience are often oestrous cycle-dependent, ERalpha was examined at two stages of the oestrous cycle (i.e. dioestrous and pro-oestrous). Finally, because the expression of ERalpha is significantly influenced by age, both young and middle-aged females were included in the present study. ERalpha status was determined using immunohistochemistry in select brain regions involved in the regulation of reproductive behaviour in age-matched, cycling primiparous (i.e. one pregnancy and lactation) and nulliparous females as well as in age-matched, noncycling (i.e. persistent oestrous) 12 month-old primiparous and nulliparous females. Significant shifts in ERalpha cell numbers were observed in the medial preoptic area and medial amygdala as a consequence of reproductive experience in an oestrous-dependent manner. These findings indicate that significant changes in ERalpha activity occur in the brain as a function of reproductive experience.
Collapse
Affiliation(s)
- E M Byrnes
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| | | | | |
Collapse
|
32
|
Ng Y, Wolfe A, Novaira HJ, Radovick S. Estrogen regulation of gene expression in GnRH neurons. Mol Cell Endocrinol 2009; 303:25-33. [PMID: 19428988 PMCID: PMC2680765 DOI: 10.1016/j.mce.2009.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 12/27/2022]
Abstract
Estrogen plays an essential role in the regulation of the female reproductive hormone axis, and specifically is a major regulator of GnRH neuronal function in the female brain. GnRH neuronal cell lines were used to explore the direct effects of estradiol on gene expression in GnRH neurons. The presence of estrogen receptor (ER) binding sites was established by a receptor-binding assay, and estrogen receptor alpha and beta mRNA were identified in GN11 cells and ERbeta in GT1-7 cells using RT-PCR analysis of mRNA. ERalpha was more abundantly expressed in GN11 cells than ERbeta as assessed by real-time PCR. Additionally, GN11 cells expressed significantly more of both ERalpha and beta than GT1-7 cells. Functional studies in GN11 and GT1-7 demonstrated estrogen down regulation of endogenous mouse GnRH mRNA levels using quantitative real-time PCR (qRT-PCR). Correspondingly, estradiol also reduced secretion of GnRH from both the GN11 and GT1-7 cell lines. Since estradiol has been shown to regulate progesterone receptor (PR) expression; similar studies were performed demonstrating an estradiol mediated increase in PR in both cell lines. Estradiol regulation of ER expression was also explored and these studies indicated that estradiol decreased ERalpha and ERbeta mRNA levels in a dose-dependent manner in GN11 and GT1-7 cells. These effects were blocked by the addition of the estrogen receptor antagonist ICI 182,780. Both PPT, a specific ERalpha agonist, and DPN, a specific ERbeta agonist, inhibited GnRH gene expression in GN11 cells, but only DPN inhibited GnRH gene expression in GT1-7 cells, consistent with their undetectable levels of ERalpha expression. These studies characterize a direct inhibitory effect of estradiol on GnRH in GnRH neurons, and a direct stimulatory effect of estradiol on PR gene expression. In addition, the agonist studies indicate that there is a functional overlap of ERalpha and ERbeta regulation in GnRH neurons. These studies may give insight into the molecular regulation of estrogen negative feedback in the central reproductive axis.
