1
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Fuertes-Kenneally L, Blasco-Peris C, Casanova-Lizón A, Baladzhaeva S, Climent V, Sarabia JM, Manresa-Rocamora A. Effects of high-intensity interval training on vascular function in patients with cardiovascular disease: a systematic review and meta-analysis. Front Physiol 2023; 14:1196665. [PMID: 37576344 PMCID: PMC10413117 DOI: 10.3389/fphys.2023.1196665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Exercise training improves endothelial function in patients with cardiovascular disease (CVD). However, the influence of training variables remains unclear. The aim of this study was to evaluate the effect of high-intensity interval training (HIIT), compared to moderate intensity training (MIT) and other exercise modalities (i.e., resistance and combined exercise), on endothelial function, assessed by arterial flow-mediated dilation (FMD) or endothelial progenitor cells (EPCs), in patients with CVD. Secondly, we investigated the influence of other training variables (i.e., HIIT protocol). Methods: The PICOS strategy was used to identify randomised and non-randomised studies comparing the effect of HIIT and other exercise modalities (e.g., MIT) on endothelial function in patients with CVD. Electronic searches were carried out in Pubmed, Embase, and Web of Science up to November 2022. The TESTEX scale was used to evaluate the methodological quality of the included studies. Random-effects models of between-group mean difference (MD) were estimated. A positive MD indicated an effect in favour of HIIT. Heterogeneity analyses were performed by the chi-square test and I 2 index. Subgroup analyses evaluated the influence of potential moderator variables. Results: Fourteen studies (13; 92.9% randomised) were included. Most of the studies trained 3 days a week for 12 weeks and performed long HIIT. No statistically significant differences were found between HIIT and MIT for improving brachial FMD in patients with coronary artery disease (CAD) and heart failure with reduced ejection fraction (HFrEF) (8 studies; MD+ = 0.91% [95% confidence interval (CI) = -0.06, 1.88]). However, subgroup analyses showed that long HIIT (i.e., > 1 min) is better than MIT for enhancing FMD (5 studies; MD+ = 1.46% [95% CI = 0.35, 2.57]), while no differences were found between short HIIT (i.e., ≤ 1 min) and MIT (3 studies; MD+ = -0.41% [95% CI = -1.64, 0.82]). Insufficient data prevented pooled analysis for EPCs, and individual studies failed to find statistically significant differences (p > .050) between HIIT and other exercise modalities in increasing EPCs. Discussion: Poor methodological quality could limit the precision of the current results and increase the inconsistency. Long HIIT is superior to MIT for improving FMD in patients with CAD or HFrEF. Future studies comparing HIIT to other exercise modalities, as well as the effect on EPCs and in HF with preserved ejection fraction are required. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier CRD42022358156.
Collapse
Affiliation(s)
- Laura Fuertes-Kenneally
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Dr. Balmis General University Hospital, Alicante, Spain
| | - Carles Blasco-Peris
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Physical Education and Sport, University of Valencia, Valencia, Spain
| | | | - Sabina Baladzhaeva
- Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Vicente Climent
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Dr. Balmis General University Hospital, Alicante, Spain
| | - José Manuel Sarabia
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Agustín Manresa-Rocamora
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| |
Collapse
|
3
|
Kourek C, Karatzanos E, Nanas S, Karabinis A, Dimopoulos S. Exercise training in heart transplantation. World J Transplant 2021; 11:466-479. [PMID: 34868897 PMCID: PMC8603635 DOI: 10.5500/wjt.v11.i11.466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Heart transplantation remains the gold standard in the treatment of end-stage heart failure (HF). Heart transplantation patients present lower exercise capacity due to cardiovascular and musculoskeletal alterations leading thus to poor quality of life and reduction in the ability of daily self-service. Impaired vascular function and diastolic dysfunction cause lower cardiac output while decreased skeletal muscle oxidative fibers, enzymes and capillarity cause arteriovenous oxygen difference, leading thus to decreased peak oxygen uptake in heart transplant recipients. Exercise training improves exercise capacity, cardiac and vascular endothelial function in heart transplant recipients. Pre-rehabilitation regular aerobic or combined exercise is beneficial for patients with end-stage HF awaiting heart transplantation in order to maintain a higher fitness level and reduce complications afterwards like intensive care unit acquired weakness or cardiac cachexia. All hospitalized patients after heart transplantation should be referred to early mobilization of skeletal muscles through kinesiotherapy of the upper and lower limbs and respiratory physiotherapy in order to prevent infections of the respiratory system prior to hospital discharge. Moreover, all heart transplant recipients after hospital discharge who have not already participated in an early cardiac rehabilitation program should be referred to a rehabilitation center by their health care provider. Although high intensity interval training seems to have more benefits than moderate intensity continuous training, especially in stable transplant patients, individualized training based on the abilities and needs of each patient still remains the most appropriate approach. Cardiac rehabilitation appears to be safe in heart transplant patients. However, long-term follow-up data is incomplete and, therefore, further high quality and adequately-powered studies are needed to demonstrate the long-term benefits of exercise training in this population.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Attica, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Attica, Greece
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Attica, Greece
| | - Andreas Karabinis
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Attica, Greece
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
4
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Ali S, Zubair M, Hussain S. The combined effect of climatic factors and technical advancement on yield of sugarcane by using ARDL approach: evidence from Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39787-39804. [PMID: 33768460 DOI: 10.1007/s11356-021-13313-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/01/2021] [Indexed: 05/25/2023]
Abstract
Sugarcane is one of the most important crops in the world and has a major influence on environmental concerns. This study aims to examine the association between sugarcane crop yield, climate change factors, and technical advancement using time series data for the period of 1989 to 2015 in Pakistan. An autoregressive distributed lag (ARDL) model and descriptive statistics analysis were employed in this study. The outcomes of the bound F-test for co-integration confirmed that there is a long-run and short-run equilibrium among sugarcane crop yield, temperature, rainfall, fertilizer use, and agricultural machinery. The results of long-run estimate that the coefficient of area, rainfall, and fertilizer use have significantly positive impacts on sugarcane crop yield. The coefficient of temperature had positive and non-significant while agricultural machinery had negative and statistically significant relationship with sugarcane crop yield. In the short-run estimates, the coefficient of area, rainfall, and fertilizer use have statistically positive impact, temperature had non-significant impact, and agricultural machinery had significantly negative impact on the yield of sugarcane crop. In addition, both CUSUM and CUSUMsq test results confirmed the goodness of fit of this model. The outcomes of our study suggest that climate change has negative impact on the yield of sugarcane. Based on the study findings, the Government requires to take effective measures for constructive policy-making and identification of environmental threats in Pakistan. Large-scale mechanical activities and rapid growing may be useful initiatives for raising the yield of sugarcane. Furthermore, technical advancement needs to be improved because it plays a vital role in increasing the yield of sugarcane and other major crops.
