1
|
Huang M, Li J, Wang Y, Jia L, Guo J, Wu Z, Gao S, Li J, Zhang Y. Ethanol exposure exacerbates 4-nitroquinoline-1-oxide induced esophageal carcinogenesis and induces invasive carcinoma with muscularis propria infiltration in a mouse model. Toxicol Appl Pharmacol 2024; 489:117006. [PMID: 38880189 DOI: 10.1016/j.taap.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers worldwide. Most ESCC patients are diagnosed at an advanced stage; however, current research on in vivo animal models accurately reflecting their clinical presentation is lacking. Alcohol consumption is a major risk factor for ESCC and has been used in several disease models for disease induction. In this study, we used 4-nitroquinoline-1-oxide in combination with ethanol to induce an in vivo ESCC mouse model. Esophageal tissues were stained with hematoxylin and eosin for histopathological examination and lesion scoring. In cellular experiments, cell adhesion and migration invasion ability were observed using phalloidin staining, cell scratch and transwell assays, respectively, and the expression of epithelial-mesenchymal transition-related markers was detected using quantitative reverse transcription polymerase chain reaction and western blotting. The results showed that ethanol-exposed mice lost more weight and had an increased number of esophageal nodules. Histological examination revealed that the lesion scores of the ethanol-exposed esophageal samples were significantly higher than those of the unexposed esophageal samples. Furthermore, ethanol-exposed esophageal cancer samples had more severe lesions with infiltration of tumor cells into the muscularis propria. In vitro cellular experiments showed that ethanol exposure induced cytoskeletal microfilament formation, promoted cell migration invasion elevated the expression of N-cadherin and Snail, and decreased the expression of E-cadherin. In conclusion, ethanol exposure exacerbates ESCC, promotes tumor cell infiltration into the muscularis propria, and could be an effective agent for establishing innovative models of invasive carcinoma.
Collapse
Affiliation(s)
- Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Jia
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jinge Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
2
|
Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber-DeCarli Diet-A Flagship Model for Experimental Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1828-1840. [DOI: 10.1111/acer.13840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Feifei Guo
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Raquel Benedé-Ubieto
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Yulia A. Nevzorova
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
- Department of Internal Medicine III; University Hospital RWTH Aachen; Aachen Germany
| |
Collapse
|
3
|
da Silva DM, Martins JLR, de Oliveira DR, Florentino IF, da Silva DPB, dos Santos FCA, Costa EA. Effect of allantoin on experimentally induced gastric ulcers: Pathways of gastroprotection. Eur J Pharmacol 2018; 821:68-78. [DOI: 10.1016/j.ejphar.2017.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
4
|
Gastroprotective Value of Berries: Evidences from Methanolic Extracts of Morus nigra and Rubus niveus Fruits. Gastroenterol Res Pract 2017; 2017:7089697. [PMID: 29085427 PMCID: PMC5632455 DOI: 10.1155/2017/7089697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the gastroprotective value of the methanol extracts from fruits of Morus nigra L. (black mulberry (MEMN)) and Rubus niveus Thunb (raspberry (MERN)). The total phenolic compounds and flavonoids were measured, as well as the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenger activity. The gastroprotective effects of the extracts against 60% ethanol/0.3 M HCl were evaluated in mice. After that, the lipid hydroperoxides and reduced glutathione levels at ulcerated tissue were determined. The effects of extracts on H+/K+-ATPase activity were also verified. The extracts exhibited high contents of polyphenols; however, MERN presented 1.5-fold higher levels. The presence of flavonoids also was confirmed. In addition, MEMN (IC50 = 13.74 μg/mL) and MERN (IC50 = 14.97 μg/mL) scavenged DPPH radical. The MEMN reduced the ulcer area only at 300 mg/kg (p.o.) by 64.06%. Interestingly, MERN decreased the ulcer area in a superior potency (ED50 = 20.88 mg/kg), reducing the ulcer area by 81.86% at 300 mg/kg, and increased the gastric mucin levels. The antioxidant effects of extracts were evidenced by reduced lipoperoxides and increased reduction of glutathione amount in the gastric mucosa. However, MEMN or MERN did not change the H+/K+-ATPase activity. These results confirm that M. nigra and R. niveus are berries with a gastroprotective value by strengthening of gastric protective factors.
