1
|
Zhang C, Ran F, Du L, Cao Y, Chen H, Chen Q, Bi L, Hang H. Re-evaluation of the relationship between PrPc expression and patient prognosis in primary esophageal squamous cell carcinoma and primary hepatocellular carcinoma. Sci Rep 2024; 14:31122. [PMID: 39732816 DOI: 10.1038/s41598-024-82398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
PrPc is expressed in various tumors and is associated with cancer progression, but previous studies have shown conflicting results regarding its relationship with patient prognosis-potentially due to differences in the antibodies used. This study aimed to clarify the relationship between PrPc expression and primary esophageal squamous cell carcinoma (ESCC) and primary hepatocellular carcinoma (HCC) using a novel anti-PrPc antibody, 4AA-m, noted for its high specificity and sensitivity. We used flow cytometry to detect PrPc expression in ESCC and HCC cell lines. Immunohistochemistry with 4AA-m was then performed on tissue microarrays from 179 patients with primary ESCC and 92 patients with primary HCC. PrPc expression was semi-quantitatively assessed using the Tumor-DAB-H-Score, and its association with tumor prognosis was analyzed. In ESCC, PrPc expression was negatively correlated with lymph node metastasis, and patients with high PrPc expression had better overall survival compared to those with low expression. PrPc expression was identified as an independent prognostic factor for overall survival in ESCC. In HCC, patients with positive PrPc expression had shorter recurrence-free survival (RFS) than those without PrPc expression. PrPc expression was also found to be an independent prognostic factor for RFS in HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/genetics
- Female
- Male
- Esophageal Squamous Cell Carcinoma/pathology
- Esophageal Squamous Cell Carcinoma/metabolism
- Esophageal Squamous Cell Carcinoma/mortality
- Esophageal Squamous Cell Carcinoma/genetics
- Prognosis
- Middle Aged
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/genetics
- Aged
- Cell Line, Tumor
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/genetics
- Adult
- Immunohistochemistry
- Gene Expression Regulation, Neoplastic
- Lymphatic Metastasis
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanlei Ran
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hong Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Haiying Hang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang C, Ran F, Du L, Wang X, Liu L, Liu J, Chen Q, Cao Y, Bi L, Hang H. The Humanization and Maturation of an Anti-PrPc Antibody. Bioengineering (Basel) 2024; 11:242. [PMID: 38534516 DOI: 10.3390/bioengineering11030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular prion protein (PrPc) is a cell surface glycoprotein that is highly expressed in a variety of cancer tissues in addition to the nervous system, and its elevated expression is correlated to poor prognosis in many cancer patients. Our team previously found that patients with colorectal cancer (CRC) with high-level PrPc expression had significantly poorer survival than those with no or low-level PrPc expression. Mouse antibodies for PrPc inhibited tumor initiation and liver metastasis of PrPc-positive human CRC cells in mouse model experiments. PrPc is a candidate target for CRC therapy. In this study, we newly cloned a mouse anti-PrPc antibody (Clone 6) and humanized it, then affinity-matured this antibody using a CHO cell display with a peptide antigen and full-length PrPc, respectively. We obtained two humanized antibody clones with affinities toward a full-length PrPc of about 10- and 100-fold of that of the original antibody. The two humanized antibodies bound to the PrPc displayed significantly better on the cell surface than Clone 6. Used for Western blotting and immunohistochemistry, the humanized antibody with the highest affinity is superior to the two most frequently used commercial antibodies (8H4 and 3F4). The two new antibodies have the potential to be developed as useful reagents for PrPc detection and even therapeutic antibodies targeting PrPc-positive cancers.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanlei Ran
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaohui Wang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Hang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
4
|
Tuğrul B, Balcan E, Öztel Z, Çöllü F, Gürcü B. Prion protein-dependent regulation of p53-MDM2 crosstalk during endoplasmic reticulum stress and doxorubicin treatments might be essential for cell fate in human breast cancer cell line, MCF-7. Exp Cell Res 2023:113656. [PMID: 37245583 DOI: 10.1016/j.yexcr.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, we investigated the effect of doxorubicin and tunicamycin treatment alone or in combination on MDM-, Cul9-and prion protein (PrP)-mediated subcellular regulation of p53 in the context of apoptosis and autophagy. MTT analysis was performed to determine the cytotoxic effect of the agents. Apoptosis was monitorized by ELISA, flow cytometry and JC-1 assay. Monodansylcadaverine assay was performed for autophagy. Western blotting and immunofluorescence were performed to determine p53, MDM2, CUL9 and PrP levels. Doxorubicin increased p53, MDM2 and CUL9 levels in a dose-dependent manner. Expression of p53 and MDM2 was higher at the 0.25 μM concentration of tunicamycin compared to the control, but it decreased at 0.5 μM and 1 μM concentrations. CUL9 expression was significantly decreased only after treatment of tunicamycin at 0.25 μM. According to its glycosylation status, the upper band of PrP increased only in combination treatment. In combination treatment, p53 expression was higher than control, whereas MDM2 and CUL9 expressions were decreased. Combination treatments may make MCF-7 cells more susceptible to apoptosis rather than autophagy. In conclusion, PrP may be important in determining the fate of cell death through crosstalk between proteins such as p53 and MDM2 under endoplasmic reticulum (ER) stress conditions. Further studies are needed to obtain in-depth information on these potential molecular networks.
Collapse
Affiliation(s)
- Berrin Tuğrul
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Erdal Balcan
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Zübeyde Öztel
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Fatih Çöllü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Beyhan Gürcü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| |
Collapse
|
5
|
Peraza-Labrador A, Buitrago DM, Coy-Barrera E, Perdomo-Lara SJ. Antiproliferative and Pro-Apoptotic Effects of a Phenolic-Rich Extract from Lycium barbarum Fruits on Human Papillomavirus (HPV) 16-Positive Head Cancer Cell Lines. Molecules 2022; 27:molecules27113568. [PMID: 35684505 PMCID: PMC9182172 DOI: 10.3390/molecules27113568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro antiproliferative activity of a phenolic-rich extract from Lycium barbarum fruits against head and neck HPV16 squamous cell carcinoma (OSCC) has been demonstrated, indicating for the first time that L. barbarum extract inhibits human papillomavirus (HPV) type 16 cell lines. Ethanol extract of L. barbarum was used for cell viability evaluation on SCC090, CAL27, and HGnF cell lines. After 24 and 48 h, the cell cycle effect of L. barbarum extract (at 1.0, 10, and 100 µg/mL) was measured via flow cytometry. In addition, the mRNA expression on E6/E7 and p53 via RT-PCR and the expression of p16, p53, Ki-67, and Bcl-2 via immunohistochemistry were also determined. Untreated cells, 20 µM cisplatin, and a Camellia sinensis-derived extract were used as negative and positive controls, respectively. We demonstrated that the studied L. barbarum extract resulted in G0/G1 arrest and S phase accumulation in SCC090 at 1.0 and 10 μg/mL. A reduction in mRNA levels of E6/E7 oncogenes (p < 0.05) with p53 overexpression was also observed through PCR, while immunohistochemical analyses indicated p16 overexpression (p > 0.05) and a decrease in p53 overexpression. The observed effects were associated with anticancer and immunomodulatory phenolics, such as flavonols/flavan-3-ols and tyramine-conjugated hydroxycinnamic acid amides, identified in the studied extract. These findings revealed that the phenolic-rich extract of L. barbarum fruits has promising properties to be considered further for developing new therapies against oral and oropharyngeal HPV lesions.