Collapse
Affiliation(s)
| | | | - Horacio J. Novaira
- Johns Hopkins University School of Medicine Department of Pediatrics, Division of Endocrinology
| | - Sally Radovick
- Johns Hopkins University School of Medicine Department of Pediatrics, Division of Endocrinology
| |
Collapse
|
33
|
Patisaul HB, Burke KT, Hinkle RE, Adewale HB, Shea D. Systemic administration of diarylpropionitrile (DPN) or phytoestrogens does not affect anxiety-related behaviors in gonadally intact male rats. Horm Behav 2009; 55:319-28. [PMID: 19071129 PMCID: PMC2654784 DOI: 10.1016/j.yhbeh.2008.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/23/2008] [Accepted: 11/11/2008] [Indexed: 11/26/2022]
Abstract
The development of highly selective agonists for the two major subforms of the estrogen receptor (ERalpha and ERbeta) has produced new experimental methodologies for delineating the distinct functional role each plays in neurobehavioral biology. It has also been suggested that these compounds might have the potential to treat estrogen influenced behavioral disorders, such as anxiety and depression. Prior work has established that the ERbeta agonist, diarylpropionitrile (DPN) is anxiolytic in gonadectomized animals of both sexes, but whether or not this effect persists in gonadally intact individuals is unknown. Isoflavone phytoestrogens, also potent but less selective ERbeta agonists, have also been shown to influence anxiety in multiple species and are becoming more readily available to humans as health supplements. Here we determined the effects of 0.5, 1 or 2 mg/kg DPN, 1 mg/kg of the ERalpha agonist propyl-pyrazole-triol (PPT), 3 or 20 mg/kg of the isoflavone equol (EQ) and 3 or 20 mg/kg of the isoflavone polyphenol resveratrol (RES) on anxiety behavior in the gonadally intact male rat using the light/dark box and the elevated plus maze. We first determined that DPN can be successfully administered either orally or by subcutaneous injection, although plasma DPN levels are significantly lower if given orally. Once injected, plasma levels peak rapidly and then decline to baseline levels within 3 h of administration. For the behavioral studies, all compounds were injected and the animals were tested within 3 h of treatment. None of the compounds, at any of the doses, significantly altered anxiety-related behavior. Plasma testosterone levels were also not significantly altered suggesting that these compounds do not interfere with endogenous androgen levels. The results suggest that the efficacy of ERbeta agonists may depend on gonadal status. Therefore the therapeutic potential of ERbeta selective agonists to treat mood disorders may be limited.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
34
|
Kim JJ, Choi YM, Choung SH, Yoon SH, Lee GH, Moon SY. Estrogen receptor beta gene +1730 G/A polymorphism in women with polycystic ovary syndrome. Fertil Steril 2009; 93:1942-7. [PMID: 19185861 DOI: 10.1016/j.fertnstert.2008.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/11/2008] [Accepted: 12/10/2008] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate whether the +1730 G/A polymorphism in the estrogen receptor (ER)-beta gene is associated with susceptibility to polycystic ovary syndrome (PCOS). DESIGN Case-control study. SETTING University Department of Obstetrics and Gynecology. PATIENT(S) Women with (n = 138) or without (n = 290) PCOS. INTERVENTION(S) Genotyping was performed by polymerase chain reaction-restriction fragment-length polymorphism analysis. MAIN OUTCOME MEASURE(S) Genotype distribution and allele frequency of the +1730 G/A polymorphism in the ER-beta gene. RESULT(S) There was a significant difference in the genotype distribution between the patients with PCOS and controls (non-GG rates were 22.1% for patients with PCOS and 36.6% for controls). There was also a significant difference in the G and A allele frequencies between these two groups (11.7% in patients vs. 19.1% in controls with A allele). But in patients with PCOS there were no significant differences in the serum levels of hormones, biochemical variables, or ovarian morphology between GG and non-GG genotypes. CONCLUSION(S) The ER-beta gene +1730 G/A polymorphism may be associated with pathophysiologic aberrancies involved in PCOS.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Gordon A, Garrido-Gracia JC, Aguilar R, Guil-Luna S, Millán Y, de las Mulas JM, Sánchez-Criado JE. Ovarian stimulation with FSH reduces phosphorylation of gonadotrope progesterone receptor and LH secretion in the rat. Reproduction 2009; 137:151-9. [DOI: 10.1530/rep-08-0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Administration of human FSH (hFSH) to cyclic rats during the dioestrous phase attenuates progesterone receptor (PR)-dependent events of the preovulatory LH surge in pro-oestrus. The increased bioactivity of the putative ovarian gonadotropin surge inhibiting/attenuating factor induced by hFSH treatment is not associated with a decrease in PR protein expression, and the possibility of its association at a PR posttranslational effect has been raised. The present experiments aimed to analyse PR phosphorylation status in the gonadotrope of rats with impaired LH secretion induced byin vivohFSH injection. Two experimental approaches were used. First, incubated pro-oestrous pituitaries from hFSH-injected cycling and oestrogen-treated ovariectomized (OVX) rats were used to analyze the effect of calyculin, an inhibitor of intracellular phosphatases, on PR-dependent LH release, which was measured in the incubation medium by RIA. Second, pituitaries taken from hFSH-injected intact cycling and OVX rats and later incubated with P or GNRH1 were used to assess the phosphorylation rate of gonadotrope. The latter was analysed in formalin-fixed, paraffin-embedded tissue sections by immunohistochemistry using a MAB that recognizes the phosphorylated (p) form of PR at Ser294. Calyculin reduced the ovary-mediated inhibition of hFSH in GNRH1-stimulated LH secretion. In addition, the immunohistochemical expression of pSer294 PR was significantly reduced after ovarian stimulation with hFSH in pituitaries from pro-oestrous rats incubated with P or GNRH1. Altogether, these results suggested that the ovarian-dependent inhibitory effect of FSH injection on the preovulatory LH secretion in the rat may involve an increase in dephosphorylation of PR.
