1
|
Malhotra K, Theodorou A, Katsanos AH, Zompola C, Shoamanesh A, Boviatsis E, Paraskevas GP, Spilioti M, Cordonnier C, Werring DJ, Alexandrov AV, Tsivgoulis G. Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis. Stroke 2022; 53:1944-1953. [PMID: 35264008 DOI: 10.1161/strokeaha.121.035836] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Limited data exist regarding the prevalence of clinical and neuroimaging manifestations among patients diagnosed with cerebral amyloid angiopathy (CAA). We sought to determine the prevalence of clinical phenotypes and radiological markers in patients with CAA. METHODS Systematic review and meta-analysis of studies including patients with CAA was conducted to primarily assess the prevalence of clinical phenotypes and neuroimaging markers as available in the included studies. Sensitivity analyses were performed based on the (1) retrospective or prospective study design and (2) probable or unspecified CAA status. We pooled the prevalence rates using random-effects models and assessed the heterogeneity using the Cochran Q and I2 statistics. RESULTS We identified 12 prospective and 34 retrospective studies including 7159 patients with CAA. The pooled prevalence rates were cerebral microbleeds (52% [95% CI, 43%-60%]; I2=93%), cortical superficial siderosis (49% [95% CI, 38%-59%]; I2=95%), dementia or mild cognitive impairment (50% [95% CI, 35%-65%]; I2=97%), intracerebral hemorrhage (ICH; 44% [95% CI, 27%-61%]; I2=98%), transient focal neurological episodes (48%; 10 studies [95% CI, 29%-67%]; I2=97%), lacunar infarcts (30% [95% CI, 25%-36%]; I2=78%), high grades of perivascular spaces located in centrum semiovale (56% [95% CI, 44%-67%]; I2=88%) and basal ganglia (21% [95% CI, 2%-51%]; I2=98%), and white matter hyperintensities with moderate or severe Fazekas score (53% [95% CI, 40%-65%]; I2=91%). The only neuroimaging marker that was associated with higher odds of recurrent ICH was cortical superficial siderosis (odds ratio, 1.57 [95% CI, 1.01-2.46]; I2=47%). Sensitivity analyses demonstrated a higher prevalence of ICH (53% versus 16%; P=0.03) and transient focal neurological episodes (57% versus 17%; P=0.03) among retrospective studies compared with prospective studies. No difference was documented between the prevalence rates based on the CAA status. CONCLUSIONS Approximately one-half of hospital-based cohort of CAA patients was observed to have cerebral microbleeds, cortical superficial siderosis, mild cognitive impairment, dementia, ICH, or transient focal neurological episodes. Cortical superficial siderosis was the only neuroimaging marker that was associated with higher odds of ICH recurrence. Future population-based studies among well-defined CAA cohorts are warranted to corroborate our findings.
Collapse
Affiliation(s)
- Konark Malhotra
- Department of Neurology, Allegheny Health Network, Pittsburgh, PA (K.M.)
| | - Aikaterini Theodorou
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Aristeidis H Katsanos
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.).,Department of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Christina Zompola
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Ashkan Shoamanesh
- Department of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Efstathios Boviatsis
- Department of Neurosurgery, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (E.B.)
| | - George P Paraskevas
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Martha Spilioti
- First Department of Neurology, AHEPA General Hospital, Aristotle University of Thessaloniki, Greece (M.S.)
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France (C.C.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.).,Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| |
Collapse
|
2
|
Olczak A, Truszczyńska-Baszak A, Gniadek-Olejniczak K. The Relationship between the Static and Dynamic Balance of the Body, the Influence of Eyesight and Muscle Tension in the Cervical Spine in CAA Patients-A Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11112036. [PMID: 34829382 PMCID: PMC8623977 DOI: 10.3390/diagnostics11112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is one form of disease of the small vessels of the brain and can cause frequent cerebral hemorrhages as well as other types of stroke. The aim of the study was to analyze the static and dynamic balance of the body and changes in the tension of selected muscles of the cervical spine in patients with CAA after stroke, depending on visual control or its absence, compared to healthy volunteers. Eight stroke patients and eight healthy subjects were examined. The functional Unterberger test and the Biodex SD platform were used to test the dynamic equilibrium, on which the static equilibrium was also assessed. Muscle tension was tested with the Luna EMG device. In static tests, the LC muscle (longus colli) was significantly more active with and without visual control (p = 0.016; p = 0.002), and in dynamic tests, significantly higher results for MOS (p = 0.046) were noted. The comparison of the groups led to the conclusion that the more functional deficits, the more difficult it is to keep balance, also with eye control.