Collapse
Affiliation(s)
- Sajjad Ali
- College of Economics and Management, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Sadeed Hussain
- College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Niu J, Song W, Li R, Yu H, Guan J, Qi J, He Y. The Bdkrb2 gene family provides a novel view of viviparity adaptation in Sebastes schlegelii. BMC Ecol Evol 2021; 21:44. [PMID: 33731008 PMCID: PMC7968187 DOI: 10.1186/s12862-021-01774-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Black rockfish (Sebastes schlegelii) is a viviparous teleost. We proposed that the rockfish ovarian wall had a similar function to the uterus of mammals previously. In the present study, the well-developed vascular system was observed in the ovarian wall and the exterior surface of the egg membrane. In gestation, adaptation of the ovary vasculature to the rising needs of the embryos occurs through both vasodilation and neovascularization. Bdkrb2, encoding a receptor for bradykinin, plays a critical role in the control of vasodilatation by regulating nitric oxide production. RESULTS Eight Bdkrb2 genes were identified in the black rockfish genome. These genes were located on chromosome 14, which are arranged in a tandem array, forming a gene cluster spanning 50 kb. Protein structure prediction, phylogenetic analysis, and transcriptome analysis showed that eight Bdkrb2 genes evolved two kinds of protein structure and three types of tissue expression pattern. Overexpression of two Bdkrb2 genes in zebrafish indicated a role of them in blood vessel formation or remodeling, which is an important procedure for the viviparous rockfish getting prepared for fertilization and embryos implantation. CONCLUSIONS Our study characterizes eight Bdrkb2 genes in the black rockfish, which may contribute to preparation for fertilization and embryo implantation. This research provides a novel view of viviparity adaptation and lays the groundwork for future research into vascular regulation of ovarian tissue in the breeding cycle in black rockfish.
Collapse
Affiliation(s)
- Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiyang Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jian Guan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Kourek C, Karatzanos E, Psarra K, Ntalianis A, Mitsiou G, Delis D, Linardatou V, Pittaras T, Vasileiadis I, Dimopoulos S, Nanas S. Endothelial progenitor cells mobilization after maximal exercise in patients with chronic heart failure. Hellenic J Cardiol 2021; 62:70-72. [PMID: 32304815 DOI: 10.1016/j.hjc.2020.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evaggelismos General Hospital, Athens, Greece
| | - Argyrios Ntalianis
- Heart Failure Unit, Department of Clinical Therapeutics, Alexandra Hospital, NKUA, Athens, Greece
| | - Georgios Mitsiou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Dimitrios Delis
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Vasiliki Linardatou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | - Ioannis Vasileiadis
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece; Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens, Greece.
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, NKUA, Athens, Greece
| |
Collapse
|
9
|
The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: Comparing two different exercise training protocols. IJC HEART & VASCULATURE 2020; 32:100702. [PMID: 33392386 PMCID: PMC7772790 DOI: 10.1016/j.ijcha.2020.100702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
Background Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are also impaired. The purpose of the study was to assess the effect of a cardiac rehabilitation (CR) program on the increase of EPCs at rest and on the acute response after maximal exercise in patients with CHF and investigate whether there were differences between two exercise training protocols and patients of NYHA II and III classes. Methods Forty-four patients with stable CHF enrolled in a 36-session CR program and were randomized in one training protocol; either high-intensity interval training (HIIT) or HIIT combined with muscle strength (COM). All patients underwent maximum cardiopulmonary exercise testing (CPET) before and after the CR program and venous blood was drawn before and after each CPET. Five endothelial cellular populations, expressed as cells/106 enucleated cells, were quantified by flow cytometry. Results An increase in all endothelial cellular populations at rest was observed after the CR program (p < 0.01). The acute response after maximum exercise increased in 4 out of 5 endothelial cellular populations after rehabilitation. Although there was increase in EPCs at rest and the acute response after rehabilitation in each exercise training group and each NYHA class, there were no differences between HIIT and COM groups or NYHA II and NYHA III classes (p > 0.05). Conclusions A 36-session CR program increases the acute response after maximum CPET and stimulates the long-term mobilization of EPCs at rest in patients with CHF. These benefits seem to be similar between HIIT and COM exercise training protocols and between patients of different functional classes.
Collapse
|
10
|
Kourek C, Karatzanos E, Psarra K, Georgiopoulos G, Delis D, Linardatou V, Gavrielatos G, Papadopoulos C, Nanas S, Dimopoulos S. Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J Cardiol 2020; 12:526-539. [PMID: 33312438 PMCID: PMC7701904 DOI: 10.4330/wjc.v12.i11.526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Patients with CHF are characterized by impaired vasodilation and inflammation of the vascular endothelium. They also have low levels of endothelial progenitor cells (EPCs). EPCs are bone marrow derived cells involved in endothelium regeneration, homeostasis, and neovascularization. Exercise has been shown to improve vasodilation and stimulate the mobilization of EPCs in healthy people and patients with cardiovascular comorbidities. However, the effects of exercise on EPCs in different stages of CHF remain under investigation.
AIM To evaluate the effect of a symptom-limited maximal cardiopulmonary exercise testing (CPET) on EPCs in CHF patients of different severity.
METHODS Forty-nine consecutive patients (41 males) with stable CHF [mean age (years): 56 ± 10, ejection fraction (EF, %): 32 ± 8, peak oxygen uptake (VO2, mL/kg/min): 18.1 ± 4.4] underwent a CPET on a cycle ergometer. Venous blood was sampled before and after CPET. Five circulating endothelial populations were quantified by flow cytometry: Three subgroups of EPCs [CD34+/CD45-/CD133+, CD34+/CD45-/CD133+/VEGFR2 and CD34+/CD133+/vascular endothelial growth factor receptor 2 (VEGFR2)] and two subgroups of circulating endothelial cells (CD34+/CD45-/CD133- and CD34+/CD45-/CD133-/VEGFR2). Patients were divided in two groups of severity according to the median value of peak VO2 (18.0 mL/kg/min), predicted peak VO2 (65.5%), ventilation/carbon dioxide output slope (32.5) and EF (reduced and mid-ranged EF). EPCs values are expressed as median (25th-75th percentiles) in cells/106 enucleated cells.
RESULTS Patients with lower peak VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 60 (25-76) vs post CPET: 90 (70-103) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 1 (1-4) vs post CPET: 5 (3-8) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133- [pre CPET: 186 (141-361) vs post CPET: 488 (247-658) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 2 (1-2) vs post CPET: 3 (2-5) cells/106 enucleated cells, P < 0.001], while patients with higher VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 42 (19-73) vs post CPET: 90 (39-118) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 2 (1-3) vs post CPET: 6 (3-9) cells/106 enucleated cells, P < 0.001], CD34+/CD133+/VEGFR2 [pre CPET: 10 (7-18) vs post CPET: 14 (10-19) cells/106 enucleated cells, P < 0.01], CD34+/CD45-/CD133- [pre CPET: 218 (158-247) vs post CPET: 311 (254-569) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 1 (1-2) vs post CPET: 4 (2-6) cells/106 enucleated cells, P < 0.001]. A similar increase in the mobilization of at least four out of five cellular populations was observed after maximal exercise within each severity group regarding predicted peak, ventilation/carbon dioxide output slope and EF as well (P < 0.05). However, there were no statistically significant differences in the mobilization of endothelial cellular populations between severity groups in each comparison (P > 0.05).
CONCLUSION Our study has shown an increased EPCs and circulating endothelial cells mobilization after maximal exercise in CHF patients, but this increase was not associated with syndrome severity. Further investigation, however, is needed.