Collapse
Affiliation(s)
- Alberto Peraza-Labrador
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
| | - Diana Marcela Buitrago
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Sandra J. Perdomo-Lara
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
- Correspondence: ; Tel.: +57-164-89000
| |
Collapse
|
6
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Mouillet-Richard S, Ghazi A, Laurent-Puig P. The Cellular Prion Protein and the Hallmarks of Cancer. Cancers (Basel) 2021; 13:cancers13195032. [PMID: 34638517 PMCID: PMC8508458 DOI: 10.3390/cancers13195032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary The cellular prion protein PrPC is best known for its involvement, under its pathogenic isoform, in a group of neurodegenerative diseases. Notwithstanding, an emerging role for PrPC in various cancer-associated processes has attracted increasing attention over recent years. PrPC is overexpressed in diverse types of solid cancers and has been incriminated in various aspects of cancer biology, most notably proliferation, migration, invasion and metastasis, as well as resistance to cytotoxic agents. This article aims to provide a comprehensive overview of the current knowledge of PrPC with respect to the hallmarks of cancer, a reference framework encompassing the major characteristics of cancer cells. Abstract Beyond its causal involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies, the cellular prion protein PrPC is now taking centre stage as an important contributor to cancer progression in various types of solid tumours. The prion cancer research field has progressively expanded in the last few years and has yielded consistent evidence for an involvement of PrPC in cancer cell proliferation, migration and invasion, therapeutic resistance and cancer stem cell properties. Most recent data have uncovered new facets of the biology of PrPC in cancer, ranging from its control on enzymes involved in immune tolerance to its radio-protective activity, by way of promoting angiogenesis. In the present review, we aim to summarise the body of literature dedicated to the study of PrPC in relation to cancer from the perspective of the hallmarks of cancer, the reference framework defined by Hanahan and Weinberg.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Correspondence:
| | - Alexandre Ghazi
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| |
Collapse
|
8
|
Cha S, Sin MJ, Kim MJ, Kim HJ, Kim YS, Choi EK, Kim MY. Involvement of Cellular Prion Protein in Invasion and Metastasis of Lung Cancer by Inducing Treg Cell Development. Biomolecules 2021; 11:biom11020285. [PMID: 33671884 PMCID: PMC7918983 DOI: 10.3390/biom11020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein expressed in many cell types that plays an important role in normal cellular processes. However, an increase in PrPC expression has been associated with a variety of human cancers, where it may be involved in resistance to the proliferation and metastasis of cancer cells. PrP-deficient (Prnp0/0) and PrP-overexpressing (Tga20) mice were studied to evaluate the role of PrPC in the invasion and metastasis of cancer. Tga20 mice, with increased PrPC, died more quickly from lung cancer than did the Prnp0/0 mice, and this effect was associated with increased transforming growth factor-beta (TGF-β) and programmed death ligand-1 (PD-L1), which are important for the development and function of regulatory T (Treg) cells. The number of FoxP3+CD25+ Treg cells was increased in Tga20 mice compared to Prnp0/0 mice, but there was no significant difference in either natural killer or cytotoxic T cell numbers. In addition, mice infected with the ME7 scrapie strain had decreased numbers of Treg cells and decreased expression of TGF-β and PD-L1. These results suggest that PrPC plays an important role in invasion and metastasis of cancer cells by inducing Treg cells through upregulation of TGF-β and PD-L1 expression.
Collapse
Affiliation(s)
- Seunghwa Cha
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mi-Ji Sin
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Correspondence: (E.-K.C.); (M.-Y.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
- Correspondence: (E.-K.C.); (M.-Y.K.)
| |
Collapse
|
9
|
Atkinson CJ, Kawamata F, Liu C, Ham S, Győrffy B, Munn AL, Wei MQ, Möller A, Whitehall V, Wiegmans AP. EGFR and Prion protein promote signaling via FOXO3a-KLF5 resulting in clinical resistance to platinum agents in colorectal cancer. Mol Oncol 2019; 13:725-737. [PMID: 30478887 PMCID: PMC6441932 DOI: 10.1002/1878-0261.12411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) supports colorectal cancer progression via oncogenic signaling. Anti-EGFR therapy is being investigated as a clinical option for colorectal cancer, and an observed interaction between EGFR and Prion protein has been detected in neuronal cells. We hypothesized that PrPC expression levels may regulate EGFR signaling and that detailed understanding of this signaling pathway may enable identification of resistance mechanisms and new actionable targets in colorectal cancer. We performed molecular pathway analysis following knockdown of PrPC or inhibition of EGFR signaling via gefitinib to identify changes in expression of key signaling proteins that determine cellular sensitivity or resistance to cisplatin. Expression of these proteins was examined in matched primary and metastatic patient samples and was correlated for resistance to therapy and progression of disease. Utilizing three colorectal cancer cell lines, we observed a correlation between high expression of PrPC and resistance to cisplatin. Investigation of molecular signaling in a resistant cell line revealed that PrPC contributed to signaling via colocalization with EGFR, which could be overcome by targeting p38 mitogen-activated protein kinases (p38 MAPK). We revealed that the level of Krüppel-like factor 5 (KLF5), a target downstream of p38 MAPK, was predictive for cell line and patient response to platinum agents. Further, high KLF5 expression was observed in BRAF-mutant colorectal cancer. Our study indicates that the EGFR to KLF5 pathway is predictive of patient progression on platinum-based therapy.
