1
|
Bae EH, Lim SY, Yang EM, Oh TR, Choi HS, Kim CS, Ma SK, Kim B, Han KD, Kim SW. The effects of socioeconomic status on major adverse cardiovascular events: a nationwide population-based cohort study. Kidney Res Clin Pract 2023; 42:229-242. [PMID: 37037483 PMCID: PMC10085725 DOI: 10.23876/j.krcp.21.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/28/2022] [Indexed: 04/03/2023] Open
Abstract
Background: Although multiple factors influence the risk of major adverse cardiovascular events (MACE), the effects of socioeconomic status on MACE in the presence and absence of renal dysfunction (RD) have not been comprehensively explored in Korea. Methods: We examined the effects of socioeconomic status on MACE in individuals with and without RD. The data of 44,473 Koreans from 2008 to 2017 were obtained from the Health Care Big Data Platform of the Ministry of Health and Welfare in Korea. Their socioeconomic status was assessed using a socioeconomic score (SES) based on marital status, education, household income, and occupation. The incidence of myocardial infarction (MI), stroke, and death was compared according to SES level (0–4). Multiple linear regression analysis was used to evaluate the hazard ratios and 95% confidence intervals for outcomes based on participant SES. Results: MI risk was only affected by education level. The participants’ income, education, and SES affected their stroke risk, whereas death was associated with all four socioeconomic factors. The incidence of stroke and death increased as SES worsened (from 0 to 4). SES was positively related to risk of stroke and death in participants without RD. SES did not affect MI, stroke, or death in participants with RD. Conclusion: A low socioeconomic status is associated with risk of stroke and death, especially in individuals without RD.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sang Yup Lim
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
- Correspondence: Kyung-Do Han Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea. E-mail:
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
- Soo Wan Kim Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Dong-gu, Gwangju 61469, Republic of Korea. E-mail:
| |
Collapse
|
2
|
Hering L, Rahman M, Hoch H, Markó L, Yang G, Reil A, Yakoub M, Gupta V, Potthoff SA, Vonend O, Ralph DL, Gurley SB, McDonough AA, Rump LC, Stegbauer J. α2A-Adrenoceptors Modulate Renal Sympathetic Neurotransmission and Protect against Hypertensive Kidney Disease. J Am Soc Nephrol 2020; 31:783-798. [PMID: 32086277 DOI: 10.1681/asn.2019060599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased nerve activity causes hypertension and kidney disease. Recent studies suggest that renal denervation reduces BP in patients with hypertension. Renal NE release is regulated by prejunctional α2A-adrenoceptors on sympathetic nerves, and α2A-adrenoceptors act as autoreceptors by binding endogenous NE to inhibit its own release. However, the role of α2A-adrenoceptors in the pathogenesis of hypertensive kidney disease is unknown. METHODS We investigated effects of α2A-adrenoceptor-regulated renal NE release on the development of angiotensin II-dependent hypertension and kidney disease. In uninephrectomized wild-type and α2A-adrenoceptor-knockout mice, we induced hypertensive kidney disease by infusing AngII for 28 days. RESULTS Urinary NE excretion and BP did not differ between normotensive α2A-adrenoceptor-knockout mice and wild-type mice at baseline. However, NE excretion increased during AngII treatment, with the knockout mice displaying NE levels that were significantly higher than those of wild-type mice. Accordingly, the α2A-adrenoceptor-knockout mice exhibited a systolic BP increase, which was about 40 mm Hg higher than that found in wild-type mice, and more extensive kidney damage. In isolated kidneys, AngII-enhanced renal nerve stimulation induced NE release and pressor responses to a greater extent in kidneys from α2A-adrenoceptor-knockout mice. Activation of specific sodium transporters accompanied the exaggerated hypertensive BP response in α2A-adrenoceptor-deficient kidneys. These effects depend on renal nerves, as demonstrated by reduced severity of AngII-mediated hypertension and improved kidney function observed in α2A-adrenoceptor-knockout mice after renal denervation. CONCLUSIONS Our findings reveal a protective role of prejunctional inhibitory α2A-adrenoceptors in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.