Collapse
|
36
|
Roa J, Vigo E, Castellano JM, Gaytan F, García-Galiano D, Navarro VM, Aguilar E, Dijcks FA, Ederveen AGH, Pinilla L, van Noort PI, Tena-Sempere M. Follicle-stimulating hormone responses to kisspeptin in the female rat at the preovulatory period: modulation by estrogen and progesterone receptors. Endocrinology 2008; 149:5783-90. [PMID: 18635654 DOI: 10.1210/en.2008-0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovulation is triggered by the preovulatory surge of gonadotropins that, in rodents, is defined by the concomitant rise in circulating LH and FSH at the afternoon of proestrus (primary surge), followed by persistently elevated FSH levels at early estrus (secondary surge). In recent years, kisspeptins, products of the KiSS-1 gene that act via G protein-coupled receptor 54, have emerged as an essential hypothalamic conduit for the generation of the preovulatory LH surge by conveying positive feedback effects of estradiol onto GnRH neurons, an event that involves not only estradiol-induced transcription of the KiSS-1 gene at the anteroventral periventricular nucleus but also its ability to modulate GnRH/LH responses to kisspeptin. However, little is known about the potential modulation of FSH responsiveness to kisspeptin by sex steroids in the cyclic female. We report herein analyses on the consequences of selective blockade of estrogen receptors (ER)-alpha and -beta, as well as progesterone receptor (PR), on the ovulatory surges of FSH and their modulation by kisspeptin. Antagonism of ERalpha or PR equally blunted the primary and secondary surges of FSH and nullified FSH responses to kisspeptin at the preovulatory period. Conversely, selective blockade of ERbeta failed to induce major changes in terms of endogenous FSH surges, yet it decreased FSH responses to exogenous kisspeptin. In contrast, FSH responses to GnRH were fully conserved after ERbeta blockade and partially preserved after inhibition of ERalpha and PR signaling. Finally, secondary FSH secretion was rescued by kisspeptin in females with selective blockade of ERalpha but not PR. In sum, our results substantiate a concurrent, indispensable role of ERalpha and PR in the generation of FSH surges and the stimulation of FSH responses to kisspeptin at the ovulatory period. In addition, our data suggest that ERbeta might operate as a subtle, positive modulator of the preovulatory FSH responses to kisspeptin, a role that is opposite to its putative inhibitory action on kisspeptin-induced LH secretion and might contribute to the dissociation of gonadotropin secretion at the ovulatory phase in the cyclic female rat.
Collapse
Affiliation(s)
- J Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, Dijcks FA, Ederveen AGH, Pinilla L, van Noort PI, Tena-Sempere M. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology 2008; 149:1627-37. [PMID: 18174277 DOI: 10.1210/en.2007-1540] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovulation is triggered by the preovulatory rise of gonadotropins, which is in turn elicited by the preceding increase in circulating estrogen. Kisspeptins, ligands of G protein-coupled receptor 54 encoded by the KiSS-1 gene, have emerged as potent stimulators of GnRH/LH secretion, and KiSS-1 neurons at the anteroventral periventricular nucleus have been shown to be involved in the generation of preovulatory LH surge, estrogen being a potent elicitor of KiSS-1 gene expression selectively at the anteroventral periventricular nucleus. Whether, in addition to transcriptional effects, estrogen influences other aspects of kisspeptin-induced GnRH/LH release in the female remains unexplored. We provide herein evidence for the specific roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of LH responses to kisspeptin and the generation of the preovulatory surge. Selective blockade of ERalpha in cyclic females blunted LH responses to kisspeptin, eliminated the endogenous preovulatory rise of LH, and blocked ovulation. In contrast, antagonism of ERbeta failed to cause major changes in terms of LH surge and ovulatory rate but significantly augmented acute LH responses to kisspeptin. Notably, defective LH secretion and ovulation after ERalpha blockade were not observed after GnRH stimulation, which elicited maximal acute (<2 h) LH responses regardless of ERalpha/ERbeta signaling. In addition, net LH secretion in response to kisspeptin was decreased by ovariectomy and increased after selective activation of ERalpha but not ERbeta. Altogether, our data document the prominent positive role of ERalpha in the regulation of GnRH/LH responsiveness to kisspeptin and, thereby, ovulation. In addition, our results disclose the putative function of ERbeta as negative modifier of GnRH/LH response to kisspeptin, a phenomenon that might contribute to partially restraining LH secretion at certain physiological states.