Collapse
Affiliation(s)
- Christos Kourek
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Eleftherios Karatzanos
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evaggelismos Hospital, Athens 10676, Greece
| | | | - Dimitrios Delis
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Vasiliki Linardatou
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Gerasimos Gavrielatos
- Department of Cardiology, Tzaneio General Hospital of Piraeus, Piraeus 18536, Greece
| | - Costas Papadopoulos
- 2nd Cardiology Department, Korgialenio-Benakio Red Cross Hospital, Athens 11526, Greece
| | - Serafim Nanas
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Stavros Dimopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
11
|
Hu Q, Zhang B, Liu Y, Guo Y, Zhang T, Nie R, Ke X, Dong X. The effect of fluid shear stress in hydrogen sulphide production and cystathionine γ-lyase expression in human early endothelial progenitor cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1318. [PMID: 33209898 PMCID: PMC7661880 DOI: 10.21037/atm-20-6467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Physiological fluid shear stress has been shown to have a beneficial impact on vascular homeostasis. Endothelial progenitor cells (EPCs) make a significant contribution to maintaining endothelial integrity. Therefore, we hypothesised that shear stress-induced endothelium protection plays a role in hydrogen sulphide (H2S) production and up-regulation of cystathionine γ-lyase (CSE) expression in EPCs. Methods Human EPC-derived CSE activity was detected by colorimetric assay, and H2S production was evaluated by membrane adsorption method. Cell proliferation, migration, and adhesion were assessed by MTT, Transwell, and endothelial cell-mediated adhesion assays, respectively. Real-time polymerase chain reaction (RT-PCR) was carried out to analyse gene expression. Protein expression was analysed by western blot. Results Human EPCs were treated with shear stress levels of 5–25 dyn/cm2 for up to 3 h, and 25 dyn/cm2 for up to 24 h. H2S production and CSE mRNA expression in the EPCs were increased by shear stress in a dose-dependent manner in vitro. Likewise, time-dependent shear stress also significantly enhanced CSE protein expression. Compared to static condition, shear stress improved EPCs proliferation, migration and adhesion capacity. Knockdown of CSE expression by small interfering RNA substantially eliminated the shear stress-induced above functions of human EPCs in vitro. Conclusions This study gives new insight into the regulatory effect of physiological shear stress on the CSE/H2S system in human EPCs. Our findings may contribute to the development of vascular protective research, although the relevant evidence is admittedly indirect.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Zhang
- Cardiac Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Yulong Liu
- Department of Intervention and Vascular Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiqun Guo
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruqiong Nie
- Department of Cardiology, Guangzhou Province Key Laboratory of Arrhymia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Xiaobian Dong
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Lv Y, Li G, Peng H, Liu Y, Yao J, Wang G, Sun J, Liu J, Zhang H, Chen G, Liu L. Development of elastic artificial vessels with a digital pulse flow system to investigate the risk of restenosis and vasospasm. LAB ON A CHIP 2020; 20:3051-3059. [PMID: 32725035 DOI: 10.1039/d0lc00533a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The postoperative risk of stenosis is a complex issue, with risk factors including the status of human umbilical vein endothelial cells, the shear stress of dynamic blood flow, and blood physiology. Current research would benefit from in vitro models that can mimic the microenvironment of living vessels, to study the response of endothelial cells to stent placement. In this study, we constructed a digital pulse flow system based on a group of programmable solenoid valves, to mimic dynamic blood flows in the left coronary artery. Elastic artificial vessels, with internally cultured endothelial cells, were used to simulate vessel function and physiology. Based on this novel platform, we systematically explored cell proliferation and function in artificial vessels implanted with bare metal stents or drug-eluting stents, using unstented vessels as controls, under static and pulse flow conditions. The results indicate that the natural shear stresses of dynamic blood flow actually benefit endothelial cell attachment and proliferation. And drug-eluting stents showed stronger inhibition of cell proliferation than bare metal stents, but had a more negative effect on the synthesis of nitric oxide synthase (NOS), suggesting that drug elution might reduce the postoperative risk of restenosis, while increasing the risk of vasospasm. The results suggest that stent evaluation should include both the risk of restenosis and the effect on endothelial cells. Our simulation establishes a realistic in vitro model for pathological studies of restenosis and vasospasm, shows potential for evaluation of new stent designs, and could help develop individualised therapies for patients with atherosclerosis.
Collapse
Affiliation(s)
- Yalei Lv
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aliskiren Improved the Endothelial Repair Capacity of Endothelial Progenitor Cells from Patients with Hypertension via the Tie2/PI3k/Akt/eNOS Signalling Pathway. Cardiol Res Pract 2020; 2020:6534512. [PMID: 32566272 PMCID: PMC7275222 DOI: 10.1155/2020/6534512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Studies show that aliskiren exerts favourable effects not only on endothelial progenitor cells (EPCs) but also on endothelial function. However, the mechanism of the favourable effect of aliskiren on EPCs from patients with hypertension is unclear and remains to be further studied. Methods The object of this study was to investigate and assess the in vitro function of EPCs pretreated with aliskiren. After treated with aliskiren, the human EPCs were transplanted into a nude mouse model of carotid artery injury, and the in vivo reendothelialization of injured artery was estimated by staining denuded areas with Evans blue dye via tail vein injection. Results We found that aliskiren increased the in vitro migration, proliferation, and adhesion of EPCs from patients with hypertension in a dose-dependent manner and improved the reendothelialization capability of these EPCs. Furthermore, aliskiren increased the phosphorylation of Tie2, Akt, and eNOS. After the blockade of the Tie2 signalling pathway, the favourable effects of aliskiren on the in vitro function and in vivo reendothelialization capability of EPCs were suppressed. Conclusions This study demonstrates that aliskiren can improve the in vitro function and in vivo reendothelialization capability of EPCs from patients with hypertension via the activation of the Tie2/PI3k/Akt/eNOS signalling pathway. These findings further indicate that aliskiren is an effective pharmacological treatment for cell-based repair in hypertension-related vascular injury.
Collapse
|
14
|
Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int 2020; 2020:5939530. [PMID: 32399044 PMCID: PMC7210539 DOI: 10.1155/2020/5939530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. Methods Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. Results LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P < 0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2 ± 5.5 vs. 47.3 ± 7.3, 0.517 ± 0.05 vs. 0.367 ± 0.038, and 1.664 ± 0.315 vs. 1 ± 0, respectively; all P < 0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P < 0.05, respectively). Conclusions This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.
Collapse
|
15
|
β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. J Hypertens 2020; 38:82-94. [DOI: 10.1097/hjh.0000000000002203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Juliana P, Montesinos-López OA, Crossa J, Mondal S, González Pérez L, Poland J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Dreisigacker S, Shrestha S, Pérez-Rodríguez P, Pinto Espinosa F, Singh RP. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:177-194. [PMID: 30341493 PMCID: PMC6320358 DOI: 10.1007/s00122-018-3206-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/09/2018] [Indexed: 05/18/2023]
Abstract
Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center's elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress-resilience within years.
Collapse
Affiliation(s)
- Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico.