Collapse
Affiliation(s)
- Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Henning Hoch
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbruck Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Charité Medical Faculty Berlin, Berlin, Germany
| | - Guang Yang
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Annika Reil
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vikram Gupta
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Vonend
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Nierenzentrum, DKD Helios Medical Center, Wiesbaden, Germany
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Susan B Gurley
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Lars C Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
| |
Collapse
|
3
|
Aschrafi A, Berndt A, Kowalak JA, Gale JR, Gioio AE, Kaplan BB. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine β-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem 2019; 150:666-677. [PMID: 31306490 PMCID: PMC7164330 DOI: 10.1111/jnc.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
In the sympatho-adrenal system, angiotensin II (Ang II) acts as a key neuromodulatory component. At sympathetic nerve terminals, Ang II influences sympathetic transmission by enhancing norepinephrine (NE) synthesis, facilitating NE release and inhibiting NE uptake. Previously, it was demonstrated that tyrosine hydroxylase (TH) mRNA is trafficked to the distal axons of primary superior cervical ganglia (SCG) neurons, directed by a cis-acting regulatory element (i.e. zipcode) located in the 3'UTR of the transcript. Results of metabolic labeling studies established that the mRNA is locally translated. It was further shown that the axonal trafficking of the mRNA encoding the enzyme plays an important role in mediating dopamine (DA) and NE synthesis and may facilitate the maintenance of axonal catecholamine levels. In the present study, the hypothesis was tested that Ang II induces NE synthesis in rat primary SCG neurons via the modulation of the trafficking of the mRNAs encoding the catecholamine synthesizing enzymes TH and dopamine β-hydroxylase (DBH). Treatment of SCG neurons with the Ang II receptor type 1 (AT1R) agonist, L-162,313, increases the axonal levels of TH and DBH mRNA and protein and results in elevated NE levels. Conversely, treatment of rat SCG neurons with the AT1R antagonist, Eprosartan, abolished the L-162,313-mediated increase in axonal levels of TH and DBH mRNA and protein. In a first attempt to identify the proteins involved in the Ang II-mediated axonal transport of TH mRNA, we used a biotinylated 50-nucleotide TH RNA zipcode as bait in the affinity purification of TH zipcode-associated proteins. Mass spectrometric analysis of the TH zipcode ribonucleoprotein (RNP) complex immune-purified from SCG neurons led to the identification of 163 somal and 127 axonal proteins functionally involved in binding nucleic acids, the translational machinery or acting as subunits of cytoskeletal and motor proteins. Surprisingly, immune-purification of the TH axonal trafficking complex, results in the acquisition of DBH mRNA, suggesting that these mRNAs maybe transported to the axon together, possibly in the same RNP complex. Taken together, our results point to a novel mechanism by which Ang II participates in the regulation of axonal synthesis of NE by modulating the local trafficking and expression of TH and DBH, two key enzymes involved in the catecholamine biosynthetic pathway.
Collapse
Affiliation(s)
| | | | | | - Jenna R Gale
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony E Gioio
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barry B Kaplan
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Wang Y, Seto SW, Golledge J. Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 2012; 19:187-98. [DOI: 10.1007/s10741-012-9368-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
PTH-receptors regulate norepinephrine release in human heart and kidney. ACTA ACUST UNITED AC 2011; 171:35-42. [DOI: 10.1016/j.regpep.2011.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/16/2011] [Accepted: 06/26/2011] [Indexed: 01/05/2023]
|
7
|
Schulte K, Kumar M, Zajac JM, Schlicker E. Noradrenaline release in rodent tissues is inhibited by interleukin-1β but is not affected by urotensin II, MCH, NPW and NPFF. Pharmacol Rep 2011; 63:102-11. [DOI: 10.1016/s1734-1140(11)70404-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/22/2010] [Indexed: 11/29/2022]
|
8
|
Zamo FS, Lacchini S, Mostarda C, Chiavegatto S, Silva ICM, Oliveira EM, Irigoyen MC. Hemodynamic, morphometric and autonomic patterns in hypertensive rats - Renin-Angiotensin system modulation. Clinics (Sao Paulo) 2010; 65:85-92. [PMID: 20126350 PMCID: PMC2815287 DOI: 10.1590/s1807-59322010000100013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/22/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS To investigate the effects of the time-course of hypertension over 1) hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate); 2) left ventricular hypertrophy; and 3) local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS MALE SPONTANEOUSLY HYPERTENSIVE RATS WERE RANDOMIZED INTO TWO GROUPS: young (n=13) and adult (n=12). Hemodynamic signals (blood pressure, heart rate), blood pressure variability (BPV) and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g), by myocyte diameter (mum) and by relative fibrosis area (RFA, %). ACE and ACE2 activities were measured by fluorometry (UF/min), and plasma renin activity (PRA) was assessed by a radioimmunoassay (ng/mL/h). Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU). RESULTS The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent established end-organ damage is reached.