Collapse
Affiliation(s)
- Anna Olczak
- Rehabilitation Clinic, Military Institute of Medicine, 04-141 Warsaw, Poland;
- Faculty od Medical Sciences, Social Academy of Science, 00-842 Warsaw, Poland
- Correspondence:
| | | | | |
Collapse
|
3
|
Ran D, Daye ZJ. Gene expression variability and the analysis of large-scale RNA-seq studies with the MDSeq. Nucleic Acids Res 2017; 45:e127. [PMID: 28535263 PMCID: PMC5737414 DOI: 10.1093/nar/gkx456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/10/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022] Open
Abstract
Rapidly decreasing cost of next-generation sequencing has led to the recent availability of large-scale RNA-seq data, that empowers the analysis of gene expression variability, in addition to gene expression means. In this paper, we present the MDSeq, based on the coefficient of dispersion, to provide robust and computationally efficient analysis of both gene expression means and variability on RNA-seq counts. The MDSeq utilizes a novel reparametrization of the negative binomial to provide flexible generalized linear models (GLMs) on both the mean and dispersion. We address challenges of analyzing large-scale RNA-seq data via several new developments to provide a comprehensive toolset that models technical excess zeros, identifies outliers efficiently, and evaluates differential expressions at biologically interesting levels. We evaluated performances of the MDSeq using simulated data when the ground truths are known. Results suggest that the MDSeq often outperforms current methods for the analysis of gene expression mean and variability. Moreover, the MDSeq is applied in two real RNA-seq studies, in which we identified functionally relevant genes and gene pathways. Specifically, the analysis of gene expression variability with the MDSeq on the GTEx human brain tissue data has identified pathways associated with common neurodegenerative disorders when gene expression means were conserved.
Collapse
Affiliation(s)
- Di Ran
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
4
|
Abstract
The neurovascular unit, which consists of astrocytic end-feet, neurons, pericytes, and endothelial cells, plays a key role in maintaining brain homeostasis by forming the blood-brain barrier and carefully controlling local cerebral blood flow. When the blood-brain barrier is disrupted, blood components can leak into the brain, damage the surrounding tissue and lead to cognitive impairment. This disruption in the blood-brain barrier and subsequent impairment in cognition are common after stroke and during cerebral amyloid angiopathy and Alzheimer's disease. Matrix metalloproteinases are proteases that degrade the extracellular matrix as well as tight junctions between endothelial cells and have been implicated in blood-brain barrier breakdown in neurodegenerative diseases. This review will focus on the roles of MMP2 and MMP9 in dementia, primarily post-stroke events that lead to dementia, cerebral amyloid angiopathy, and Alzheimer's disease.
Collapse
|
5
|
Evaluating the Role of Reduced Oxygen Saturation and Vascular Damage in Traumatic Brain Injury Using Magnetic Resonance Perfusion-Weighted Imaging and Susceptibility-Weighted Imaging and Mapping. Top Magn Reson Imaging 2016; 24:253-65. [PMID: 26502307 DOI: 10.1097/rmr.0000000000000064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral vasculature, along with neurons and axons, is vulnerable to biomechanical insult during traumatic brain injury (TBI). Trauma-induced vascular injury is still an underinvestigated area in TBI research. Cerebral blood flow and metabolism could be important future treatment targets in neural critical care. Magnetic resonance imaging offers a number of key methods to probe vascular injury and its relationship with traumatic hemorrhage, perfusion deficits, venous blood oxygen saturation changes, and resultant tissue damage. They make it possible to image the hemodynamics of the brain, monitor regional damage, and potentially show changes induced in the brain's function not only acutely but also longitudinally following treatment. These methods have recently been used to show that even mild TBI (mTBI) subjects can have vascular abnormalities, and thus they provide a major step forward in better diagnosing mTBI patients.