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Lorena González Pérez
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Jesse Poland
- Department of Plant Pathology and Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Chapingo, Edo. de México, 56230, Mexico
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Sandesh Shrestha
- Department of Plant Pathology and Agronomy, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Francisco Pinto Espinosa
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico.
| |
Collapse
|
17
|
Qiu Y, Zhang C, Zhang G, Tao J. Endothelial progenitor cells in cardiovascular diseases. Aging Med (Milton) 2018; 1:204-208. [PMID: 31942498 PMCID: PMC6880702 DOI: 10.1002/agm2.12041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in both developed and developing countries. Endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells with powerful function of angiogenesis. There are many studies on the relation between coronary heart disease and circulating EPCs. In this review, we discuss biological characteristics of endothelial progenitor cells, some influencing factors of the number and function of EPCs, and the role of EPCs in the treatment of cardiovascular disease. At last, we bring some perspectives on the future of endothelial progenitor cell therapy.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of Hypertension and Vascular DiseaseThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Chanjuan Zhang
- Department of Hypertension and Vascular DiseaseThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Gaoxing Zhang
- Department of Cardiovascular DiseaseThe Jiangmen Central HospitalJiangmenChina
| | - Jun Tao
- Department of Hypertension and Vascular DiseaseThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
18
|
Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci Rep 2018; 8:5168. [PMID: 29581463 PMCID: PMC5979969 DOI: 10.1038/s41598-018-23512-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| |
Collapse
|
19
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
20
|
Whole-Transcriptome Sequencing: a Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High Throughput 2018; 7:ht7010005. [PMID: 29485616 PMCID: PMC5876531 DOI: 10.3390/ht7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among applicable high-throughput techniques in cardiovascular biology, whole-transcriptome sequencing is of particular use. By utilizing RNA that is isolated from virtually all cells and tissues, the entire transcriptome can be evaluated. In comparison with other high-throughput approaches, RNA sequencing is characterized by a relatively low-cost and large data output, which permits a comprehensive analysis of spatiotemporal variation in the gene expression profile. Both shear stress and cyclic strain exert hemodynamic force upon the arterial endothelium and are considered to be crucial determinants of endothelial physiology. Laminar blood flow results in a high shear stress that promotes atheroresistant endothelial phenotype, while a turbulent, oscillatory flow yields a pathologically low shear stress that disturbs endothelial homeostasis, making respective arterial segments prone to atherosclerosis. Severe atherosclerosis significantly impairs blood supply to the organs and frequently requires bypass surgery or an arterial replacement surgery that requires tissue-engineered vascular grafts. To provide insight into patterns of gene expression in endothelial cells in native or bioartificial arteries under different biomechanical conditions, this article discusses applications of whole-transcriptome sequencing in endothelial mechanobiology and vascular tissue engineering.
Collapse
|
21
|
Bai YP, Xiao S, Tang YB, Tan Z, Tang H, Ren Z, Zeng H, Yang Z. Shear stress-mediated upregulation of GTP cyclohydrolase/tetrahydrobiopterin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells. J Hypertens 2017; 35:784-797. [PMID: 28033126 DOI: 10.1097/hjh.0000000000001216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Guanosine triphosphate cyclohydrolase/tetrahydrobiopterin (GTPCH)/(BH4) pathway has been proved to regulate the function of endothelial progenitor cells (EPCs) in deoxycorticosterone acetate-salt hypertensive mice, indicating that GTPCH/BH4 pathway may be an important repair target for hypertension-related endothelial injury. Shear stress is an important nonpharmacologic strategy to modulate the function of EPCs. Here, we investigated the effects of laminar shear stress on the GTPCH/BH4 pathway and endothelial repair capacity of circulating EPCs in hypertension. METHOD Laminar shear stress was loaded on the human EPCs from hypertensive patients and normotensive patients. The in-vitro function, in-vivo reendothelialization capacity and GTPCH/BH4 pathway of human EPCs were evaluated. RESULTS Both in-vitro function and reendothelialization capacity of EPCs were lower in hypertensive patients than that in normotensive patients. The GTPCH/BH4 pathway of EPCs was downregulated in hypertensive patients. Shear stress increased in-vitro function and reendothelialization capacity of EPCs from hypertensive patients and normotensive patients. Furthermore, shear stress upregulated the expression of GTPCH I and levels of BH4, nitric oxide, and cGMP of EPCs, and reduced thrombospondin-1 expression. With treatment of GTPCH knockdown or nitroarginine methyl ester inhibition, shear stress-induced increased levels of BH4, nitric oxide and cGMP of EPCs was suppressed. When GTPCH/BH4 pathway of EPCs was blocked, the effects of shear stress on in-vitro function and reendothelialization capacity of EPCs were inhibited. CONCLUSION The study demonstrates for the first time that shear stress-induced upregulation of the GTPCH/BH4 pathway ameliorates hypertension-related decline in endothelial repair capacity of EPCs. These findings provide novel nonpharmacologic therapeutic approach for hypertension-related endothelial repair.
Collapse
Affiliation(s)
- Yong-Ping Bai
- aDepartment of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan bDepartment of Neurology, Sun Yat-Sen Memorial Hospital cDepartment of Pharmacology, Zhongshan School of Medicine dDepartment of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University eSun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine fCenter for Reproductive Medicine, The Sixth Affiliated Hospital gDepartment of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stefanou C, Karatzanos E, Mitsiou G, Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E, Routsi C, Nanas S. Neuromuscular electrical stimulation acutely mobilizes endothelial progenitor cells in critically ill patients with sepsis. Ann Intensive Care 2016; 6:21. [PMID: 26969168 PMCID: PMC4788669 DOI: 10.1186/s13613-016-0123-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have been suggested to constitute a restoration index of the disturbed endothelium in ICU patients. Neuromuscular electric stimulation (NMES) is increasingly employed in ICU to prevent comorbidities such as ICU-acquired weakness, which is related to endothelial dysfunction. The role of NMES to mobilize EPCs has not been investigated yet. The purpose of this study was to explore the NMES-induced effects on mobilization of EPCs in septic ICU patients. METHODS Thirty-two septic mechanically ventilated patients (mean ± SD, age 58 ± 14 years) were randomized to one of the two 30-min NMES protocols of different characteristics: a high-frequency (75 Hz, 6 s on-21 s off) or a medium-frequency (45 Hz, 5 s on-12 s off) protocol both applied at maximally tolerated intensity. Blood was sampled before and immediately after the NMES sessions. Different EPCs subpopulations were quantified by cytometry markers CD34(+)/CD133(+)/CD45(-), CD34(+)/CD133(+)/CD45(-)/VEGFR2 (+) and CD34(+)/CD45(-)/VEGFR2 (+). RESULTS Overall, CD34(+)/CD133(+)/CD45(-) EPCs increased from 13.5 ± 10.2 to 20.8 ± 16.9 and CD34(+)/CD133(+)/CD45(-)/VEGFR2 (+) EPCs from 3.8 ± 5.2 to 6.4 ± 8.5 cells/10(6) enucleated cells (mean ± SD, p < 0.05). CD34(+)/CD45(-)/VEGFR2 (+) EPCs also increased from 16.5 ± 14.5 to 23.8 ± 19.2 cells/10(6) enucleated cells (mean ± SD, p < 0.05). EPCs mobilization was not affected by NMES protocol and sepsis severity (p > 0.05), while it was related to corticosteroids administration (p < 0.05). CONCLUSIONS NMES acutely mobilized endothelial progenitor cells, measures of the endothelial restoration potential, in septic ICU patients.