Collapse
|
5
|
An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein. Cent Eur J Immunol 2016; 41:54-63. [PMID: 27095923 PMCID: PMC4829821 DOI: 10.5114/ceji.2016.58816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Chronic pancreatitis (CP) is an intractable and multi-factorial disorder. Developing appropriate animal models is an essential step in pancreatitis research, and the best ones are those which mimic the human disorder both aetiologically and pathophysiologically. The current study presents an optimised protocol for creating a murine model of CP, which mimics the initial steps of chronic pancreatitis in alcohol chronic pancreatitis and compares it with two other mouse models treated with cerulein or ethanol alone. Material and methods Thirty-two male C57BL/6 mice were randomly selected, divided into four groups, and treated intraperitoneally with saline (10 ml/kg, control group), ethanol (3 g/kg; 30% v/v), cerulein (50 µg/kg), or ethanol + cerulein, for six weeks. Histopathological and immunohistochemical assays for chronic pancreatitis index along with real-time PCR assessments for mRNA levels of inflammatory cytokines and fibrogenic markers were conducted to verify the CP induction. Results The results indicated that CP index (CPI) was significantly increased in ethanol-cerulein mice compared to the saline, ethanol, and cerulein groups (p < 0.001). Interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), α-smooth muscle actin (α-SMA), and myeloperoxidase activity were also significantly greater in both cerulein and ethanol-cerulein groups than in the saline treated animals (p < 0.001). Immunohistochemical analysis revealed enhanced expression of TGF-β and α-SMA in ethanol-cerulein mice compared to the saline group. Conclusions Intraperitoneal (IP) injections of ethanol and cerulein could successfully induce CP in mice. IP injections of ethanol provide higher reproducibility compared to ethanol feeding. The model is simple, non-invasive, reproducible, and time-saving. Since the protocol mimics the initial phases of CP development in alcoholics, it can be used for investigating basic mechanisms and testing new therapies.
Collapse
|
6
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
7
|
Oral administration of betaine ameliorates ethanol-induced gastric injury in rats through its antioxidant effects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13596-014-0158-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Aqueous extract of purple Bordeaux radish, Raphanus sativus L. ameliorates ethanol-induced gastric injury in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13596-013-0131-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Abstract
Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD) in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation, and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, which also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.
Collapse
Affiliation(s)
- Veronica L Massey
- Department of Pharmacology and Toxicology, University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center Louisville, KY, USA
| | | |
Collapse
|
10
|
ZHU H, JIA Z, MISRA H, LI YR. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis 2012; 13:133-142. [PMID: 22356308 PMCID: PMC3297983 DOI: 10.1111/j.1751-2980.2011.00569.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality in the United States and Europe. The spectrum of ALD ranges from fatty liver to alcoholic hepatitis and cirrhosis, which may eventually lead to hepatocellular carcinoma. In developed countries as well as developing nations, ALD is a major cause of end-stage liver disease that requires liver transplantation. The most effective therapy for ALD is alcohol abstinence; however, for individuals with severe ALD and those in whom alcohol abstinence is not achievable, targeted therapies are absolutely necessary. In this context, advances of our understanding of the pathophysiology of ALD over the past two decades have contributed to the development of therapeutic modalities (e.g., pentoxifylline and corticosteroids) for the disease although the efficacy of the available treatments remains limited. This article is intended to succinctly review the recent experimental and clinical findings of the involvement of oxidative stress and redox signaling in the pathophysiology of ALD and the development of mechanistically based antioxidant modalities targeting oxidative stress and redox signaling mechanisms. The biochemical and cellular sources of reactive oxygen and nitrogen species (ROS/RNS) and dysregulated redox signaling pathways associated with alcohol consumption are particularly discussed to provide insight into the molecular basis of hepatic cell dysfunction and destruction as well as tissue remodeling underlying ALD.