Collapse
Affiliation(s)
- Caroline J Atkinson
- Tumour Microenvironment Lab, QIMR Berghofer Medical Research Institute, Herston, Australia.,Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Australia
| | - Futoshi Kawamata
- Department of Gastroenterological Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sunyoung Ham
- Tumour Microenvironment Lab, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Alan L Munn
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Australia
| | - Andreas Möller
- Tumour Microenvironment Lab, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Vicki Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Adrian P Wiegmans
- Tumour Microenvironment Lab, QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
10
|
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX, Xiao H. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta 2017; 982:84-95. [DOI: 10.1016/j.aca.2017.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/22/2022]
|
11
|
Yang Q, Zhang S, Liu L, Lei C, Qi X, Lin F, Qu W, Qi X, Liu J, Wang R, Chen H, Lan X. The evaluation of 23-bp and 12-bp insertion/deletion within the PRNP gene and their effects on growth traits in healthy Chinese native cattle breeds. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1348950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Liangliang Liu
- School of Business Information, Shanghai University of International Business and Economics, Shanghai, People’s Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Xinglei Qi
- Xia'nan cattle Technology Development Company, Biyang, People’s Republic of China
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Fengpeng Lin
- Xia'nan cattle Technology Development Company, Biyang, People’s Republic of China
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Weidong Qu
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Xingshan Qi
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Jiming Liu
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, People’s Republic of China
| | - Rongmin Wang
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, People’s Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| |
Collapse
|
12
|
Luo G, Wang W, Wu Q, Lu Y, Su T, Gu N, Li K, Wang J, Du R, Zhao X, Li X, Fan R, Zhang H, Nie Y, Zhou X, Shi Y, Liang J, Wang X, Fan D. MGr1-Antigen/37 kDa laminin receptor precursor promotes cellular prion protein induced multi-drug-resistance of gastric cancer. Oncotarget 2017; 8:71630-71641. [PMID: 29069734 PMCID: PMC5641077 DOI: 10.18632/oncotarget.17795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/24/2017] [Indexed: 12/18/2022] Open
Abstract
Cellular prion protein (PrPC), the infective agent of transmissible spongiform encephalopathies, is thought to be related to several cellular physiological and physiopathological processes. We have previously reported that PrPC participates in multi-drug-resistance of gastric cancer. As the salient ligand molecule of PrP for participating in internalization and propagation of the scrapie form of prion protein (PrPSc), 37 kDa laminin receptor precursor protein (37LRP) shared the same gene coding sequence of MGr1-Ag, another protein previously found to be involved in multi-drug-resistance of gastric cancer in our lab. In the present study, we explored whether MGr1-Ag/37LRP contributed to PrPC mediated multi-drug-resistance in gastric cancer. Immunohistochemical staining showed similar expression patterns of MGr1-Ag/37LRP and PrPC in gastric cancer tissue serial sections. Western blot and immunohistochemistry also demonstrated correlative expression of MGr1-Ag/37LRP and PrPC in gastric cancer cell lines. Interaction between MGr1-Ag/37LRP and PrPC in gastric cancer cell lines and gastric cancer tissues were verified by immunofluorescence and co-immunoprecipitation. Furthermore, knockdown of MGr1-Ag/37LRP significantly attenuated PrPC induced multi-drug-resistance by sensitizing drug-induced apoptosis through inhibition of AKT activation. In conclusion, MGr1-Ag/37LRP may interact with PrPC and promote the PrPC induced multi-drug-resistance in gastric cancer through PI3K/AKT pathway. The current study elucidates the mechanism of how PrPC triggers intracellular signaling cascade resulting in multi-drug-resistance phenotype and provides a novel candidate molecular target against gastric cancer.
Collapse
Affiliation(s)
- Guanhong Luo
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Weijie Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Nan Gu
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kai Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Rui Du
- Department of Radiotherapy Oncology, Navy General Hospital, Beijing, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xiaohua Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Rui Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Hongbo Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Prion Protein Family Contributes to Tumorigenesis via Multiple Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:207-224. [PMID: 29052140 DOI: 10.1007/978-981-10-5765-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A wealth of evidence suggests that proteins from prion protein (PrP) family contribute to tumorigenesis in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), breast cancer, glioblastoma, colorectal cancer, gastric cancer, melanoma, etc. It is well documented that PrP is a biomarker for PDAC, breast cancer, and gastric cancer. However, the underlying mechanisms remain unclear. The major reasons for cancer cell-caused patient death are metastasis and multiple drug resistance, both of which connect to physiological functions of PrP expressing in cancer cells. PrP enhances tumorigenesis by multiple pathways. For example, PrP existed as pro-PrP in most of the PDAC cell lines, thus increasing cancer cell motility by binding to cytoskeletal protein filamin A (FLNa). Using PDAC cell lines BxPC-3 and AsPC-1 as model system, we identified that dysfunction of glycosylphosphatidylinositol (GPI) anchor synthesis machinery resulted in the biogenesis of pro-PrP. In addition, in cancer cells without FLNa expression, pro-PrP can modify cytoskeleton structure by affecting cofilin/F-actin axis, thus influencing cancer cell movement. Besides pro-PrP, we showed that GPI-anchored unglycosylated PrP can elevate cell mobility by interacting with VEGFR2, thus stimulating cell migration under serum-free condition. Besides affecting cancer cell motility, overexpressed PrP or doppel (Dpl) in cancer cells has been shown to increase cell proliferation, multiple drug resistance, and angiogenesis, thus, proteins from PrP gene family by affecting important processes via multiple pathways for cancer cell growth exacerbating tumorigenesis.
Collapse
|
15
|
Tang Z, Ma J, Zhang W, Gong C, He J, Wang Y, Yu G, Yuan C, Wang X, Sun Y, Ma J, Liu F, Zhao Y. The Role of Prion Protein Expression in Predicting Gastric Cancer Prognosis. J Cancer 2016; 7:984-90. [PMID: 27313789 PMCID: PMC4910591 DOI: 10.7150/jca.14237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022] Open
Abstract
Previous reports indicated that prion protein (PrP) is involved in gastric cancer (GC) development and progression, but its role in GC prognosis has been poorly characterized. A total of 480 GC patients were recruited in this retrospective study. PrP expression in cancerous and non-cancerous gastric tissues was detected by using the tissue microarray and immunohistochemical staining techniques. Our results showed that the PrP expression in GC was significantly less frequent than that in the non-cancerous gastric tissue (44.4% vs 66.4%, P < 0.001). Cox regression analysis revealed that PrP expression was associated with TNM stage, survival status and survival time. GC patients with higher TNM stages (stages II, III and IV) had significantly lower PrP expression levels in tumors than those with lower TNM stages (stages 0 and I). Kaplan-Meier survival curves revealed that negative PrP expression was associated with poor overall survival (log-rank test: P < 0.001). The mean survival time for patients with negative PrP expression was significant lower than those with positive PrP expression (43.0±28.5m vs. 53.9±31.1m, P<0.001). In multivariate Cox hazard regression, PrP expression was an independent prognostic factor for GC survival, with a HR (hazard ratio) of 0.687 (95%CI:0.520-0.907, P=0.008). Our results revealed that negative PrP expression could independently predict worse outcome in GC and thereby could be used to guide the clinical practice.