Collapse
Affiliation(s)
- Christos Stefanou
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Eleftherios Karatzanos
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Georgios Mitsiou
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Katerina Psarra
- Immunology and Histocompatibility Department, Evangelismos General Hospital, 45-47 Ypsilantou Str, 106 75 Athens, Greece
| | - Epameinondas Angelopoulos
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Stavros Dimopoulos
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
- Critical Care Unit, Guys and St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH UK
| | - Vasiliki Gerovasili
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Efstathios Boviatsis
- 2nd Neurosurgical Department, Attiko University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini Str, 124 62 Athens, Greece
| | - Christina Routsi
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Serafeim Nanas
- 1st Critical Care Department, Evangelismos General Hospital, School of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| |
Collapse
|
23
|
Ankeny RF, Hinds MT, Nerem RM. Dynamic shear stress regulation of inflammatory and thrombotic pathways in baboon endothelial outgrowth cells. Tissue Eng Part A 2013; 19:1573-82. [PMID: 23406430 DOI: 10.1089/ten.tea.2012.0300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endothelial outgrowth cells (EOCs) have garnered much attention as a potential autologous endothelial source for vascular implants or in tissue engineering applications due to their ease of isolation and proliferative ability; however, how these cells respond to different hemodynamic cues is ill-defined. This study investigates the inflammatory and thrombotic response of baboon EOCs (BaEOCs) to four hemodynamic conditions using the cone and plate shear apparatus: steady, laminar shear stress (SS); pulsatile, nonreversing laminar shear stress (PS); oscillatory, laminar shear stress (OS); and net positive, pulsatile, reversing laminar shear stress (RS). In summary, endothelial nitric oxide synthase (eNOS) mRNA was significantly upregulated by SS compared to OS. No differences were found in the mRNA levels of the inflammatory markers intercellular adhesion molecule-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1) between the shear conditions; however, OS significantly increased the number of monocytes bound when compared to SS. Next, SS increased the anti-thrombogenic mRNA levels of CD39, thrombomodulin, and endothelial protein-C receptor (EPCR) compared to OS. SS also significantly increased CD39 and EPCR mRNA levels compared to RS. Finally, no significant differences were detected when comparing pro-thrombotic tissue factor mRNA or its activity levels. These results indicate that shear stress can have beneficial (SS) or adverse (OS, RS) effects on the inflammatory or thrombotic potential of EOCs. Further, these results suggest SS hemodynamic preconditioning may be optimal in increasing the efficacy of a vascular implant or in tissue-engineered applications that have incorporated EOCs.
Collapse
Affiliation(s)
- Randall F Ankeny
- Parker H. Petit Institute for Bioengineering and Bioscience and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
24
|
Obi S, Masuda H, Shizuno T, Sato A, Yamamoto K, Ando J, Abe Y, Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol 2012; 303:C595-606. [PMID: 22744008 DOI: 10.1152/ajpcell.00133.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) are mobilized from bone marrow to peripheral blood, and contribute to angiogenesis in tissue. In the process, EPCs are exposed to shear stress generated by blood flow and tissue fluid flow. Our previous study showed that shear stress induces differentiation of mature EPCs in adhesive phenotype into mature endothelial cells and, moreover, arterial endothelial cells. In this study we investigated whether immature EPCs in a circulating phenotype differentiate into mature EPCs in response to shear stress. When floating-circulating phenotype EPCs derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, antiapoptosis, tube formation, and differentiated type of EPC colony formation increased. The surface protein expression rate of the endothelial markers VEGF receptor 1 (VEGF-R1) and -2 (VEGF-R2), VE-cadherin, Tie2, VCAM1, integrin α(v)/β(3), and E-selectin increased in shear-stressed EPCs. The VEGF-R1, VEGF-R2, VE-cadherin, and Tie2 protein increases were dependent on the magnitude of shear stress. The mRNA levels of VEGF-R1, VEGF-R2, VE-cadherin, Tie2, endothelial nitric oxide synthase, matrix metalloproteinase 9, and VEGF increased in shear-stressed EPCs. Inhibitor analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signal transduction pathway is a potent activator of adhesion, proliferation, tube formation, and differentiation in response to shear stress. Western blot analysis revealed that shear stress activated the VEGF-R2 phosphorylation in a ligand-independent manner. These results indicate that shear stress increases differentiation, adhesion, migration, proliferation, antiapoptosis, and vasculogenesis of circulating phenotype EPCs by activation of VEGF-R2 and the PI3K/Akt/mTOR signal transduction pathway.
Collapse
Affiliation(s)
- Syotaro Obi
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xia WH, Yang Z, Xu SY, Chen L, Zhang XY, Li J, Liu X, Qiu YX, Shuai XT, Tao J. Age-related decline in reendothelialization capacity of human endothelial progenitor cells is restored by shear stress. Hypertension 2012; 59:1225-31. [PMID: 22547440 DOI: 10.1161/hypertensionaha.111.179820] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aging is associated with dysfunction of endothelial progenitor cells (EPCs), and shear stress has a beneficial impact on EPC function; however, the effects of aging and shear stress on the endothelial repair capacity of EPCs after arterial injury have not been reported. Here we investigated the influence of aging and shear stress on the reendothelialization capacity of human EPCs and the related molecular mechanism. Compared with EPCs isolated from young subjects, EPCs from the elderly displayed an impaired migration and adhesion in vitro and demonstrated a significantly reduced reendothelialization capacity in vivo after transplantation into nude mice with carotid artery denudation injury. Shear stress pretreatment enhances the migration, adhesion, and reendothelialization capacity in both young and elderly EPCs; however, it was to a greater extent in EPCs from the elderly. Although basal CXC chemokine receptor 4 (CXCR4) expression was similar in EPCs from the 2 age groups, the stromal cell derived factor 1-induced CXCR4 and Janus kinase 2 phosphorylations were much lower in the elderly than in young EPCs. Shear stress treatment upregulated CXCR4 expression and phosphorylation and, importantly, restored the stromal cell-derived factor 1/CXCR4-dependent Janus kinase 2 phosphorylation in the elderly EPCs. Furthermore, short hairpin RNA-mediated knockdown of CXCR4 expression or pretreatment with Janus kinase 2 inhibitor diminished the enhancement in the migration, adhesion, and reendothelialization capacity of the elderly EPCs from shear stress treatments. Thus, our study demonstrates that upregulation of the CXCR4/Janus kinase 2 pathway by shear stress contributes to the enhanced reendothelialization capacity of EPCs from elderly men.
Collapse
Affiliation(s)
- Wen Hao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schlosser S, Dennler C, Schweizer R, Eberli D, Stein JV, Enzmann V, Giovanoli P, Erni D, Plock JA. Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc Res 2012; 83:267-75. [PMID: 22391452 DOI: 10.1016/j.mvr.2012.02.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/08/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023]
Abstract
New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.