Collapse
Affiliation(s)
- Hong ZHU
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| | - Zhenquan JIA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Hara MISRA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Y. Robert LI
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences,, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| |
Collapse
|
11
|
Patsenker E, Stoll M, Millonig G, Agaimy A, Wissniowski T, Schneider V, Mueller S, Brenneisen R, Seitz HK, Ocker M, Stickel F. Cannabinoid receptor type I modulates alcohol-induced liver fibrosis. Mol Med 2011; 17:1285-94. [PMID: 21863215 DOI: 10.2119/molmed.2011.00149] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/18/2011] [Indexed: 12/19/2022] Open
Abstract
The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H₂O₂, endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H₂O₂, as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5-10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bagyánszki M, Torfs P, Krecsmarik M, Fekete E, Adriaensen D, Van Nassauw L, Timmermans JP, Kroese ABA. Chronic alcohol consumption induces an overproduction of NO by nNOS- and iNOS-expressing myenteric neurons in the murine small intestine. Neurogastroenterol Motil 2011; 23:e237-48. [PMID: 21470341 DOI: 10.1111/j.1365-2982.2011.01707.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There are indications that alterations in the nitric oxide (NO) system of relaxation mediate gastrointestinal motor disturbances induced by chronic alcohol consumption (CAC). As CAC is known to inhibit the motility of the mouse small intestine, we investigated in this model if CAC affects basal NO synthesis by myenteric neurons and which NOS isoforms are involved. METHODS The instantaneous NO synthesis of individual neurons was optically measured in whole-mount preparations loaded with the NO synthesis indicator DAF-FM, and the expression of nNOS, iNOS and eNOS was determined by immunohistochemistry. KEY RESULTS The DAF-FM recordings showed that CAC induced an increase in neuronal NO synthesis (absolute fluorescence: control 34±12; CAC 140±56; mean±SD; P<0.0004). Neurons of control mice expressed the nNOS (29±3% of total) and iNOS (28±1%) isoforms. eNOS expression was observed in <0.5% of the neurons. Chronic alcohol consumption caused an increase in the proportion of iNOS-expressing neurons (to 33±5%; P<0.01) and a decrease in nNOS-expressing neurons (to 22±3%; P<0.0001), without altering the proportion of NO-producing neurons (control 55±13%; CAC 56± 11%; P=0.82). CONCLUSIONS & INFERENCES Chronic alcohol consumption induces a marked increase in NO synthesis by jejunal myenteric neurons, accompanied by an up-regulation of iNOS-expressing neurons and a downregulation of nNOS neurons. We conclude that the overproduction of NO may be a direct cause of gastrointestinal motility disturbances.
Collapse
Affiliation(s)
- M Bagyánszki
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
D'Souza El-Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM, de Villiers WJS, Lott AJ, Plackett TP, Lanzke N, Meadows GG. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 2010; 34:1489-511. [PMID: 20586763 PMCID: PMC2929290 DOI: 10.1111/j.1530-0277.2010.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, University of Kentucky and Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Charrier A, Brigstock DR. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis. J Transl Med 2010; 90:1179-88. [PMID: 20368699 PMCID: PMC2901405 DOI: 10.1038/labinvest.2010.82] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for 3 weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared with control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared with other treatment groups as well as increased frequency of alpha-smooth muscle actin and desmin-positive PSC, which also showed significantly enhanced CTGF protein production. Expression of mRNA for collagen alpha1(I), alpha-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP.
Collapse
Affiliation(s)
- Alyssa Charrier
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH 43205,Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus OH 43212
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH 43205,Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus OH 43212,Departments of Surgery and Molecular & Cellular Biochemistry, The Ohio State University, Columbus OH 43212,Address correspondence to: David R. Brigstock, Room WA2022, Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus OH 43205. Tel 614-355-2824; Fax 614-722-5892;
| |
Collapse
|
15
|
Gyamfi MA, Wan YJY. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010; 235:547-60. [PMID: 20463294 DOI: 10.1258/ebm.2009.009249] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption causes fatty liver, which can lead to inflammation, fibrosis, cirrhosis and even liver cancer. The molecular mechanisms by which ethanol exerts its damaging effects are extensively studied, but not fully understood. It is now evident that nuclear receptors (NRs), including retinoid x receptor alpha and peroxisome proliferator-activated receptors, play key roles in the regulation of lipid homeostasis and inflammation during the pathogenesis of alcoholic liver disease (ALD). Given their pivotal roles in physiological processes, NRs represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases including ALD. This review summarizes the factors that contribute to ALD and the molecular mechanisms of ALD with a focus on the role of NRs.