Collapse
Affiliation(s)
- J Roa
- Physiology Section, Department of Cell Biology, Physiology, and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cosma M, Bailey J, Miles JM, Bowers CY, Veldhuis JD. Pituitary and/or peripheral estrogen-receptor alpha regulates follicle-stimulating hormone secretion, whereas central estrogenic pathways direct growth hormone and prolactin secretion in postmenopausal women. J Clin Endocrinol Metab 2008; 93:951-8. [PMID: 18089703 PMCID: PMC2266945 DOI: 10.1210/jc.2007-1322] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Estradiol (E(2)) stimulates GH and prolactin secretion and suppresses FSH secretion in postmenopausal women. Whether central nervous system (CNS) or pituitary mechanisms (or both) mediate such actions is not known. OBJECTIVE Our objective was to distinguish between hypothalamic and pituitary or peripheral (hepatic) actions of E2. SETTING This study was performed in an academic medical center. DESIGN This was a double-blind, prospectively randomized, placebo (Pl)-controlled study. METHODS The capability of a selective, noncompetitive, non-CNS permeant estrogen receptor (ER)-alpha antagonist, fulvestrant (FUL) to antagonize the effects of transdermal E2 and Pl on GH, prolactin, and FSH secretion was assessed in 43 women (ages 50-80 yr) in a four parallel-cohort study. Each woman received four secretagogue infusions to stimulate GH secretion. IGF-I and its binding proteins were measured secondarily. RESULTS Administration of Pl/E2 increased GH and prolactin concentrations by 100%, and suppressed FSH concentrations by more than 50% (each P<or=0.004 compared with Pl/Pl). Treatment with FUL/E2 compared with Pl/E2 partially relieved estrogen's inhibition of FSH secretion (P=0.041), without altering E2's stimulation of prolactin secretion. ANOVA further revealed that: 1) estrogen milieu (P=0.014) and secretagogue type (P<0.001) each determined GH concentrations; 2) FUL/Pl suppressed IGF-I concentrations (P<0.001); 3) FUL abrogated estrogen's elevation of IGF binding protein-1 concentrations (P<0.001); and 4) FUL did not oppose estrogen's suppression of IGF binding protein-3 concentrations (P<0.001). SUMMARY AND CONCLUSIONS Responses to a non-CNS permeant ERalpha antagonist indicate that E2 inhibits FSH secretion in part via pituitary/peripheral ERalpha, drives prolactin output via nonpituitary/nonperipheral-ERalpha effects, and directs GH secretion and IGF-I-binding proteins by complex mechanisms.
Collapse
Affiliation(s)
- Mihaela Cosma
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, 200 First Street S.W., Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
39
|
Richard N, Galmiche G, Corvaisier S, Caraty A, Kottler ML. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. J Neuroendocrinol 2008; 20:381-93. [PMID: 18208554 DOI: 10.1111/j.1365-2826.2008.01653.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kisspeptin, the product derived from KiSS-1, and its cognate receptor, GPR54, both exert a role in the neuroendocrine control of reproduction by regulating gonadotrophin-releasing hormone (GnRH) secretion. In the present study, we demonstrate, using dual immunofluorescence with specific antibodies, that the KiSS-1 and GPR54 genes are both expressed in rat gonadotrophs. All luteinising hormone beta-immunoreactive (LH beta-ir) cells were stained by the KiSS-1 antibody but some kisspeptin-ir cells were not LH beta positive; thus, we cannot exclude the possibility that kisspeptins are expressed in other pituitary cells. All GPR54-ir are co-localised with LH beta cells, but only a subset of LH beta cells are stained with the GPR54 antibody. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression of KiSS-1 and GPR54 is differentially regulated by steroids. In the female, KiSS-1 mRNA levels dramatically decreased following ovariectomy (OVX), and this decrease was prevented by administration of 17beta-oestradiol (E(2)), but not by administration of GnRH antagonist or agonist. Administration of E(2) in OVX rats receiving either GnRH antagonist or agonist clearly shows that E(2) acts directly on the pituitary to positively control KiSS-1 expression. In OVX rats, administration of the selective oestrogen receptor (ER)alpha ligand propylpyrazoletriol, but not the selective ER beta ligand diarylpropionitrile, mimics this effect. By contrast, our study shows that GPR54 expression is positively regulated by GnRH and negatively controlled by chronic exposure to E(2). In summary, our data document for the first time that, in the female rat pituitary, KiSS-1 expression is up-regulated by oestradiol, similarly to that seen in the anteroventral periventricular nucleus of the hypothalamus. Conversely, GPR54 is up-regulated by GnRH, which exclusively targets gonadotrophs.