Collapse
Affiliation(s)
- Stefan Schlosser
- Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang Z, Xia WH, Zhang YY, Xu SY, Liu X, Zhang XY, Yu BB, Qiu YX, Tao J. Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells. J Mol Cell Cardiol 2012; 52:1155-63. [PMID: 22326430 DOI: 10.1016/j.yjmcc.2012.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 11/19/2022]
Abstract
Although endothelial progenitor cells (EPCs) play a pivotal role in the endothelial repair following arterial injury and shear stress has a beneficial effect on EPCs, however, the molecular mechanism underlying the influence of EPCs on the endothelial integrity and the regulation of shear stress on the EPC signaling remained to be studied. Here, we investigated the effects of laminar shear stress on the tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 (Tie2)-dependent signaling and its relation to in vivo reendothelialization capacity of human early EPCs. The human early EPCs were treated with shear stress. Shear stress in a dose-dependent manner increased angiopoietin-2 (Ang2)-induced migratory, adhesive and proliferatory activities of EPCs. Transplantation of EPCs treated by shear stress facilitated in vivo reendothelialization in nude mouse model of carotid artery injury. In parallel, the phosphorylation of Tie2 and Akt of EPCs in response to shear stress was significantly enhanced. With treatment of Tie2 knockdown or Akt inhibition, shear stress-induced phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) of EPCs was markedly suppressed. After Tie2/PI3K/Akt/eNOS signaling was blocked, the effects of shear stress on in vitro function and in vivo reendothelialization capacity of EPCs were significantly inhibited. The present findings demonstrate for the first time that Tie2/PI3k/Akt/eNOS signaling pathway is, at least in part, involved in the EPCs-mediated reendothelialization after arterial injury. The upregulation of shear stress-induced Tie2-dependent signaling contributes to enhanced in vivo reendothelialization capacity of human EPCs.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bacabac RG, Van Loon JJWA. Stress Response by Bone Cells and Implications on Microgravity Environment. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Yang Z, Chen L, Su C, Xia WH, Wang Y, Wang JM, Chen F, Zhang YY, Wu F, Xu SY, Zhang XL, Tao J. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension. Clin Exp Hypertens 2010; 32:444-52. [PMID: 20939752 DOI: 10.3109/10641961003686435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Wu F, Xia WH, Zhang YY, Xu SY, Cheng F, Liu X, Zhang XY, Wang SM, Tao J. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res 2010; 88:462-70. [PMID: 20573729 DOI: 10.1093/cvr/cvq207] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS Endothelial progenitor cells (EPCs) play a pivotal role in endothelial repair after artery injury. The chemokine receptor CXCR4 is a key modulator of the homing of EPCs to impaired artery and reendothelialization. In this study, we addressed the hypothesis that CXCR4 gene transfer could enhance the reendothelialization capacity of EPCs. METHODS AND RESULTS In vitro, human EPCs were expanded and transduced with adenovirus serotype 5 encoding the human CXCR4 gene (Ad5/CXCR4). In vitro, CXCR4 gene transfer augmented EPC migration and enhanced EPC adhesion to endothelial cell monolayers. Adhesion assays under flow conditions showed that CXCR4 gene transfer increased the ability of EPCs to arrest on fibronectin. To determine whether CXCR4 gene transfer facilitated therapeutic reendothelialization, the effect of EPCs on in vivo reendothelialization was examined in nude mice subjected to carotid artery injury. Compared with the vehicle, transplantation of EPCs with or without gene transfer significantly accelerated in vivo reendothelialization; however, transplantation of EPCs transduced with Ad5/CXCR4 had a further enhanced effect compared with control EPCs containing EPCs transduced with an adenovirus encoding enhanced green fluorescent protein gene or non-transduced EPCs. We also found that phosphorylation of Janus kinase-2 (JAK-2), a CXCR4 downstream signalling target, was increased in EPCs transduced with Ad5/CXCR4. The enhanced in vitro function and in vivo reendothelialization capacity of EPCs by CXCR4 gene transfer were abolished by neutralizing antibodies against CXCR4 or/and JAK-2 inhibitor AG490. CONCLUSION The present study demonstrates that CXCR4 gene transfer contributes to the enhanced in vivo reendothelialization capacity of EPCs. Up-regulation of CXCR4 in human EPCs may become a novel therapeutic target for endothelial repair.
Collapse
Affiliation(s)
- Long Chen
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamamoto K, Ando J. Differentiation of stem/progenitor cells into vascular cells in response to fluid mechanical forces. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12573-010-0017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhang P, Baxter J, Vinod K, Tulenko TN, Di Muzio PJ. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev 2010; 18:1299-308. [PMID: 19508152 DOI: 10.1089/scd.2008.0331] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human amniotic fluid-derived stem (AFS) cells possess several advantages over embryonic and adult stem cells, as evidenced by expression of both types of stem cell markers and ability to differentiate into cells of all three germ layers. Herein, we examine endothelial differentiation of AFS cells in response to growth factors, shear force, and hypoxia. We isolated human AFS cells from amniotic fluid samples (1-4 cc/specimen) obtained from patients undergoing amniocentesis at 15-18 weeks of gestation (n = 10). Isolates maintained in nondifferentiating medium expressed the stem cell markers CD13, CD29, CD44, CD90, CD105, OCT-4, and SSEA-4 through passage 8. After 3 weeks of culture in endothelial growth media-2 (EGM-2), the stem cells exhibited an endothelial-like morphology, formed cord-like structures when plated on Matrigel, and uptook acetylated LDL/lectin. Additionally, mRNA and protein levels of CD31 and von Willebrand factor (vWF) significantly increased in response to culture in EGM-2, with further up-regulation when stimulated by physiological levels (12 dyne/cm(2)) of shear force. Culture in hypoxic conditions (5% O(2)) resulted in significant expression of vascular endothelial growth factor (VEGF) and placental growth factor (PGF) mRNA. This study suggests that AFS cells, isolated from minute amounts of amniotic fluid, acquire endothelial cell characteristics when stimulated by growth factors and shear force, and produce angiogenic factors (VEGF, PGF, and hepatocyte growth factor [HGF]) in response to hypoxia. Thus, amniotic fluid represents a rich source of mesenchymal stem cells potentially suitable for use in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
33
|
Brown MA, Wallace CS, Angelos M, Truskey GA. Characterization of umbilical cord blood-derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng Part A 2010; 15:3575-87. [PMID: 19480571 DOI: 10.1089/ten.tea.2008.0444] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endothelial progenitor cells isolated from umbilical cord blood (CB-EPCs) represent a promising source of endothelial cells for synthetic vascular grafts and tissue-engineered blood vessels since they are readily attainable, can be easily isolated, and possess a high proliferation potential. The objective of this study was to compare the functional behavior of late outgrowth CB-EPCs with human aortic endothelial cells (HAECs). CB-EPCs and HAECs were cultured on either smooth muscle cells in a coculture model of a tissue-engineered blood vessels or fibronectin adsorbed to Teflon-AF-coated glass slides. Late outgrowth CB-EPCs expressed endothelial cell-specific markers and were negative for the monocytic marker CD14. CB-EPCs have higher proliferation rates than HAECs, but are slightly smaller in size. CB-EPCs remained adherent under supraphysiological shear stresses, oriented and elongated in the direction of flow, and expressed similar numbers of alpha(5)beta(1) and alpha(v)beta(3) integrins and antithrombotic genes compared to HAECs. There were some differences in mRNA levels of E-selectin and vascular cell adhesion molecule 1 between CB-EPCs and HAECs; however, protein levels were similar on the two cell types, and CB-EPCs did not support adhesion of monocytes in the absence of tumor necrosis factor-alpha stimulation. Although CB-EPCs expressed significantly less endothelial nitric oxide synthase protein after exposure to flow than HAECs, nitric oxide levels induced by flow were not significantly different. These results suggest that late outgrowth CB-EPCs are functionally similar to HAECs under flow conditions and are a promising cell source for cardiovascular therapies.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | | | | | | |
Collapse
|
34
|
Wahl P, Brixius K, Bloch W. Exercise‐induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration. MINIM INVASIV THER 2009; 17:91-9. [DOI: 10.1080/13645700801969816] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Plock JA, Rafatmehr N, Sinovcic D, Schnider J, Sakai H, Tsuchida E, Banic A, Erni D. Hemoglobin vesicles improve wound healing and tissue survival in critically ischemic skin in mice. Am J Physiol Heart Circ Physiol 2009; 297:H905-10. [PMID: 19574491 DOI: 10.1152/ajpheart.00430.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Local hypoxia, as due to trauma, surgery, or arterial occlusive disease, may severely jeopardize the survival of the affected tissue and its wound-healing capacity. Initially developed to replace blood transfusions, artificial oxygen carriers have emerged as oxygen therapeutics in such conditions. The aim of this study was to target primary wound healing and survival in critically ischemic skin by the systemic application of left-shifted liposomal hemoglobin vesicles (HbVs). This was tested in bilateral, cranially based dorsal skin flaps in mice treated with a HbV solution with an oxygen affinity that was increased to a P(50) (partial oxygen tension at which the hemoglobin becomes 50% saturated with oxygen) of 9 mmHg. Twenty percent of the total blood volume of the HbV solution was injected immediately and 24 h after surgery. On the first postoperative day, oxygen saturation in the critically ischemic middle flap portions was increased from 23% (untreated control) to 39% in the HbV-treated animals (P < 0.05). Six days postoperatively, flap tissue survival was increased from 33% (control) to 57% (P < 0.01) and primary healing of the ischemic wound margins from 6.6 to 12.7 mm (P < 0.05) after HbV injection. In addition, higher capillary counts and endothelial nitric oxide synthase expression (both P < 0.01) were found in the immunostained flap tissue. We conclude that left-shifted HbVs may ameliorate the survival and primary wound healing in critically ischemic skin, possibly mediated by endothelial nitric oxide synthase-induced neovascularization.