Collapse
|
6
|
Liu J, Xia S, Hanks R, Wiseman N, Peng C, Zhou S, Haacke EM, Kou Z. Susceptibility Weighted Imaging and Mapping of Micro-Hemorrhages and Major Deep Veins after Traumatic Brain Injury. J Neurotrauma 2015; 33:10-21. [PMID: 25789581 DOI: 10.1089/neu.2014.3856] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Micro-hemorrhages are a common result of traumatic brain injury (TBI), which can be quantified with susceptibility weighted imaging and mapping (SWIM), a quantitative susceptibility mapping approach. A total of 23 TBI patients (five women, 18 men; median age, 41.25 years old; range, 21.69-67.75 years) with an average Glasgow Coma Scale score of 7 (range, 3-15) at admission were recruited at mean 149 d (range, 57-366) after injury. Susceptibility-weighted imaging data were collected and post-processed to create SWIM images. The susceptibility value of small hemorrhages (diameter ≤10 mm) and major deep veins (right septal, left septal, central septal, right thalamostriate, left thalamostriate, internal cerebral, right basal vein of Rosenthal, left basal vein of Rosenthal, and pial veins) were evaluated. Different susceptibility thresholds were tested to determine SWIM's sensitivity and specificity for differentiating hemorrhages from the veins. A total of 253 deep veins and 173 small hemorrhages were identified and evaluated. The mean susceptibility of hemorrhages was 435±206 parts per billion (ppb) and the mean susceptibility of deep veins was 108±56 ppb. Hemorrhages showed a significantly higher susceptibility than all deep veins (p<0.001). With different thresholds (250, 227 and 200 ppb), the specificity was 97%, 95%, and 92%, and the sensitivity was 84%, 90%, and 92%, respectively. These results show that SWIM could be used to differentiate hemorrhages from veins in TBI patients in a semi-automated manner with reasonable sensitivity and specificity. A larger cohort will be needed to validate these findings.
Collapse
Affiliation(s)
- Jun Liu
- 1 Department of Radiology, Second Xiangya Hospital, Central South University , Hunan Province, China .,2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan
| | - Shuang Xia
- 3 Department of Radiology, Tianjin First Central Hospital , Tianjin, China
| | - Robin Hanks
- 4 Department of Physical Medicine and Rehabilitation, Wayne State University School of Medicine , Detroit, Michigan
| | - Natalie Wiseman
- 5 Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, Michigan
| | - Changya Peng
- 6 Department of Neurological Surgery, Wayne State University School of Medicine , Detroit, Michigan
| | - Shunke Zhou
- 1 Department of Radiology, Second Xiangya Hospital, Central South University , Hunan Province, China
| | - E Mark Haacke
- 2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan.,7 Department of Radiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Zhifeng Kou
- 2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan.,7 Department of Radiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
7
|
Prestroke glycemic status is associated with the functional outcome in spontaneous intracerebral hemorrhage. Neurol Sci 2015; 36:927-34. [PMID: 25560535 DOI: 10.1007/s10072-014-2057-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Admission hyperglycemia is thought to be related to poor neurological function and high mortality in patients with spontaneous intracerebral hemorrhage (sICH). However, it is not known whether prestroke glycemic status affects functional outcome of sICH. The study was aimed to disclose the association between prestroke glycemic status and outcome in patients with sICH. The study included 288 patients with sICH. Prestroke glycemic status was represented by hemoglobin A1c (HbA1c) values measured the next day after admission. Correlations between HbA1c and age, hematoma volume, NIHSS, and mRS were analyzed using Spearman's correlation analysis. Patients were categorized into two groups according to hematoma volume (≤25 mL or >25 mL), mRS values (≤2 or >2), or hematoma location (lobar hematoma or deep hematoma). Logistic regression analyses were used to determine the relative independent risk factors for hematoma volume, hematoma location, and mRS values. In patients with sICH, HbA1c was significantly correlated with hematoma volume, NIHSS, and mRS. High HbA1c levels were independently associated with large hematoma volume, deep ICH, and poor outcome. When patients were stratified by history of diabetes, the predictive effect of HbA1c on outcomes was only observed in patients with diabetes. Admission glucose was also related to hematoma volume, but failed to predict outcome. Although both admission glucose and HbA1c independently predicted hematoma volume in patients with sICH, HbA1c alone could serve as a better predictor of poor outcome in diabetic patients after sICH.