Collapse
Affiliation(s)
- N Richard
- Département Génétique et Reproduction, Unité de Formation et de Recherche de médecine, Centre Hospitalier Universitaire, Caen, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
41
|
Gieske MC, Kim HJ, Legan SJ, Koo Y, Krust A, Chambon P, Ko C. Pituitary gonadotroph estrogen receptor-alpha is necessary for fertility in females. Endocrinology 2008; 149:20-7. [PMID: 17947360 PMCID: PMC2194602 DOI: 10.1210/en.2007-1084] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens play a central role in regulating female reproduction throughout the reproductive axis, and the pituitary is one of the major targets of estrogen action. We hypothesized that estrogen receptor alpha (ERalpha) mediates estrogen action in the pituitary gonadotroph. To test this hypothesis, we generated a mouse line with a selective ERalpha deletion in the gonadotropin alpha-subunit (alphaGSU)-expressing pituitary cells (pituitary-specific ERalpha knockout; ERalpha(flox/flox) alphaGSU(cre)). Although the ERalpha(flox/flox) alphaGSU(cre) female mice maintain a basal level of serum LH and FSH and their ovulatory capacity is comparable to that in controls, they do not display regular estrous cycles and are infertile, indicating a potential disorder in regulating LH and/or FSH secretion. The ERalpha(flox/flox) alphaGSU(cre) female mice express equivalent levels of LHbeta and alphaGSU mRNA compared with wild-type mice as determined by microarray analysis. Taken together, these findings indicate that pituitary gonadotroph ERalpha carries out the effects of estrogens with regard to estrous cyclicity and ultimately fertility.
Collapse
Affiliation(s)
- Mary C Gieske
- Centre of Excellence in Reproductive Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Farr TD, Carswell HV, Gsell W, Macrae IM. Estrogen receptor beta agonist diarylpropiolnitrile (DPN) does not mediate neuroprotection in a rat model of permanent focal ischemia. Brain Res 2007; 1185:275-82. [DOI: 10.1016/j.brainres.2007.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
43
|
Arreguin-Arevalo JA, Davis TL, Nett TM. Differential Modulation of Gonadotropin Secretion by Selective Estrogen Receptor 1 and Estrogen Receptor 2 Agonists in Ovariectomized Ewes1. Biol Reprod 2007; 77:320-8. [PMID: 17429013 DOI: 10.1095/biolreprod.107.060046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.