Collapse
Affiliation(s)
- Jan A Plock
- Department of Plastic and Hand Surgery, Inselspital, University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
37
|
Abstract
Mechanical forces are important signals in the development and function of the heart and lung, growth of skin and muscle, and maintenance of cartilage and bone. The specific mechanical force "shear stress" has been implicated as playing a critical role in the physiological responses of blood vessels through endothelial cell signaling. More recently, studies have shown that shear stress can induce differentiation of stem cells toward both endothelial and bone-producing cell phenotypes. This review will highlight current data supporting the role of shear stress in stem cell fate and will propose potential mechanisms and signaling cascades for transducing shear stress into a biological signal.
Collapse
Affiliation(s)
- Sarah Stolberg
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, CA, USA
| | | |
Collapse
|
38
|
Sud N, Kumar S, Wedgwood S, Black SM. Modulation of PKCdelta signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol 2008; 296:L519-26. [PMID: 19118090 DOI: 10.1152/ajplung.90534.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells isolated from fetal lamb under static conditions is positively regulated by PKCdelta. In this study, we explore the role of PKCdelta in regulating shear-induced upregulation of eNOS. We found that shear caused a decrease in PKCdelta activation. Modulation of PKCdelta before shear with a dominant negative mutant of PKCdelta (DN PKCdelta) or bryostatin (a known PKCdelta activator) demonstrated that PKCdelta inhibition potentiates the shear-mediated increases in eNOS expression and activity, while PKCdelta activation inhibited these events. To gain insight into the mechanism by which PKCdelta inhibits shear-induced eNOS expression, we examined activation of STAT3, a known target for PKCdelta phosphorylation. We found that shear decreased the phosphorylation of STAT3. Further the transfection of cells with DN PKCdelta reduced, while PKCdelta activation enhanced, STAT3 phosphorylation in the presence of shear. Transfection of cells with a dominant negative mutant of STAT3 enhanced eNOS promoter activity and nitric oxide production in response to shear. Finally, we found that mutating the STAT3 binding site sequence within the eNOS promoter increased promoter activity in response to shear and that this was no longer inhibited by bryostatin. In conclusion, shear decreases PKCdelta activity and, subsequently, reduces STAT3 binding to the eNOS promoter. This signaling pathway plays a previously unidentified role in the regulation of eNOS expression by shear stress.
Collapse
Affiliation(s)
- Neetu Sud
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
39
|
Ye C, Bai L, Yan ZQ, Wang YH, Jiang ZL. Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt. Clin Biomech (Bristol, Avon) 2008; 23 Suppl 1:S118-24. [PMID: 17928113 DOI: 10.1016/j.clinbiomech.2007.08.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/15/2007] [Accepted: 08/15/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND The structural and functional integrity of endothelium plays a pivotal role in the pathogenesis of cardiovascular diseases. Endothelial progenitor cells (EPCs) is a population of pluripotent cells, which have a crucial role in maintaining the integrity of endothelium, but the mechanisms regulating the differentiation of EPCs have not been understood completely. In this study, the effects of shear stress and vascular smooth muscle cells (VSMCs) on the differentiation of EPCs, as well as the role of Akt were examined in a coculture model. METHODS Human EPCs separated from cord blood were subjected to shear stress by using a parallel-plate coculture flow chamber. The expression of CD133, CD34, CD31 and von Willebrand factor of EPCs were assessed by a flow cytometry. Activation of Akt was detected by Western blot. FINDINGS Both shear stress and VSMCs increase the expression of endothelial markers, CD31 and von Willebrand factor (vWF), simultaneously, decrease progenitor markers, CD133 and CD34, of EPCs. However, the effect of shear stress on EPC differentiation was much more significant when VMSCs were presented. Akt was activated in EPCs by shear stress, VSMCs or both. When the activation of Akt was blocked with its inhibitor during EPCs exposed to shear stress, CD133 and CD34 expressions were upregulated and correspondingly CD31 and vWF expressions were downregulated significantly. INTERPRETATIONS The results demonstrate that shear stress and VSMCs promote endothelial differentiation of EPCs via activation of Akt, which provide a new insight to clinical application on the regeneration of the vascular endothelium.
Collapse
Affiliation(s)
- Cao Ye
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
40
|
Peyrot F, Ducrocq C. Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J Pineal Res 2008; 45:235-46. [PMID: 18341517 DOI: 10.1111/j.1600-079x.2008.00580.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To face physicochemical and biological stresses, living organisms evolved endogenous chemical responses based on gas exchange with the atmosphere and on formation of nitric oxide (NO(*)) and oxygen derivatives. The combination of these species generates a complex network of variable extension in space and time, characterized by the nature and level of the reactive oxygen (ROS) and nitrogen species (RNS) and of their organic and inorganic scavengers. Among the latter, this review focusses on natural 3-substituted indolic structures. Tryptophan-derived indoles are unsensitive to NO(*), oxygen and superoxide anion (O(2)(*-)), but react directly with other ROS/RNS giving various derivatives, most of which have been characterized. Though the detection of some products like kynurenine and nitroderivatives can be performed in vitro and in vivo, it is more difficult for others, e.g., 1-nitroso-indolic compounds. In vitro chemical studies only reveal the strong likelihood of their in vivo generation and biological effects can be a sign of their transient formation. Knowing that 1-nitrosoindoles are NO donors and nitrosating agents indicating they can thus act both as mutagens and protectors, the necessity for a thorough evaluation of indole-containing drugs in accordance with the level of the oxidative stress in a given pathology is highlighted.
Collapse
Affiliation(s)
- Fabienne Peyrot
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France.
| | | |
Collapse
|
41
|
Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:133-47. [PMID: 18454639 DOI: 10.1089/teb.2007.0304] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are of great interest because of their potential in cell therapy for vascular diseases and ischemic tissue, tissue engineering for vascular grafts and vascularized tissue beds, and modeling for pharmaceutical transport across endothelial barriers. However, limited availability and proliferation capability of mature endothelial cells hampers development of these applications. Recent advances in stem cell technology have enabled researchers to derive endothelial or endothelial-like cells from stem cells or other precursor populations. The current state of these cell sources and their in vitro differentiation, selection, and applications are discussed in this review.
