1
|
Tamburro RF, Thomas NJ, Ceneviva GD, Dettorre MD, Brummel GL, Lucking SE. A prospective assessment of the effect of aminophylline therapy on urine output and inflammation in critically ill children. Front Pediatr 2014; 2:59. [PMID: 24971305 PMCID: PMC4053781 DOI: 10.3389/fped.2014.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/25/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Aminophylline, an established bronchodilator, is also purported to be an effective diuretic and anti-inflammatory agent. However, the data to support these contentions are scant. We conducted a prospective, open-label, single arm, single center study to assess the hypothesis that aminophylline increases urine output and decreases inflammation in critically ill children. METHODS Children less than 18 years of age admitted to the pediatric intensive care unit who were prescribed aminophylline over a 24-h period were eligible for study. The use and dosing of aminophylline was independent of the study and was at the discretion of the clinical team. Data analyzed consisted of demographics, diagnoses, medications, and markers of pulmonary function, renal function, and inflammation. Data were collected at baseline and at 24-h after aminophylline initiation with primary outcomes of change in urine output and inflammatory cytokine concentrations. RESULTS Thirty-five patients were studied. Urine output increased significantly with aminophylline use [median increase 0.5 mL/kg/h (IQR: -0.3, 1.3), p = 0.05] while blood urea nitrogen and creatinine concentrations remained unchanged. Among patients with elevated C-reactive protein concentrations, levels of both interleukin-6 (IL-6) and IL-10 decreased at 24 h of aminophylline therapy. There were no significant differences in pulmonary compliance or resistance among patients invasively ventilated at both time points. Side effects of aminophylline were detected in 7 of 35 patients. CONCLUSION Although no definitive conclusions can be drawn from this study, aminophylline may be a useful diuretic and effective anti-inflammatory medication in critically ill children. Given the incidence of side effects, the small sample size and the uncontrolled study design, further study is needed to inform the appropriate use of aminophylline in these children.
Collapse
Affiliation(s)
- Robert F Tamburro
- Department of Pediatrics, Division of Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Neal J Thomas
- Department of Pediatrics, Division of Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Gary D Ceneviva
- Department of Pediatrics, Division of Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Michael D Dettorre
- Department of Pediatrics, Division of Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Gretchen L Brummel
- Pharmacy Administration and Education Department, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Steven E Lucking
- Department of Pediatrics, Division of Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania State University College of Medicine , Hershey, PA , USA
| |
Collapse
|
2
|
Theophylline is able to partially revert cachexia in tumour-bearing rats. Nutr Metab (Lond) 2012; 9:76. [PMID: 22909172 PMCID: PMC3495887 DOI: 10.1186/1743-7075-9-76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/30/2012] [Indexed: 01/03/2023] Open
Abstract
Background and aims The aim of the present investigation was to examine the anti-wasting effects of theophylline (a methylxantine present in tea leaves) on a rat model of cancer cachexia. Methods The in vitro effects of the nutraceuticals on proteolysis were examined on muscle cell cultures submitted to hyperthermia. Individual muscle weights, muscle gene expression, body composition and cardiac function were measured in rats bearing the Yoshida AH-130 ascites hepatoma, following theophylline treatment. Results Theophylline treatment inhibited proteolysis in C2C12 cell line and resulted in an anti-proteolytic effect on muscle tissue (soleus and heart), which was associated with a decrease in circulating TNF-alpha levels and with a decreased proteolytic systems gene expression. Treatment with the nutraceutical also resulted in an improvement in body composition and cardiac function. Conclusion Theophylline - alone or in combination with drugs - may be a candidate molecule for the treatment of cancer cachexia.