Collapse
Affiliation(s)
- Zhaoqing Tang
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ji Ma
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Wei Zhang
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 5. Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, P.R. China
| | - Changguo Gong
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Jing He
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Ying Wang
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 3. Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Guohua Yu
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Chonggang Yuan
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Xuefei Wang
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yihong Sun
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiyan Ma
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 4. Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Fenglin Liu
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yulan Zhao
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
16
|
Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ. Prion protein scrapie and the normal cellular prion protein. Prion 2016; 10:63-82. [PMID: 26645475 PMCID: PMC4981215 DOI: 10.1080/19336896.2015.1110293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.
Collapse
Affiliation(s)
- Caroline J. Atkinson
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Kai Zhang
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Alan L. Munn
- Laboratory of Yeast Cell Biology, Molecular Basis of Disease Program, Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Adrian Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Ming Q. Wei
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
17
|
Wei W, Shi Q, Zhang NS, Xiao K, Chen LN, Yang XD, Ji JF, Dong XP. Expression of prion protein is closely associated with pathological and clinical progression and abnormalities of p53 in head and neck squamous cell carcinomas. Oncol Rep 2015; 35:817-24. [PMID: 26718886 DOI: 10.3892/or.2015.4425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
Prion protein (PrP) is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein that functions as a unique pathogenic agent in transmissible spongiform encephalopathy (TSE). In the past decade, overexpression of PrP was observed in a number of human malignant tumors, such as gastric, breast and pancreatic cancer. However, the role of PrP expression in squamous cell carcinoma is rarely documented. To screen PrP expression in head and neck squamous cell carcinoma (HNSCCs), the paraffin-embedded specimens of 92 pathologically diagnosed HNSCCs were assessed by PrP-specific immunohistochemistry (IHC). A total of 55.43% (51/92) of the tested carcinoma tissues were PrP-positive. The rate of positivity and the staining intensity of PrP were closely related with the pathological degree of the HNSCCs; a higher rate of PrP expression was noted in the group of poorly differentiated cancers. PrP-positivity rates increased along with the progression of the clinical grade of the carcinomas. Further evaluation of the associations between PrP expression and the data concerning p53 abnormalities and human papillomavirus (HPV) infection in these samples as previously described, revealed that PrP-positive staining was more frequently detected in the tissues with p53-positive accumulation and the wild-type TP53 gene. The patients with a proline (Pro) polymorphism in SNP72 of TP53 showed significantly higher PrP-positive rates than those with arginine (Arg). No notable difference in PrP expression was identified between the HPV-positive and HPV-negative group. These data indicate a close association of PrP expression with clinical and histological differentiation of HNSCCs, as well as abnormalities of p53.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Nai-Song Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
18
|
Park HR, Loch-Caruso R. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line. Toxicol Appl Pharmacol 2014; 281:67-77. [PMID: 25305463 DOI: 10.1016/j.taap.2014.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20μM BDE-47 for 24h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20μM BDE-47 for 24h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
19
|
Déry MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, Basik M, LeBlanc AC. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res 2013; 15:R22. [PMID: 23497519 PMCID: PMC3672785 DOI: 10.1186/bcr3398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/01/2013] [Indexed: 01/11/2023] Open
Abstract
Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
Collapse
|
20
|
Rubenstein R, Chiu A, Salciccioli L, Kamran H, Lazar J. Prion protein as a mediator of neurocardiosympathetic interactions. Electrophoresis 2012; 33:3720-7. [PMID: 23161471 DOI: 10.1002/elps.201200384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 01/22/2023]
Abstract
A proteomic approach to study cardiovascular disease includes the examination of proteins associated with risk factors such as left ventricular hypertrophy (LVH). PrP(C) is a host-coded membrane-bound glycoprotein found in most cell types, including myocardium, and whose physiological function is uncertain. We have taken a selective proteomic approach and performed mechanistic studies to determine whether PrP(C) levels are related to left ventricular (LV) structure or function. Echocardiograms were performed at baseline in 65 mice comprising three strains of the same C57Bl/6J × 129SV genetic background but expressing different levels of PrP(C) (wild-type mice (WT), PrP(-/-) , and PrP(C) over-expressing transgenic mice (tga20)). There were no significant differences in LV mass or LV ejection fraction between the three groups. Either normal saline (n = 60) or isoproterenol (n = 55) was then administered intraperitoneally (50 mg/kg/day) for 5 days/wk for two consecutive weeks to induce LVH. Body weight decreased significantly in the PrP(-/-) group (18%). On multivariate analysis, higher LV mass index posttreatment was independently associated with the tga20 group (versus PrP(-/-) versus WT, p = 0.002) after adjusting for treatment (isoproterenol versus saline), and weight change (r(2) = 0.13 for model, p = 0.016). Therefore, PrP(C) appears unrelated to LV mass and function in the basal state. Isoproterenol causes transient enhancement of PrP(C) expression in WT mice and a more pronounced increase in tga20 mice at 2 h posttreatment. Overexpression of PrP(C) in the tga20 group may be associated with higher LV mass after a 2 wk regimen of isoproterenol.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | | | | | | | | |
Collapse
|
21
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Lee YJ, Baskakov IV. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 2012; 124:310-22. [PMID: 22860629 DOI: 10.1111/j.1471-4159.2012.07913.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/27/2022]
Abstract
Prion protein (PrP(C) ), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrP(C) in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline-regulated lentiviral vectors that up-regulate or suppresses PrP(C) expression. Here, we show that expression of PrP(C) in pluripotent hESCs cultured under self-renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrP(C) in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over-expression of PrP(C) in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrP(C) is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self-renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrP(C) is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self-renewal state, control cell proliferation activity, and define stem cell fate.