Collapse
|
8
|
Schrag M, Greer DM. Clinical associations of cerebral microbleeds on magnetic resonance neuroimaging. J Stroke Cerebrovasc Dis 2014; 23:2489-2497. [PMID: 25294059 DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/11/2014] [Accepted: 07/02/2014] [Indexed: 11/26/2022] Open
Abstract
Susceptibility-weighted and gradient-recalled echo T2* magnetic resonance imaging have enabled the detection of very small foci of blood within the brain, which have been termed "cerebral microbleeds." These petechial intraparenchymal hemorrhages have begun to emerge as diagnostically and prognostically useful markers in a variety of disease states. Severe hypertension and cerebral amyloid angiopathy are perhaps the best established microhemorrhagic conditions from neuroimaging literature; however, many others are also recognized including cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), moyamoya disease, fat embolism, cerebral malaria, and infective endocarditis. Microbleeds are also a common finding in the setting of trauma and stroke. The purpose of this review is to broadly describe the neuroimaging of cerebral microbleeds in a wide variety of conditions, including the differences in their appearance and distribution in different disease states. In a few situations, the presence of microbleeds may influence clinical management, and we discuss these situations in detail. The major importance of this emerging field in neuroimaging is the potential to identify microvascular pathology at an asymptomatic or minimally symptomatic stage and create a window of therapeutic opportunity.
Collapse
Affiliation(s)
- Matthew Schrag
- Department of Neurology, Yale University and Yale-New Haven Hospital, New Haven, Connecticut.
| | - David M Greer
- Department of Neurology, Yale University and Yale-New Haven Hospital, New Haven, Connecticut
| |
Collapse
|
9
|
Brickman AM. Contemplating Alzheimer's disease and the contribution of white matter hyperintensities. Curr Neurol Neurosci Rep 2013; 13:415. [PMID: 24190781 PMCID: PMC3874404 DOI: 10.1007/s11910-013-0415-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the older adult segment of the population increases, Alzheimer's disease (AD) has emerged as a significant public health epidemic. Over the past 3 decades, advances in the understanding of the biology of AD have led to a somewhat unified hypothesis of disease pathogenesis that emphasizes the precipitating role of beta amyloid protein. However, several lines of evidence suggest that multiple pathologies are necessary for clinical manifestation of the disease. Our focus over the past several years has been on the contribution of small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on magnetic resonance imaging, to AD. White matter hyperintensity volume, particularly in parietal regions, is elevated among individuals with and at risk for AD, predicts future diagnosis of AD, predicts the rate of progression of cognitive symptoms among individuals with AD, and increases over time among individuals destined to develop AD. White matter hyperintensities may represent an independent source of impairment and/or may interact more fundamentally with "primary" AD pathology. Future work should focus on more inclusive models of that better define "normal" vs "pathological" aging.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, PS Box 16, 630 West 168th Street, New York, NY, 10032, USA,
| |
Collapse
|
10
|
Affiliation(s)
- Mark J Fisher
- From the Departments of Neurology, Anatomy & Neurobiology, and Pathology & Laboratory Medicine, UC Irvine School of Medicine, Irvine, CA
| |
Collapse
|
11
|
Gao T, Wang Y, Zhang Z. Silent cerebral microbleeds on susceptibility-weighted imaging of patients with ischemic stroke and leukoaraiosis. Neurol Res 2013; 30:272-6. [DOI: 10.1179/016164107x251556] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Fisher M, Vasilevko V, Cribbs DH. Mixed cerebrovascular disease and the future of stroke prevention. Transl Stroke Res 2012; 3:39-51. [PMID: 22707990 PMCID: PMC3372772 DOI: 10.1007/s12975-012-0185-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/16/2022]
Abstract
Stroke prevention efforts typically focus on either ischemic or hemorrhagic stroke. This approach is overly simplistic due to the frequent coexistence of ischemic and hemorrhagic cerebrovascular disease. This coexistence, termed “mixed cerebrovascular disease”, offers a conceptual framework that appears useful for stroke prevention strategies. Mixed cerebrovascular disease incorporates clinical and subclinical syndromes, including ischemic stroke, subclinical infarct, white matter disease of aging (leukoaraiosis), intracerebral hemorrhage, and cerebral microbleeds. Reliance on mixed cerebrovascular disease as a diagnostic entity may assist in stratifying risk of hemorrhagic stroke associated with platelet therapy and anticoagulants. Animal models of hemorrhagic cerebrovascular disease, particularly models of cerebral amyloid angiopathy and hypertension, offer novel means for identifying underlying mechanisms and developing focused therapy. Phosphodiesterase (PDE) inhibitors represent a class of agents that, by targeting both platelets and vessel wall, provide the kind of dual actions necessary for stroke prevention, given the spectrum of disorders that characterizes mixed cerebrovascular disease.