Collapse
Affiliation(s)
- Fernanda S Zamo
- Nephrology Department, Federal University of São Paulo - São Paulo/SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
Sonalker PA, Tofovic SP, Jackson EK. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 2008; 34:1307-12. [PMID: 17973873 DOI: 10.1111/j.1440-1681.2007.04747.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. The renal bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1) is expressed only in the thick ascending limb and selectively traffics from intracellular vesicles (IVs) to apical plasma membranes (PMs), where BSC-1 regulates sodium reabsorption. We showed previously that in kidneys from adult spontaneously hypertensive rats (SHR; model of essential hypertension) total protein expression of BSC-1 was higher compared with kidneys from normotensive Wistar-Kyoto (WKY) rats. However, whether this change is associated with an increased trafficking of BSC-1 from IVs to PMs is unknown. The goal of the present study was to test the hypothesis that the increase in total renal BSC-1 protein expression in SHR is accompanied by an augmented distribution of BSC-1 from IVs to PMs. 2. To test the hypothesis, we obtained renal tissue from the inner stripe of the outer medulla (ISOM; enriched in thick ascending limbs) and isolated IVs and PMs from this tissue by differential centrifugation. Total BSC-1 protein expression in ISOM and BSC-1 protein expression in ISOM IVs and PMs were measured by semiquantitative western blotting in SHR and aged-matched WKY rats at different ages and stages of hypertension. 3. At 5 weeks of age, SHR were prehypertensive (mean arterial blood pressure (MABP) 97 mmHg). At this age, both the total abundance and cellular distribution of BSC-1 were similar in ISOM from SHR and WKY rats. 4. As SHR aged, their hypertension progressed (MABP 137 and 195 mmHg at 8 and 14 weeks of age, respectively). Associated with the increase in MABP was an increase in both steady state protein levels of ISOM BSC-1 and the distribution of ISOM BSC-1 to PMs (four- and sixfold increases at 8 and 14 weeks of age, respectively, compared with age-matched WKY rats; P < 0.001). 5. Using semiquantitative reverse transcription-polymerase chain reaction, BSC-1 mRNA was measured and was found not to differ between SHR and WKY rat ISOM at any age or level of MABP. 6. We conclude that as SHR transition from prehypertensive to established hypertension, there is a marked increase in the total expression of BSC-1 in ISOM that is not related to increases in steady state levels of BSC-1 mRNA and therefore unlikely to be due to changes in either the rate of BSC-1 gene transcription or the stability of BSC-1 mRNA. This suggests changes in either translational efficiency or BSC-1 protein stability in SHR. 7. We also conclude that the age/hypertension-related increase in BSC-1 protein levels in ISOM is accompanied by an equally marked increased trafficking of BSC-1 to PMs in SHR ISOM.
Collapse
Affiliation(s)
- Prajakta A Sonalker
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
10
|
Stegbauer J, Kuczka Y, Vonend O, Quack I, Sellin L, Patzak A, Steege A, Langnaese K, Rump LC. Endothelial nitric oxide synthase is predominantly involved in angiotensin II modulation of renal vascular resistance and norepinephrine release. Am J Physiol Regul Integr Comp Physiol 2007; 294:R421-8. [PMID: 18046021 DOI: 10.1152/ajpregu.00481.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Klinik für Nephrologie der Universitätsklinik Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dharmani M, Mustafa MR, Achike FI, Sim MK. Effects of angiotensin 1-7 on the actions of angiotensin II in the renal and mesenteric vasculature of hypertensive and streptozotocin-induced diabetic rats. Eur J Pharmacol 2007; 561:144-50. [PMID: 17320855 DOI: 10.1016/j.ejphar.2007.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/09/2007] [Accepted: 01/12/2007] [Indexed: 11/17/2022]
Abstract
Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
Collapse
Affiliation(s)
- Murugan Dharmani
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
12
|
Stegbauer J, Vonend O, Habbel S, Quack I, Sellin L, Gross V, Rump LC. Angiotensin II modulates renal sympathetic neurotransmission through nitric oxide in AT2 receptor knockout mice. J Hypertens 2005; 23:1691-8. [PMID: 16093914 DOI: 10.1097/01.hjh.0000179763.02583.8e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Angiotensin (Ang) II enhances renal sympathetic neurotransmission and stimulates nitric oxide (NO) release. The present study investigates whether Ang II-mediated modulation of sympathetic neurotransmission is dependent on NO production in the kidney. AT2 -/y receptor-deficient mice are used to identify the Ang II receptor subtype involved. METHODS Mice kidneys were isolated and perfused with Krebs-Henseleit solution. Drugs were added to the perfusion solution in a cumulative manner. Release of endogenous noradrenaline (NA) was measured by high-performance liquid chromatography (HPLC). AT1 receptor expression was analysed by real-time polymerase chain reaction (PCR). RESULTS Ang II (0.01-30 nmol/l) dose dependently increased pressor responses in kidneys of AT2 -/y mice and wild-type (AT2 +/y) mice. Maximal pressor responses and EC50 values for Ang II was greater in AT2 -/y than in AT2 +/y mice. L-NAME (N(omega)-nitro-L-arginine methyl ester; 0.3 mmol/l) enhanced Ang II-induced pressor responses in both strains. In AT2 -/y mice, Ang II-induced facilitation of NA release was more pronounced than in AT2 +/y mice. L-NAME reduced Ang II-mediated facilitation of NA release in both strains. This reduction was more potent in AT2 -/y mice. In kidneys of AT2 -/y mice the AT1 receptor expression was significantly upregulated. CONCLUSION These results suggest that activation of AT1 receptors by Ang II releases NO in mouse kidney to modulate sympathetic neurotransmission. Since AT1 receptors are upregulated in AT2 -/y mice kidneys, NO-dependent effects were greater in these mice. Thus, NO seems to play an important modulatory role for renal sympathetic neurotransmission.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Department of Nephrology, Marienhospital Herne, Ruhr University Bochum, Hölkeskampring 40, D-44625 Herne, Germany
| | | | | | | | | | | | | |
Collapse
|