Collapse
Affiliation(s)
- Young Jin Lee
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Wang H, Zhou X, Zhang Y, Zhu H, Zhao L, Fan L, Wang Y, Gang Y, Wu K, Liu Z, Fan D. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J 2012; 279:3652-3664. [PMID: 22846196 DOI: 10.1111/j.1742-4658.2012.08726.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric cancer is one of the leading causes of malignancy-related mortality in the world, and malignant growth is a crucial characteristic in gastric cancer. In our previous study, we found that growth arrest-specific gene 1 (GAS1) suppression was involved in making gastric cancer cells multidrug-resistant by protecting them from drug-induced apoptosis. In the present study, we investigated the potential role of GAS1 in the growth and proliferation of gastric cancer. We demonstrated that GAS1 expression was decreased in gastric cancer, and patients without GAS1 expression showed shorter survival times than those with GAS1 expression. Both gain-of-function (by overexpression of GAS1) and loss-of-function (by GAS1-specific small interfering RNA knockdown) studies showed that increased GAS1 expression significantly reduced the colony-forming ability of gastric cancer cells in vitro and reduced cell growth in vivo, whereas decreased GAS1 expression had the opposite effects. Moreover, upregulation of GAS1 induced cell apoptosis, and downregulation of GAS1 inhibited apoptosis. Furthermore, we demonstrated that GAS1 could induce gastric cancer cell apoptosis, at least in part through modulating the Bcl-2/Bax ratio and the activity of caspase-3. Taken together, our results strongly indicate that GAS1 expression was decreased in gastric cancer and was predictive of a poor prognosis. Restoration of GAS1 expression inhibited cell growth and promoted apoptosis of gastric cancer cells, at least in part through modulating the Bcl-2/Bax ratio and activating caspase-3, suggesting that GAS1 might be used as a novel therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Honghong Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xiong Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yongguo Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hongwu Zhu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Gang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhiguo Liu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Wang JH, DU JP, Li SJ, Zhai LP, Yang XY, Wang ZH, Wu ZT, Han Y. Octarepeat peptides of prion are essential for multidrug resistance in gastric cancer cells. J Dig Dis 2012; 13:143-152. [PMID: 22356309 DOI: 10.1111/j.1751-2980.2011.00563.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In previous studies cellular prion protein (PrPc) is confirmed to be involved in multidrug resistance (MDR) of gastric cancer. Although octarepeat peptides are important functional domains of PrPc and are closely related to the transport of Cu2+/Zn2+ and antioxidative function, the significance in MDR remains unknown. We aimed to investigate the role of octarepeat peptides in gastric cancer MDR. METHODS Small interfering RNA (siRNA) against PrPc were transfected into adriamycin-resistant gastric cancer cell lines to inhibit the expression of wild type PrPc, and then constructs encoding PrPc without octarepeat peptides and PrPc without the fifth repeat peptide were transfected, respectively, to establish the cell models. In vitro drug sensitivity, cell apoptosis, measurement of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (GSH), as well as changes in glutathione S-transferase (GST) were detected. RESULTS In vitro drug sensitivity test showed that octarepeat peptides could modulate the drug resistance of gastric cancer cells, but the deletion of the fifth repeat peptide had no effect. Specifically, the anti-apoptotic capacity of gastric cancer cells decreased significantly when the octarepeat peptides of PrPc was absent. Moreover, the activities of total SOD, Cu2+/Zn2+-SOD, GSH-Px, GSH, and GST detected in different stressing periods revealed that cells lacking octarepeat peptides of PrPc exhibited weakened responses to stress. However, absence of the fifth repeat peptide did not exert any effect on stress response. CONCLUSION The octarepeat peptides of prion is responsible for MDR in gastric cancer cells while the fifth repeat peptide is not.
Collapse
Affiliation(s)
- Ji Heng Wang
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Jing Ping DU
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Shu Jun Li
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Li Ping Zhai
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Xin Yan Yang
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Zhi Hong Wang
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Zi Tao Wu
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| | - Ying Han
- Department of Gastroenterology, PLA. The Military General Hospital of Beijing, Beijing, China
| |
Collapse
|
25
|
Wang JH, Du JP, Zhang YH, Zhao XJ, Fan RY, Wang ZH, Wu ZT, Han Y. Dynamic changes and surveillance function of prion protein expression in gastric cancer drug resistance. World J Gastroenterol 2011; 17:3986-93. [PMID: 22046086 PMCID: PMC3199556 DOI: 10.3748/wjg.v17.i35.3986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the dynamic changes of prion protein (PrPc) in the process of gastric cancer drug resistance and the role of PrPc expression in the prognosis of gastric cancer patients receiving chemotherapy.
METHODS: A series of gastric cancer cell lines resistant to different concentrations of adriamycin was established, and the expression of PrPc, Bcl-2 and Bax was detected in these cells. Apoptosis was determined using Annexin V staining. Western blotting and immunohistochemistry were performed to detect the expression of PrPc in patients receiving chemotherapy and to explore the role of PrPc expression in predicting the chemosensitivity and the outcome of gastric cancer patients receiving chemotherapy. Follow-up was performed for 2 years.
RESULTS: PrPc expression was increased with the increase in drug resistance. Bcl-2, together with PrPc, increased the level of anti-apoptosis of cancer cells. Increased PrPc expression predicted the enhanced level of anti-apoptosis and resistance to anticancer drugs. PrPc expression could be used as a marker for predicting the efficacy of chemotherapy and the prognosis of gastric cancer. Increased PrPc expression predicted both poor chemosensitivity and a low 2-year survival rate. Contrarily, low PrPc expression predicted favorable chemosensitivity and a relatively high 2-year survival rate.
CONCLUSION: PrPc expression is associated with histological types and differentiation of gastric cancer cells; The PrPc expression level might be a valuable marker in predicting the efficacy of chemotherapy and the prognosis of gastric cancer patients receiving chemotherapy.
Collapse
|
26
|
Antonacopoulou AG, Palli M, Marousi S, Dimitrakopoulos FI, Kyriakopoulou U, Tsamandas AC, Scopa CD, Papavassiliou AG, Kalofonos HP. Prion protein expression and the M129V polymorphism of the PRNP gene in patients with colorectal cancer. Mol Carcinog 2010; 49:693-9. [PMID: 20564346 DOI: 10.1002/mc.20642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The prion protein, PrP(C), is known mostly for its involvement in neurodegenerative spongiform encephalopathies. However, a role for this molecule in cancer is becoming increasingly recognized partly because it promotes cell proliferation and inhibits apoptosis. Moreover, the codon 129 polymorphism (M129V) of the PRNP gene (the PrP(C)-encoding gene) has been associated with neurodegenerative disease development and severity, while no information is available regarding its role in colorectal cancer (CRC) incidence and disease progression. We have previously reported that expression levels of PRNP may have a prognostic value in CRC, suggesting a role for the prion protein in CRC. The aim of this study was to investigate retrospectively the possible role of M129V and PrP(C) expression in patients with CRC. The M129V single nucleotide polymorphism was genotyped by real time polymerase chain reactions in 110 patients with CRC and 124 healthy donors. Moreover, protein expression was assessed by immunohistochemistry in 68 patients with CRC. Allele frequencies were similar in patients and healthy controls indicating that the M129V polymorphism is not a risk factor for CRC. Furthermore, it did not correlate with any clinicopathological parameters. By contrast, PrP(C) expression was highly elevated in neoplastic compared to normal tissue and differed depending on the primary site. Interestingly, protein levels were correlated with disease recurrence (P = 0.007). Conclusively, PrP(C) overexpression may constitute a prognostic marker for disease recurrence and potentially a new target for anticancer therapy. However, further studies are needed to evaluate prospectively the role of PrP(C) expression in patients with CRC.