Collapse
Affiliation(s)
- Maxwell Afari Gyamfi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160-7417, USA
| | | |
Collapse
|
16
|
Abstract
Alcohol abuse is a global problem due to the financial burden on society and the healthcare system. While the harmful health effects of chronic alcohol abuse are well established, more recent data suggest that acute alcohol consumption also affects human wellbeing. Thus, there is a need for research models in order to fully understand the effect of acute alcohol abuse on different body systems and organs. The present manuscript summarizes the interdisciplinary advantages and disadvantages of currently available human and non-human models of acute alcohol abuse, and identifies their suitability for biomedical research.
Collapse
|
17
|
Li K, Xu L, Kulkarni AA, Perkins DI, Haworth IS, Davies DL. Ethanol inhibits functional activity of the human intestinal dipeptide transporter hPepT1 expressed in Xenopus oocytes. Alcohol Clin Exp Res 2008; 32:777-84. [PMID: 18336632 DOI: 10.1111/j.1530-0277.2008.00636.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pathological effects of high alcohol (ethanol) consumption on gastrointestinal and hepatic systems are well recognized. However, the effects of ethanol intake on gastric and intestinal absorption and transport systems remain unclear. The present study investigates the effects of ethanol on the human peptide transporter 1 (hPepT1) which mediates the transport of di-and tripeptides as well as several orally administered peptidomimetic drugs such as beta-lactam antibiotics (e.g., penicillin), angiotensin-converting enzyme inhibitors, the anti-neoplastic agent bestatin, and prodrugs of acyclovir. METHODS Xenopus oocytes were injected with hPepT1 cRNA and incubated for 3 to 10 days. Currents induced by glycyl-sarcosine (Gly-Sar), Ala-Ala (dipeptides), penicillin and enalapril measured in the presence or absence of ethanol were determined using an 8-channel 2-electrode voltage clamp system, with a membrane potential of -70 mV and 11 voltage steps of 100 milliseconds (from +50 mV to -150 mV in -20 mV increments). RESULTS Ethanol (200 mM) inhibited Gly-Sar and Ala-Ala currents by 42 and 30%, respectively, with IC(50)s of 184 and 371 mM, respectively. Ethanol reduced maximal transport capacity (I(max)) of hPepT1 for Gly-Sar without affecting Gly-Sar binding affinity (K(0.5) and Hill coefficient). Penicillin- and enalapril-induced currents were significantly less than those induced by dipeptides and were not inhibited by ethanol. CONCLUSION Ethanol significantly reduced transport of dipeptides via a reduction in transport capacity, rather than competing for binding sites in hPepT1. Ethanol inhibition or alteration of transport function may be a primary causative factor contributing to both the nutritional deficits as well as the immunological deficiencies that many alcoholics experience including alcohol liver disease and brain damage.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Yang H, McNearney TA, Chu R, Lu Y, Ren Y, Yeomans DC, Wilson SP, Westlund KN. Enkephalin-encoding herpes simplex virus-1 decreases inflammation and hotplate sensitivity in a chronic pancreatitis model. Mol Pain 2008; 4:8. [PMID: 18307791 PMCID: PMC2292157 DOI: 10.1186/1744-8069-4-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/28/2008] [Indexed: 12/15/2022] Open
Abstract
Background A chronic pancreatitis model was developed in young male Lewis rats fed a high-fat and alcohol liquid diet beginning at three weeks. The model was used to assess time course and efficacy of a replication defective herpes simplex virus type 1 vector construct delivering human cDNA encoding preproenkephalin (HSV-ENK). Results Most surprising was the relative lack of inflammation and tissue disruption after HSV-ENK treatment compared to the histopathology consistent with pancreatitis (inflammatory cell infiltration, edema, acinar cell hypertrophy, fibrosis) present as a result of the high-fat and alcohol diet in controls. The HSV-ENK vector delivered to the pancreatic surface at week 3 reversed pancreatitis-associated hotplate hypersensitive responses for 4–6 weeks, while control virus encoding β-galactosidase cDNA (HSV-β-gal) had no effect. Increased Fos expression seen bilaterally in pain processing regions in control animals with pancreatitis was absent in HSV-ENK-treated animals. Increased met-enkephalin staining was evident in pancreas and lower thoracic spinal cord laminae I–II in the HSV-ENK-treated rats. Conclusion Thus, clear evidence is provided that site specific HSV-mediated transgene delivery of human cDNA encoding preproenkephalin ameliorates pancreatic inflammation and significantly reduces hypersensitive hotplate responses for an extended time consistent with HSV mediated overexpression, without tolerance or evidence of other opiate related side effects.