Collapse
|
44
|
Li J, McMurray RW. Effects of estrogen receptor subtype-selective agonists on autoimmune disease in lupus-prone NZB/NZW F1 mouse model. Clin Immunol 2007; 123:219-26. [PMID: 17336162 DOI: 10.1016/j.clim.2007.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 11/22/2022]
Abstract
The specific roles of estrogen receptor (ER) subtypes alpha and beta in mediating estrogen's influences on lupus autoimmunity are unknown. Herein we found that ovariectomized NZB/NZW F1 mice treated with propyl pyrazole triol (ERalpha-selective agonist) had significantly shorter survival, earlier development of albuminuria, higher serum concentrations of total IgG and prolactin, increased serum levels of anti-DNA IgG3, IgG2a and IgG2b and decreased anti-DNA IgG1 level compared to vehicle controls. In contrast, diarylpropionitrile (ERbeta-selective agonist) administration significantly decreased serum anti-DNA IgG2b level but did not significantly affect serum levels of other anti-DNA IgG subclasses, serum total IgG or prolactin concentration, mortality or the occurrence of albuminuria. These findings suggest that ERalpha activation plays the predominant and immunostimulatory role in estrogen-mediated modulation of lupus while ERbeta activation appears to have a slightly immunosuppressive effect on this disease. ERalpha activation coincidentally increased serum prolactin concentrations and may accelerate lupus disease activity also through this mechanism.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, the First Hospital Affiliated to China Medical University, Shenyang, 110001, P.R. China
| | | |
Collapse
|
45
|
Bowe J, Li XF, Kinsey-Jones J, Heyerick A, Brain S, Milligan S, O'Byrne K. The hop phytoestrogen, 8-prenylnaringenin, reverses the ovariectomy-induced rise in skin temperature in an animal model of menopausal hot flushes. J Endocrinol 2006; 191:399-405. [PMID: 17088409 PMCID: PMC1635969 DOI: 10.1677/joe.1.06919] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms underlying menopausal hot flushes are poorly understood, although it is generally assumed they result from disturbances of thermoregulatory centres in the hypothalamus. 8-Prenylnaringenin (8-PN) has been identified as a potent phytoestrogen in hops (Humulus lupulus) and there are claims that hop-containing preparations can reduce hot flushes. We have investigated the site of action of 8-PN in a rat model of menopausal hot flushes, in which the tail skin temperature (TST) is increased after oestrogen withdrawal induced by ovariectomy. Daily s.c. administration of either 17beta-oestradiol (E2; 4 microg/kg) or 8-PN (400 microg/kg) significantly reduced the elevated TST after 2 days of treatment. Subcutaneous co-administration of either E2 or 8-PN with the oestrogen receptor (ER) antagonist, ICI 182,780 (200 microg/kg), which is thought not to cross the blood-brain barrier, completely blocked the effect of E2 and 8-PN on TST. The ERalpha- and ERbeta-specific agonists, 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (100 microg/kg) and 2,3-bis(4-hydroxyphenyl)-propionitrile (60 microg/kg) respectively, both significantly reversed the raised TST in ovariectomised rats. These observations suggest that the regulation of the vasomotor response by oestrogens and phytoestrogens is mediated, at least in part, by peripheral mechanisms involving both ERalpha and ERbeta.
Collapse
Affiliation(s)
- James Bowe
- Division of Reproductive and Endocrinology, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
| | - Xiao Feng Li
- Division of Reproductive and Endocrinology, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
| | - James Kinsey-Jones
- Division of Reproductive and Endocrinology, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
| | - Arne Heyerick
- Laboratory of Pharmacognosy and Phytochemistry, Ghent University, Faculty of Pharmaceutical Sciences, Harelbekestraat 72, B-9000, Ghent, Belgium
| | - Susan Brain
- Cardiovascular Division, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
| | - Stuart Milligan
- Division of Reproductive and Endocrinology, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
| | - Kevin O'Byrne
- Division of Reproductive and Endocrinology, New Hunt’s House, King’s College London, Guy’s Campus, London SE1 1UL, United Kingdom
- Corresponding Author: Kevin O’Byrne, 2.36D New Hunt’s House, Guy’s Campus, King’s College London, London, UK, SE1 1UL. kevin.o’ , Tel: +44 (0)20-7848-6286, Fax: +44 (0)20-7848-6220
| |
Collapse
|
46
|
Garas A, Trypsianis G, Kallitsaris A, Milingos S, Messinis IE. Oestradiol stimulates prolactin secretion in women through oestrogen receptors. Clin Endocrinol (Oxf) 2006; 65:638-42. [PMID: 17054466 DOI: 10.1111/j.1365-2265.2006.02642.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To examine the effects of clomiphene and raloxifene on basal and GnRH-induced prolactin (PRL) secretion in postmenopausal women. DESIGN Postmenopausal women participated in two experimental procedures a month apart. In one experiment they received raloxifene (180 mg/day) (R-Exp) and in the other clomiphene (150 mg/day) (Cl-Exp). In Group 1, the women (n = 8) received raloxifene or clomiphene for 30 days plus oestradiol via skin patches (100 microg/24 h) for the last 10 days. In Group 2, the women (n = 8) received oestradiol for 30 days plus raloxifene (R-Exp) or clomiphene (Cl-Exp) for the last 10 days. The pituitary response to GnRH (100 microg i.v.) was investigated in all women on days 0, 10, 20 and 30 of each experiment. PATIENTS The study included 16 healthy postmenopausal volunteer women aged 56-60 years. MEASUREMENTS Basal levels of PRL and the area under the curve (AUC) of DeltaPRL response to GnRH were calculated. RESULTS In Group 1, basal levels of PRL and the area under the curve (AUC) of PRL response to GnRH did not change significantly in both experiments. In Group 2, during both experiments basal levels of PRL and the AUC of PRL increased significantly on days 10 (P < 0.05) and 20 (P < 0.05) as compared to day 0 and then they decreased significantly on day 30 as compared to day 20 (P < 0.05). CONCLUSIONS Our study demonstrates for the first time that raloxifene and clomiphene affect the secretion of PRL in postmenopausal women in a similar manner. It is suggested that oestradiol stimulates the secretion of PRL in women by acting through oestrogen receptors.