Collapse
|
27
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010. [PMID: 20550479 DOI: 10.2217/bmm.10.14]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
28
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010; 4:453-64. [PMID: 20550479 PMCID: PMC2925173 DOI: 10.2217/bmm.10.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
29
|
Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, Singh N, Tartakoff A, Abbott DW, Xin W, Sy MS. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 2009; 119:2725-36. [PMID: 19690385 PMCID: PMC2735930 DOI: 10.1172/jci39542] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
The cellular prion protein (PrP) is a highly conserved, widely expressed, glycosylphosphatidylinositol-anchored (GPI-anchored) cell surface glycoprotein. Since its discovery, most studies on PrP have focused on its role in neurodegenerative prion diseases, whereas its function outside the nervous system remains unclear. Here, we report that human pancreatic ductal adenocarcinoma (PDAC) cell lines expressed PrP. However, the PrP was neither glycosylated nor GPI-anchored, existing as pro-PrP and retaining its GPI anchor peptide signal sequence (GPI-PSS). We also showed that the PrP GPI-PSS has a filamin A-binding (FLNa-binding) motif and interacted with FLNa, an actin-associated protein that integrates cell mechanics and signaling. Binding of pro-PrP to FLNa disrupted cytoskeletal organization. Inhibition of PrP expression by shRNA in the PDAC cell lines altered the cytoskeleton and expression of multiple signaling proteins; it also reduced cellular proliferation and invasiveness in vitro as well as tumor growth in vivo. A subgroup of human patients with pancreatic cancer was found to have tumors that expressed pro-PrP. Most importantly, PrP expression in tumors correlated with a marked decrease in patient survival. We propose that binding of pro-PrP to FLNa perturbs FLNa function, thus contributing to the aggressiveness of PDAC. Prevention of this interaction could provide an attractive target for therapeutic intervention in human PDAC.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fumihiko Nakamura
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaoman Yin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jinghua Xu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber A. Petrolla
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Muras AG, Hajj GNM, Ribeiro KB, Nomizo R, Nonogaki S, Chammas R, Martins VR. Prion protein ablation increases cellular aggregation and embolization contributing to mechanisms of metastasis. Int J Cancer 2009; 125:1523-31. [PMID: 19444918 DOI: 10.1002/ijc.24425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, Prnp(0/0)ras/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation.
Collapse
Affiliation(s)
- Angelita G Muras
- Cellular and Molecular Biology Group, Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Jodoin J, Misiewicz M, Makhijani P, Giannopoulos PN, Hammond J, Goodyer CG, LeBlanc AC. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants. PLoS One 2009; 4:e6647. [PMID: 19680558 PMCID: PMC2722024 DOI: 10.1371/journal.pone.0006647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD)-associated prion protein (PrP) mutants that are unable to generate cytosolic PrP (CyPrP). To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS)-associated PrP mutants. These PrP mutants contained their respective methionine (M) or valine (V) at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198SV, D202NV, P102LV and Q217RV retained, whereas the P102LM, P105LV, Y145stopM and Q212PM PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102LV, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Micheal Misiewicz
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Priya Makhijani
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Paresa N. Giannopoulos
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jennifer Hammond
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- * E-mail: .
| |
Collapse
|
32
|
Laroche-Pierre S, Jodoin J, LeBlanc AC. Helix 3 is necessary and sufficient for prion protein's anti-Bax function. J Neurochem 2009; 108:1019-31. [PMID: 19196429 DOI: 10.1111/j.1471-4159.2008.05851.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To identify the structural elements of the prion protein (PrP) necessary for its protective function against Bcl-2 associated protein X (Bax), we performed structure-function analyses of the anti-Bax function of cytosolic PrP (CyPrP) in MCF-7 cells. Deletions of 1, 2, or 3 N-terminal Bcl-2 homology domain 2-like octapeptide repeats (BORs), but not deletion of all four BORs, abolish CyPrPs anti-Bax function. Deletion of alpha-helix 3 (PrP23-199) or further C-terminal deletions of alpha-helix 1 and 2, and beta-strand 1 and 2 (PrP23-172, PrP23-160, PrP23-143, and PrP23-127) eliminates CyPrPs protection against Bax-mediated cell death. The substitution of helix 3 amino acid residues K204, V210, and E219 by proline inhibits the anti-Bax function of CyPrP. The substitution of K204, but not V210 and E219, by alanine residues also prevents CyPrPs anti-Bax function. Expression of PrPs helix 3 displays anti-Bax activity in MCF-7 cells and in human neurons. Together, these results indicate that although the BOR domain has an influence on PrPs anti-Bax function, the helix 3 is necessary and sufficient for the anti-Bax function of CyPrP. Identification of helix 3 as the structural element for the anti-Bax function thus provides a molecular target to modulate PrPs anti-Bax function in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Stéphanie Laroche-Pierre
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Quebec, Canada
| | | | | |
Collapse
|
33
|
Liang J, Ge F, Guo C, Luo G, Wang X, Han G, Zhang D, Wang J, Li K, Pan Y, Yao L, Yin Z, Guo X, Wu K, Ding J, Fan D. Inhibition of PI3K/Akt partially leads to the inhibition of PrP(C)-induced drug resistance in gastric cancer cells. FEBS J 2009; 276:685-94. [PMID: 19143835 DOI: 10.1111/j.1742-4658.2008.06816.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular prion protein (PrP(C)), a glycosyl-phosphatidylinositol-anchored membrane protein with unclear physiological function, was previous found to be upregulated in adriamycin (ADR)-resistant gastric carcinoma cell line SGC7901/ADR compared to its parental cell line SGC7901. Overexpression of PrP(C) in gastric cancer has certain effects on drug accumulation through upregulation of P-glycoprotein (P-gp), which is suggested to play an important role in determining the sensitivity of tumor cells to chemotherapy and is linked to activation of the phosphatidylinositol-3-kinase/Akt (PI3K/Akt) pathway. In the present study, we further investigate the role of the PI3K/Akt pathway in PrP(C)-induced multidrug-resistance (MDR) in gastric cancer. Immunohistochemistry and confocal microscope detection suggest a positive correlation between PrP(C) and phosphorylated Akt (p-Akt) expression in gastric cancer. Using established stable PrP(C) transfectant cell lines, we demonstrated that the level of p-Akt was increased in PrP(C)-transfected cells. Inhibition of PrP(C) expression by RNA interference resulted in decreased p-Akt expression. Inhibition of the PI3K/Akt pathway by one of its specific inhibitors, LY294002, or by Akt small interfering RNA (siRNA) resulted in decreased multidrug resistance of SGC7901 cells, partly through downregulation of P-gp induced by PrP(C). Taken together, our results suggest that PrP(C)-induced MDR in gastric cancer is associated with activation of the PI3K/Akt pathway. Inhibition of PI3K/Akt by LY2940002 or Akt siRNA leads to inhibition of PrP(C)-induced drug resistance and P-gp upregulation in gastric cancer cells, indicating a possible novel mechanism by which PrP(C) regulates gastric cancer cell survival.