Collapse
Affiliation(s)
- Hong Yang
- Dept of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Spee B, Arends B, van den Ingh TSGAM, Roskams T, Rothuizen J, Penning LC. Major HGF-mediated regenerative pathways are similarly affected in human and canine cirrhosis. COMPARATIVE HEPATOLOGY 2007; 6:8. [PMID: 17672890 PMCID: PMC1971050 DOI: 10.1186/1476-5926-6-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 07/31/2007] [Indexed: 01/25/2023]
Abstract
Background The availability of non-rodent animal models for human cirrhosis is limited. We investigated whether privately-owned dogs (Canis familiaris) are potential model animals for liver disease focusing on regenerative pathways. Several forms of canine hepatitis were examined: Acute Hepatitis (AH), Chronic Hepatitis (CH), Lobular Dissecting Hepatitis (LDH, a specific form of micronodulair cirrhosis), and Cirrhosis (CIRR). Canine cirrhotic samples were compared to human liver samples from cirrhotic stages of alcoholic liver disease (hALC) and chronic hepatitis C infection (hHC). Results Canine specific mRNA expression of the regenerative hepatocyte growth factor (HGF) signaling pathway and relevant down-stream pathways were measured by semi-quantitative PCR and Western blot (STAT3, PKB, ERK1/2, and p38-MAPK). In all canine groups, levels of c-MET mRNA (proto-oncogenic receptor for HGF) were significantly decreased (p < 0.05). Surprisingly, ERK1/2 and p38-MAPK were increased in CH and LDH. In the human liver samples Western blotting indicated a high homology of down-stream pathways between different etiologies (hALC and hHC). Similarly activated pathways were found in CIRR, hALC, and hHC. Conclusion In canine hepatitis and cirrhosis the major regenerative downstream pathways were activated. Signaling pathways are similarly activated in human cirrhotic liver samples, irrespective of the differences in etiology in the human samples (alcohol abuse and HCV-infection). Therefore, canine hepatitis and cirrhosis could be an important clinical model to evaluate novel interventions prior to human clinical trials.
Collapse
Affiliation(s)
- Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Belgium
| | - Brigitte Arends
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Ted SGAM van den Ingh
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Tania Roskams
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Belgium
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
20
|
Abstract
Acute pancreatitis (AP) is characterized by edema, acinar cell necrosis, hemorrhage, and severe inflammation of the pancreas. Patients with AP present with elevated blood and urine levels of pancreatic digestive enzymes, such as amylase and lipase. Severe AP may lead to systemic inflammatory response syndrome and multiorgan dysfunction syndrome, which account for the high mortality rate of AP. Although most (>80%) cases of AP are associated with gallstones and alcoholism, some are idiopathic. Although the pathogenesis of AP has not yet been elucidated, a common feature is the premature activation of trypsinogen within pancreatic tissues, which triggers autodigestion of the gland. Recent advances in basic research suggest that etiologic factors including cyclooxygenase-2, substance P, and angiotensin II may have novel roles in this disease. Basic research data obtained thus far have been based on animal models of AP ranging from mild edematous pancreatitis to severe necrotizing pancreatitis. In view of this, an adequate selection of experimental animal models is of paramount importance. Notwithstanding these animal models, it should be emphasized that none of these models mimic the clinical situation where varying degrees of severity usually occur. In this review, commonly used animal models of AP will be critically evaluated. A discussion of recent advances in our knowledge about AP risk factors is also included.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|