Collapse
Affiliation(s)
- A Garas
- Department of Obstetrics and Gynaecology, University of Thessalia, Medical School, Larissa, Greece
| | | | | | | | | |
Collapse
|
47
|
Aguilar R, Bellido C, Garrido-Gracia JC, Alonso R, Sánchez-Criado JE. Estradiol and its membrane-impermeable conjugate estradiol-BSA inhibit tamoxifen-stimulated prolactin secretion in incubated rat pituitaries. Reproduction 2006; 131:763-9. [PMID: 16595727 DOI: 10.1530/rep.1.00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the absence of estrogen (E), the selective E receptor modulator tamoxifen (TX) has two agonist effects in the rat pituitary: induction of progesterone receptor (PR)-dependent GnRH self-priming in the gonadotrope, and stimulation of prolactin (PRL) secretion in the lactotrope. TX-induced gonadotropin (GnRH) self-priming is absent when 10(-8) M estradiol-17beta (E2) is added to the incubation medium of pituitaries from TX-treated rats. The present experiments investigated whether PR-independent PRL release into the incubation medium of pituitaries from TX-treated ovariectomized (OVX) rats was affected by E2, and the effect of different ER ligands (ICI182780, TX, estradiol-17alpha, E2 -BSA) on TX-stimulated PRL secretion. Moreover, the effect of E2 on TRH-stimulated PRL secretion in pituitaries collected from estradiol benzoate- and TX-treated OVX rats was studied. It was found that: i) incubation with E2 supressed the PRL releasing effect of injected TX; ii) whereas coincubation with the pure anti-E type II ICI182780 antagonized the inhibitory effect of E2, coincubation with the anti-E type I TX did not; iii) estradiol-17alpha lacked inhibitory action, whereas a dose-dependent inhibitory effect of both E2 and E2 -BSA was noticed; and iv) TRH stimulatory effect on PRL release in pituitaries from TX-treated rats was blocked by addition of E2 to the medium. Taken together, these data argue in favor of the presence of specific membrane recognition sites for E in the lactotrope involved in steroid-specific E2 inhibition of TX-stimulated PRL secretion.
Collapse
Affiliation(s)
- R Aguilar
- Department of Cellular Biology, Physiology and Immunology, University of Córdoba Avda, Menendez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | |
Collapse
|
48
|
Abstract
For many decades, androgens have dominated endocrine research in hair growth control. Androgen metabolism and the androgen receptor currently are the key targets for systemic, pharmacological hair growth control in clinical medicine. However, it has long been known that estrogens also profoundly alter hair follicle growth and cycling by binding to locally expressed high-affinity estrogen receptors (ERs). Besides altering the transcription of genes with estrogen-responsive elements, 17beta-estradiol (E2) also modifies androgen metabolism within distinct subunits of the pilosebaceous unit (i.e., hair follicle and sebaceous gland). The latter displays prominent aromatase activity, the key enzyme for androgen conversion to E2, and is both an estrogen source and target. Here, we chart the recent renaissance of estrogen research in hair research; explain why the hair follicle offers an ideal, clinically relevant test system for studying the role of sex steroids, their receptors, and interactions in neuroectodermal-mesodermal interaction systems in general; and illustrate how it can be exploited to identify novel functions and signaling cross talks of ER-mediated signaling. Emphasizing the long-underestimated complexity and species-, gender-, and site-dependence of E2-induced biological effects on the hair follicle, we explore targets for pharmacological intervention in clinically relevant hair cycle manipulation, ranging from androgenetic alopecia and hirsutism via telogen effluvium to chemotherapy-induced alopecia. While defining major open questions, unsolved clinical challenges, and particularly promising research avenues in this area, we argue that the time has come to pay estrogen-mediated signaling the full attention it deserves in future endocrinological therapy of common hair growth disorders.