Collapse
|
3
|
Kempe-Dustin JJ, Aboul-Fadl T, Christensen C, Palais R, Parsawar K, Gleich GJ, Wagner LA. Cell screening assay for identifying inhibitors of eosinophil proliferation. Drug Dev Res 2011. [DOI: 10.1002/ddr.20438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Abstract
Methylxanthines represent a unique class of drugs for the treatment of asthma. The methylxanthine theophylline has demonstrated efficacy in attenuating the three cardinal features of asthma - reversible airflow obstruction, airway hyperresponsiveness, and airway inflammation. At doses achieving relatively high serum levels in which toxic side effects are sometimes observed, direct bronchodilatory effects of theophylline are recognized. At lower serum concentrations, theophylline is a weak bronchodilator but retains its capacity as an immunomodulator, anti-inflammatory, and bronchoprotective drug. Intense investigation into the molecular mechanisms of action of theophylline has identified several different points of action. Phosphodiesterase inhibition and adenosine receptor antagonism have both been implicated in promoting airway smooth muscle relaxation and bronchodilation. Similar mechanisms of action may explain the inhibitory effects of theophylline on immune cells. At lower concentrations that fail to inhibit phosphodiesterase, effects on histone deacetylase activity are believed to contribute to the immunomodulatory actions of theophylline. Since anti-inflammatory and immunomodulatory effects of methylxanthines are realized at lower serum concentrations than are required for bronchodilation, theophylline's predominant role in asthma treatment is as a controller medication for chronic, persistent disease.
Collapse
Affiliation(s)
- Stephen L Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Lau JY, Oliver BG, Moir LM, Black JL, Burgess JK. Differential expression of peroxisome proliferator activated receptor gamma and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells. Respirology 2010; 15:303-12. [PMID: 20070588 DOI: 10.1111/j.1440-1843.2009.01683.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED PPARgamma levels in asthma- and non-asthma-derived airway smooth muscle cells and PPARgamma activation-induced cell proliferation were investigated. In the presence of FBS, PPARgamma levels were higher in subconfluent asthma-derived cells but lower in confluent cells compared with non-asthma-derived. However, PPARgamma activation did not alter cell proliferation. BACKGROUND AND OBJECTIVE Airway remodelling involves thickening of the airway smooth muscle (ASM) bulk. Proliferation of asthma-derived ASM cells is increased in vitro, but underlying mechanisms remain unknown. Peroxisome proliferators activated receptor-gamma (PPARgamma) regulates the cell cycle. It is suggested that PPARgamma agonists have anti-inflammatory effects, which may be valuable in the treatment of asthma, but information regarding their antiproliferative properties in ASM is lacking. Although corticosteroids reduce airway inflammation, in vitro they inhibit proliferation in only non-asthma ASM cells by reducing cyclin D1. We therefore investigated the effects of mitogenic stimulation (foetal bovine serum (FBS)), and a PPARgamma ligand (ciglitazone), on PPARgamma and cyclin D1 expression and proliferation of ASM cells. In addition, we examined the effects of ciglitazone on ASM cell proliferation. METHODS We assessed PPARgamma and cyclin D1 mRNA and protein levels using quantitative PCR and immunoblotting. Cell proliferation was assessed using bromodeoxyuridine uptake. RESULTS In the presence of 5% FBS, PPARgamma and cyclin D1 expression decreased over time in non-asthmatic cells but increased in asthmatic cells (compared with sub-confluent cells). FBS-induced proliferation of asthmatic cells increased at all time points, but occurred only at day 7 with non-asthmatic cells (compared with unstimulated time-matched control). Ciglitazone increased PPARgamma expression in both groups, but did not alter cell proliferation, while fluticasone increased PPARgamma protein only in asthmatic cells. CONCLUSIONS Although in the presence of a mitogenic stimulus, PPARgamma was differentially expressed in asthma- and non-asthma-derived ASM; its expression was not related to the increased proliferation observed in asthmatic ASM.