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liang J, Wang J, Luo G, Pan Y, Wang X, Guo C, Zhang D, Yin F, Zhang X, Liu J, Wang J, Guo X, Wu K, Fan D. Function of PrPC (1-OPRD) in biological activities of gastric cancer cell lines. J Cell Mol Med 2009; 13:4453-64. [PMID: 19210573 PMCID: PMC4515061 DOI: 10.1111/j.1582-4934.2009.00687.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Approximately 10–15% of the human prion disease is inherited and one of the important genetic mutations occurs in the octapeptide repeat region of prion protein gene. One of the variants, one octapeptide repeat deletion (1-OPRD), existed in several gastric cancer cell lines and its mutation frequency was higher in gastric cancer cases. However, the biological functions of it remain unknown. Wild-type and mutation forms of PrPC were cloned and transfected into gastric cancer cells. Cell apoptosis, adhesion, invasion, multidrug resistance (MDR) and proliferation were, respectively, investigated. Different expressed genes were screened by gene array and proved by PT-PCR. Further, luciferase report assay was used to explore the transcriptional activation of target genes. Forced overexpression PrPC (1-OPRD) could promote the gastric cancer cells SGC7901 growth through facilitating G1- to S-phase transition in the cell cycle. PrPC (1-OPRD) could also inhibit apoptosis, and promote adhesion, invasion and MDR in SGC7901. However, it exhibited no significant difference between wild-type PrPC (1-OPRD) and PrPC on apoptosis, invasion or MDR effects. Further experiments indicated that PrPC (1-OPRD) could trigger the transactivation of cyclinD3 besides cyclinD1 to promote cell transition and proliferation. Overexpression of PrPC (1-OPRD) might promote the proliferation of gastric cancer cells at least partially through transcriptional activation of cyclinD3 to accelerate the G1-/S-phase transition. The promoting proliferation effect of PrPC (1-OPRD) was more than that of wild-type PrPC. However, they showed no difference on apoptosis, adhesion, invasion or MDR effects of gastric cancer cells.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qin K, Zhao L, Ash RD, McDonough WF, Zhao RY. ATM-mediated Transcriptional Elevation of Prion in Response to Copper-induced Oxidative Stress. J Biol Chem 2009; 284:4582-93. [DOI: 10.1074/jbc.m808410200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
37
|
Humar B, McNoe L, Dunbier A, Heathcott R, Braithwaite AW, Reeve AE. Heterogeneous gene expression changes in colorectal cancer cells share the WNT pathway in response to growth suppression by APHS-mediated COX-2 inhibition. Biologics 2008; 2:329-37. [PMID: 19707365 PMCID: PMC2721360 DOI: 10.2147/btt.s2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclooxygenase-2 (COX-2), the prostaglandin (PG)-synthesizing enzyme overexpressed in colorectal cancer (CRC), has pleiotropic, cancer-promoting effects. COX-2 inhibitors (CIBs) interfere with many cancer-associated processes and show promising antineoplastic activity, however, a common mechanism of CIB action has not yet been established. We therefore investigated by microarray the global response towards the CIB APHS at a dose significantly inhibiting the growth of three COX-2-positive CRC but not of two COX-2-negative cell lines. None of the genes significantly (p = 0.005) affected by APHS were common to all three cell lines and 83% of the altered pathways were cell line-specific. Quantitative polymerase chain reaction (QPCR) on selected pathways confirmed cell line-specific expression alterations induced by APHS. A low stringency data analysis approach using BRB array tools coupled with QPCR, however, identified small expression changes shared by all COX-2-positive cell lines in genes related to the WNT pathway, the key driver of colonic carcinogenesis. Our data indicates a substantial cell line-specificity of APHS-induced expression alterations in CRC cells and helps to explain the divergent effects reported for CIBs. Further, the shared inhibition of the WNT pathway by APHS suggests one potential common mechanism behind the antineoplastic effects of COX-2 inhibition.
Collapse
Affiliation(s)
- Bostjan Humar
- Cancer Genetics Laboratory, Department of Biochemistry; University of Otago, Dunedin, Aotearoa New Zealand
| | | | | | | | | | | |
Collapse
|
38
|
Aguib Y, Gilch S, Krammer C, Ertmer A, Groschup MH, Schätzl HM. Neuroendocrine cultured cells counteract persistent prion infection by down-regulation of PrPc. Mol Cell Neurosci 2008; 38:98-109. [DOI: 10.1016/j.mcn.2008.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 01/30/2008] [Accepted: 02/13/2008] [Indexed: 11/25/2022] Open
|
39
|
Meslin F, Conforti R, Mazouni C, Morel N, Tomasic G, Drusch F, Yacoub M, Sabourin JC, Grassi J, Delaloge S, Mathieu MC, Chouaib S, Andre F, Mehrpour M. Efficacy of adjuvant chemotherapy according to Prion protein expression in patients with estrogen receptor-negative breast cancer. Ann Oncol 2007; 18:1793-8. [PMID: 17872899 DOI: 10.1093/annonc/mdm406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prion protein (PrPc) has been previously reported to be associated with resistance to proapoptotic stimuli. We evaluated whether the expression of PrPc was associated with the resistance to adjuvant chemotherapy in patients with estrogen receptor (ER) -negative breast cancer. PATIENTS AND METHODS The expression of PrPc by primary tumors was assessed by immunohistochemistry in a series of 756 patients included in two randomized trials that compared anthracycline-based chemotherapy to no chemotherapy. The PrPc expression was correlated with ER expression and the benefit of adjuvant chemotherapy was assessed according to PrPc expression in patients with ER-negative tumors. RESULTS Immunostaining analysis showed that PrPc was mainly expressed by myoepithelial cells in normal breast tissue. Tissue microarray analysis from 756 breast tumors showed that PrPc was associated with ER-negative breast cancer subsets (P < 0.001). Adjuvant chemotherapy was not associated with a significant risk reduction for death in patients with ER-negative/PrPc-positive disease [adjusted hazard ratio (HR) for death = 0.98, 95% confidence interval (CI) 0.45-2.1, P = 0.95], while it decreased the risk for death (HR = 0.39, 95% CI 0.2-0.74, P = 0.004) in patients with ER-negative/PrPc-negative tumors. CONCLUSION These data indicate that ER-negative/PrPc-negative phenotype is associated with a high sensitivity to adjuvant chemotherapy.