Collapse
Affiliation(s)
- Ulrich Ohnemus
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
49
|
Li J, McMurray RW. Effects of estrogen receptor subtype-selective agonists on immune functions in ovariectomized mice. Int Immunopharmacol 2006; 6:1413-23. [PMID: 16846835 DOI: 10.1016/j.intimp.2006.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/03/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022]
Abstract
Estrogens have multiple influences on immune functions. Estrogen receptors (ERs) have two distinct subtypes - alpha and beta. To explore the specific roles of each ER subtype in estrogen-mediated immunomodulation, we investigated the effects of ER subtype-selective agonists on immune functions in ovariectomized Balb/c mice. Treatment with ERalpha-selective agonist propyl pyrazole triol (PPT) caused thymic atrophy and significant changes in thymic CD4/CD8 phenotypic profile. In contrast, ERbeta-selective agonist diarylpropionitrile (DPN) alone had no effect on thymic weight, cellularity or CD4/CD8 phenotype expression. When coadministered with PPT, DPN partially antagonized PPT-evoked decrease in thymic cellularity and also partially attenuated PPT-induced shifts in thymic T-cell phenotype. These results indicate that ERalpha plays a predominant role in estrogen-induced thymic atrophy and ERbeta activation may partially down-regulate ERalpha-mediated effects on thymic cellularity and T-cell phenotype expression. In addition, PPT administration induced a reduction in the percentage of mature B cells in the spleen, and enhanced IFN-gamma production but suppressed IL-6 production from in vitro Con A-stimulated splenocytes as estradiol (E(2)) did, whereas DPN treatment had no effects either alone or with PPT, suggesting ERalpha mediates these estrogen actions. Treatment with PPT or DPN did not augment anti-DNP antibody production after DNP-KLH immunization as E(2) did, implying that not merely one ER signaling pathway is involved in mediating estrogen's effects on specific humoral immune responses. Our study further indicates ER subtype-selective agonists provide a novel approach to explore each ER subtype-mediated immunomodulation.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, the First Hospital Affiliated to China Medical University, Shenyang 110001, PR China
| | | |
Collapse
|
50
|
Galmiche G, Richard N, Corvaisier S, Kottler ML. The expression of aromatase in gonadotropes is regulated by estradiol and gonadotropin-releasing hormone in a manner that differs from the regulation of luteinizing hormone. Endocrinology 2006; 147:4234-44. [PMID: 16763067 DOI: 10.1210/en.2005-1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of estrogens is dual: they suppress basal expression of gonadotropins and enhance GnRH responsiveness at the time of the LH surge. Estrogens are synthesized by cytochrome P450 aromatase (P450arom), encoded by the cyp19 gene. We focused on the cyp19 gene in rat and showed that it is expressed in gonadotropes through promoters PII and PI.f, using RT-PCR and dual fluorescence labeling with anti-P450arom and -LH antibodies. Real-time PCR quantification revealed that aromatase mRNA levels varied during the estrous cycle and were significantly increased after ovariectomy. This effect is prevented by estradiol (E2) as well as GnRH antagonist administration, suggesting that GnRH may mediate the steroid effect. Interestingly, the long-acting GnRH agonist that induces LH desensitization does not modify aromatase expression in ovariectomized rats. Administration of E2 in ovariectomized rats receiving either GnRH agonist or GnRH antagonist clearly demonstrated that E2 also reduces cyp19 expression at the pituitary level. The selective estrogen receptor-alpha ligand propyl pyrazole triol and the selective estrogen receptor-beta ligand diarylpropionitrile both mimic the E2 effects. By contrast, propyl pyrazole triol reduces LH beta expression whereas diarylpropionitrile does not. In addition, using transient transfection assays in an L beta T2 gonadotrope cell line, we provided evidence that GnRH agonist stimulated, in a dose-dependant manner, cyp19 promoters PII and PI.f and that E2 decreased the GnRH stimulation. In conclusion, our data demonstrate that GnRH is an important signal in the regulation of cyp19 in gonadotrope cells. Both common and specific intracellular factors were responsible for dissociated variations of LH beta and cyp19 expression.
Collapse
Affiliation(s)
- Guillaume Galmiche
- Département Génétique et Reproduction, UFR de médecine, F-14033 Caen, France.
| | | | | | | |
Collapse
|