Collapse
Affiliation(s)
- Justine Y Lau
- Cooperative Research Centre for Asthma and Airways, The University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
6
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
7
|
Abstract
Asthma is a chronic inflammatory disease that affects about 300 million people worldwide, a total that is expected to rise to about 400 million over the next 15-20 years. Most asthmatic individuals respond well to the currently available treatments of inhaled corticosteroids and beta-adrenergic agonists; however, 5-10% have severe disease that responds poorly. Improved knowledge of asthma mechanisms has led to the recognition of different asthma phenotypes that might reflect distinct types of inflammation, explaining the effectiveness of anti-leucotrienes and the anti-IgE monoclonal antibody omalizumab in some patients. However, more knowledge of the inflammatory mechanisms within the airways is required. Improvements in available therapies-such as the development of fast-onset, once-a-day combination drugs with better safety profiles-will occur. Other drugs, such as inhaled p38 MAPK inhibitors and anti-oxidants, that target specific pathways or mediators could prove useful as monotherapies, but could also, in combination with corticosteroids, reduce the corticosteroid insensitivity often seen in severe asthma. Biological agents directed against the interleukin-13 pathway and new immunoregulatory agents that modulate functions of T-regulatory and T-helper-17 cells are likely to be successful. Patient-specific treatments will depend on the development of discriminatory handprints of distinct asthma subtypes and are probably over the horizon. Although a cure is unlikely to be developed in the near future, a greater understanding of disease mechanisms could bring such a situation nearer to reality.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
8
|
Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol 2008; 3 Suppl 1:S6. [PMID: 18315837 PMCID: PMC2259400 DOI: 10.1186/1745-6673-3-s1-s6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic phenotypes. Some of these new Th2-oriented strategies may in the future not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - David Groneberg
- Institute of Occupational Medicine, Charité- Universitätsmedizin Berlin, Free University and Humboldt University, Berlin, Germany
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Paolo Casolari
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Alberto Papi
- Dipartimento di Medicina Clinica e Sperimentale, Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Narala VR, Ranga R, Smith MR, Berlin AA, Standiford TJ, Lukacs NW, Reddy RC. Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma. Respir Res 2007; 8:90. [PMID: 18053220 PMCID: PMC2231357 DOI: 10.1186/1465-9921-8-90] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 12/04/2007] [Indexed: 01/17/2023] Open
Abstract
Background While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly associated with human asthma. Methods We compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure. Results PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction of Gob-5 and Muc5-ac. Conclusion Given the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists deserve investigation as potential therapies for human asthma.
Collapse
Affiliation(s)
- Venkata R Narala
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ueki S, Kato H, Kobayashi Y, Ito W, Adachi T, Nagase H, Ohta K, Kayaba H, Chihara J. Anti- and proinflammatory effects of 15-deoxy-delta-prostaglandin J2(15d-PGJ2) on human eosinophil functions. Int Arch Allergy Immunol 2007; 143 Suppl 1:15-22. [PMID: 17541271 DOI: 10.1159/000101399] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is recognized as a potent lipid mediator that is derived from PGD(2), which is produced abundantly in allergic inflammatory sites. It is now established that 15d-PGJ(2) negatively regulates cellular functions through its intracellular targets such as peroxisome proliferator-activated receptor-gamma (PPARgamma). However, recent studies revealed that 15d-PGJ(2) appears to possess not only anti-inflammatory activities but also a proinflammatory potential depending on its concentration and the activation state of the target cell. For instance, at low concentrations, 15d-PGJ(2) enhances eotaxin-induced chemotaxis, shape change, and actin reorganization in eosinophils through its ligation with PPARgamma. Moreover, 15d-PGJ(2) itself is a potent chemoattractant, and it induces calcium mobilization, and up-regulates CD11b expression through its membrane receptor--chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Conversely, at high concentrations, 15d-PGJ(2) inhibits eosinophil survival by inducing apoptosis in a PPARgamma-independent manner. Here, we discuss the pathophysiological roles of 15d-PGJ(2) that could act as a paracrine, autocrine, and intracrine substance to regulate eosinophil functions.
Collapse
Affiliation(s)
- Shigeharu Ueki
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|