Collapse
Affiliation(s)
- F Meslin
- Institut National de la Santé et de la Recherche Médicale, Laboratoire d'Immunologie des Tumeurs Humaines: Interaction effecteurs cytotoxiques-système tumoral, Institut Gustave Roussy PR1 and IFR 54, 94805 Villejuif Cedex. France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liang J, Luo G, Ning X, Shi Y, Zhai H, Sun S, Jin H, Liu Z, Zhang F, Lu Y, Zhao Y, Chen X, Zhang H, Guo X, Wu K, Fan D. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein. Biochem Cell Biol 2007; 85:375-83. [PMID: 17612632 DOI: 10.1139/o07-052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mörwald H, Wurm S, Crailsheim K, Wechselberger C. Prion protein facilitates hormone-induced differentiation of mammary gland epithelial cells. Biochem Biophys Res Commun 2007; 360:746-51. [PMID: 17631862 DOI: 10.1016/j.bbrc.2007.06.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
Expression of prion protein has been reported for a variety of cell types including neuronal cells, haematopoietic stem cells, lymphocytes, fibroblasts, and epithelial cells. However, the characterization of the physiological roles exhibited by this protein is still in progress and multiple biological functions have been described to date. In this study we have characterized the contribution of prion protein during hormone-induced differentiation of mouse mammary gland epithelial cells. We present evidence that prion expression enhances the differentiation-capabilities of these cells indicating novel physiological roles during mammary gland development. In addition we were able to demonstrate the presence of prion molecules resistant to mild proteinase digestion in differentiated mammary gland epithelial cells. This represents the first report of proteinase-resistant prion proteins in a physiological, non-pathogenic context.
Collapse
Affiliation(s)
- Helene Mörwald
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, Scharitzerstrasse 6-8, 4020 Linz, Austria
| | | | | | | |
Collapse
|
42
|
Liang J, Pan Y, Zhang D, Guo C, Shi Y, Wang J, Chen Y, Wang X, Liu J, Guo X, Chen Z, Qiao T, Fan D. Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J 2007; 21:2247-56. [PMID: 17409275 DOI: 10.1096/fj.06-7799com] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The function of cellular prion protein (PrP(C)), the essential protein for the pathogenesis and transmission of prion diseases, is still largely unknown. The putative roles of PrP(C) are thought to be related to cell signaling, survival, and differentiation. In a previous study, we showed that PrP(C) was overexpressed in gastric cancer tissues. In the present report, we show that ectopic expression of PrP(C) could promote tumorigenesis, proliferation, and G1/S transition in gastric cancer cells. Furthermore, CyclinD1, a protein related to cell cycle, was shown to be significantly up-regulated by PrP(C) at both mRNA and protein levels. PI3K/Akt pathway mediated above PrP(C) signal since PrP(C) increased the expression of phosphorylated Akt, and the specific inhibitor of Akt, LY294002, could markedly suppress growth of SGC7901 and transactivation of CyclinD1 induced by PrP(C). Octapeptide repeat region played a vital role in this function, as deletion of this region abolished or reduced these effects. Collectively, this study demonstrates that overexpression of PrP(C) might promote the tumorigenesis and proliferation of gastric cancer cells at least partially through activation of PI3K/Akt pathway and subsequent transcriptional activation of CyclinD1 to regulate the G1/S phase transition, in which octapeptide repeat region might be an indispensable region.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Chromones/pharmacology
- Cyclin D
- Cyclins/biosynthesis
- Cyclins/genetics
- Cyclins/physiology
- G1 Phase
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Morpholines/pharmacology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphatidylinositol 3-Kinases/physiology
- PrPC Proteins/chemistry
- PrPC Proteins/genetics
- PrPC Proteins/physiology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Recombinant Fusion Proteins/physiology
- Repetitive Sequences, Amino Acid
- S Phase
- Sequence Deletion
- Signal Transduction/genetics
- Signal Transduction/physiology
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Transcriptional Activation/drug effects
- Transfection
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, 15 West Chang-Le Rd., Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, München, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function.
Collapse
Affiliation(s)
- J D Isaacs
- Human Disease Immunogenetics Group, Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
45
|
Liang J, Wang JB, Pan YL, Wang J, Liu LL, Guo XY, Sun L, Lin T, Han S, Xie HH, Yin F, Guo XG, Fan D. High frequency occurrence of 1-OPRD variant of PRNP gene in gastric cancer cell lines and Chinese population with gastric cancer. Cell Biol Int 2006; 30:920-3. [PMID: 16914329 DOI: 10.1016/j.cellbi.2006.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 04/14/2006] [Accepted: 05/20/2006] [Indexed: 01/12/2023]
Abstract
The prion protein gene PRNP encodes PrPc and PrPsc, causing a number of neurological disorders. Approximately 10-15% of human prion disease is inherited and more than 20 pathogenic mutations have been found. Most of the genetic alterations are point mutations, with the exception of genetic insertions of one to nine extra octapeptide repeats occurring in the important octapeptide-coding region. Our previous work showed that PrPc was overexpressed in gastric cancer. We wondered whether mutations of PrPc existed in human gastric cancer. DNA sequencing and gel electrophoresis were used to determine the possible mutation of PrPc in patients and cell lines of gastric cancer. We found that 1-OPRD (one octapeptide-repeat deletion) homozygosity or heterozygosity exists in several gastric cancer cell lines, e.g. MKN28 and KatoIII are homozygous for 1-OPRD, and SGC7901 and BGC-823 are heterozygous for 1-OPRD. The mutation frequency in tissues of gastric cancer cases is significantly higher than that in the common population (p<0.05). All positive cases in gastric cancer were found to be heterozygous for 1-OPRD. Further study of the variant may be helpful in understanding the mechanisms of occurrence and development of clinical gastric carcinoma as well as the biology of the mysterious gene PRNP.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Cancer Biology&Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|