Collapse
Affiliation(s)
- Saejeong Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
42
|
O'Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 2008; 29:1610-9. [PMID: 18194813 DOI: 10.1016/j.biomaterials.2007.11.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/28/2007] [Indexed: 12/21/2022]
Abstract
Understanding the response of mesenchymal stem cells (MSCs) to forces in the vasculature is very important in the field of cardiovascular intervention for a number of reasons. These include the development of MSC seeded tissue engineered vascular grafts, targeted or systemic delivery of MSCs in the dynamic environment of the coronary artery and understanding the potential pathological calcifying role of mechanically conditioned multipotent cells already present in the vessel wall. In vivo, cells present in the coronary artery are exposed to the primary biomechanical forces of shear stress, radial stress and hoop stress. To date, many studies have examined the effect of these stresses in isolation, thereby not presenting the complete picture. Therefore, the main aim of this study is to examine the combined role of these stresses on MSC behaviour. To this end, a bioreactor was configured to expose MSCs seeded on flexible silicone substrates to physiological forces - namely, a pulsatile pressure between 40 and 120mmHg (5.33-1.6x10(4)Pa), radial distention of 5% and a shear stress of 10dyn/cm(2) (1Pa) at frequency of 1Hz for up to 24h. Thereafter, the 'pseudovessel' was assessed for changes in morphology, orientation and expression of endothelial and smooth muscle cell (SMC) specific markers. Hematoxylin and eosin (H&E) staining revealed that MSCs exhibit a similar mechanosensitive response to that of endothelial cells (ECs); they reorientate parallel with direction of flow and have adapted their morphology to be similar to that of ECs. However, gene expression results show the cells exhibit greater levels of SMC-associated markers alpha-smooth muscle actin and calponin (p<0.05).
Collapse
Affiliation(s)
- Eoin D O'Cearbhaill
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
43
|
Ozkucur N, Wetzel C, Hollstein F, Richter E, Funk RHW, Monsees TK. Physical vapor deposition of zirconium or titanium thin films on flexible polyurethane highly support adhesion and physiology of human endothelial cells. J Biomed Mater Res A 2008; 89:57-67. [DOI: 10.1002/jbm.a.32003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Yang Z, Wang JM, Chen L, Luo CF, Tang AL, Tao J. Acute exercise-induced nitric oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy subjects. J Hum Hypertens 2007; 21:452-60. [PMID: 17344910 DOI: 10.1038/sj.jhh.1002171] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exercise has been proved to promote the number and activity of circulating endothelial progenitor cells (EPCs) in humans, which contributes to improvement in endothelial function and maintenance of cardiovascular homoeostasis. However, the mechanism underlying the effect of exercise on circulating EPCs in healthy subjects is not completely understood. Here, we investigated whether the regulation of acute exercise on circulating EPCs is associated with nitric oxide (NO), vascular endothelial growth factors (VEGF) and granulocyte macrophage colony stimulating factor (GM-CSF) known to modulate circulating EPCs in healthy subjects. A total of 16 healthy male volunteers underwent a modified Bruce treadmill acute exercise protocol. The number and activity of circulating EPCs, as well as the levels of NO-VEGF and GM-CSF in plasma and culture medium before and after exercise in healthy subjects were measured. The number and activity of circulating EPCs after acute exercise were significantly higher than those before exercise in healthy subjects. In parallel, acute exercise significantly enhanced plasma NO level in healthy subjects. There is a significant linear regression relationship between the enhanced plasma NO level and increased number or activity of circulating EPCs. However, no change of plasma VEGF and GM-CSF level was observed after acute exercise. The secretion of NO-VEGF and GM-CSF by cultured EPCs remained unchanged in response to acute exercise. The present study demonstrates for the first time that acute exercise-induced NO production contributes to upregulation of circulating EPCs in healthy subjects, which suggests that NO plays an important role in the regulation of exercise on circulating EPCs.
Collapse
Affiliation(s)
- Z Yang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
45
|
Tao J, Yang Z, Wang JM, Wang LC, Luo CF, Tang AL, Dong YG, Ma H. Shear stress increases Cu/Zn SOD activity and mRNA expression in human endothelial progenitor cells. J Hum Hypertens 2007; 21:353-8. [PMID: 17287843 DOI: 10.1038/sj.jhh.1002147] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) are involved in endothelial repair. However, the function of EPCs is impaired in the presence of cardiovascular risk factors. Therefore, upregulation of functional gene expression and bioactive substance production such as superoxide dismutase (SOD) activity and mRNA expression in EPCs may contribute to the maintenance of EPC-related endothelial repair. EPCs from human peripheral blood mononuclear cells were exposed to in vitro 5, 15 and 25 dyn/cm(2) shear stress for 5, 15 and 25 h, respectively. Shear stress in a dose- and time-dependent fashion increased Cu/Zn SOD activity of human EPCs. Shear stress also upregulated the Cu/Zn SOD mRNA expression of human EPCs, indicating that an increase in Cu/Zn SOD activity induced by shear stress was mediated by enhanced transcription. Our data are the first time to show that in vitro shear stress enhances mRNA expression and activity of Cu/Zn SOD in human EPCs, suggesting that shear stress can be used as a novel Means of manipulation to improve functional potential of EPCs. The augmentation in copper/zinc-containing enzyme (Cu/Zn SOD), with subsequent accelerated superoxide anion (O(2)(-)) inactivation, might increase locally nitric oxide (NO) biological availability, which contributes to EPC-related vascular protection.
Collapse
Affiliation(s)
- J Tao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang Z, Wang JM, Wang LC, Chen L, Tu C, Luo CF, Tang AL, Wang SM, Tao J. In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J Thromb Thrombolysis 2007; 23:121-7. [PMID: 17221326 DOI: 10.1007/s11239-006-9045-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Recent study suggested that endothelial progenitor cells (EPCs), a novel therapeutic approach for endothelial dysfunction, present limited antithrombogenic potentials. However, few attempts have been done to improve the antithrombogenic potentials of EPCs. Our previous study proved that in vitro shear stress contributes to the increase in t-PA production by human EPCs. Here, we further investigated whether in vitro shear stress contributes to the secretion of antithrombogenic substances including plasminogen activator inhibitor-1 (PAI-1) and prostaglandin I(2) (PGI(2)) by human EPCs. METHODS The peripheral blood mononuclear cells of healthy subjects were induced into EPCs. Then the human EPCs were treated with four levels of shear stress including stationary condition low media and high flow shear stress. The production of PAI-1 and 6-keto-prostaglandin F1(1alpha)(6-Keto-PGF(1alpha)) by human EPCs with shear stress treatment were measured. RESULTS In vitro medium and high flow shear stress inhibited PAI-1 secretion by human EPCs, but low flow shear stress had no effect on PAI-1 secretion by human EPCs. All levels of shear stress significantly increased 6-Keto-PGF(1alpha )production by human EPCs in a dose-dependent manner. CONCLUSIONS The present study demonstrates that in vitro shear stress can promote PGI(2 )secretion and inhibit PAI-1 secretion by human EPCs, which improves the antithrombogenic potentials of human EPCs.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|