Collapse
Affiliation(s)
- Mark Fisher
- Department of Neurology, University of California at Irvine, Irvine, CA USA
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA USA
- Department of Pathology & Laboratory Medicine, University of California at Irvine, Irvine, CA USA
- UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall Room 121, Orange, CA 92868 USA
| | | | - David H. Cribbs
- Department of Neurology, University of California at Irvine, Irvine, CA USA
- UCI MIND, University of California at Irvine, Irvine, CA USA
| |
Collapse
|
13
|
Hernandez-Guillamon M, Martinez-Saez E, Delgado P, Domingues-Montanari S, Boada C, Penalba A, Boada M, Pagola J, Maisterra O, Rodriguez-Luna D, Molina CA, Rovira A, Alvarez-Sabin J, Ortega-Aznar A, Montaner J. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol 2011; 22:133-41. [PMID: 21707819 DOI: 10.1111/j.1750-3639.2011.00512.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is one of the main causes of intracerebral hemorrhage (ICH) in the elderly. Matrix metalloproteinases (MMPs) have been implicated in blood-brain barrier disruption and ICH pathogenesis. In this study, we determined the levels MMP-2 and MMP-9 in plasma and their brain expression in CAA-associated hemorrhagic stroke. Although MMP-2 and MMP-9 plasma levels did not differ among patients and controls, their brain expression was increased in perihematoma areas of CAA-related hemorrhagic strokes compared with contralateral areas and nonhemorrhagic brains. In addition, MMP-2 reactivity was found in β-amyloid (Aβ)-damaged vessels located far from the acute ICH and in chronic microbleeds. MMP-2 expression was associated to endothelial cells, histiocytes and reactive astrocytes, whereas MMP-9 expression was restricted to inflammatory cells. In summary, MMP-2 expression within and around Aβ-compromised vessels might contribute to the vasculature fatal fate, triggering an eventual bleeding.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca Neurovascular Unit. Neurology and Medicine Departments, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maxwell SS, Jackson CA, Paternoster L, Cordonnier C, Thijs V, Al-Shahi Salman R, Sudlow CLM. Genetic associations with brain microbleeds: Systematic review and meta-analyses. Neurology 2011; 77:158-67. [PMID: 21715706 DOI: 10.1212/wnl.0b013e318224afa3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We performed a systematic review and meta-analyses to assess the evidence for genetic associations with brain microbleeds (BMBs). METHODS We sought all published studies of the association between any genetic polymorphism and BMBs studied in a total of >100 people. We critically appraised studies, and calculated pooled odds ratios (ORs) using the generic inverse variance fixed effects method. We used I² and χ² statistics to assess heterogeneity, and fail-safe N estimates to assess the robustness of our results. RESULTS Only the APOE ε2/3/4 polymorphism had been studied in >100 people (10 studies, 7,351 participants). Compared with people with the ε3/ε3 genotype, carriers of the ε4 allele (ε4+) were statistically significantly more likely to have BMBs in any location (ε4+ vs ε3/ε3: pooled OR 1.22, 95% confidence interval [CI] 1.05-1.41, p = 0.01). For strictly lobar BMBs, this association appeared slightly stronger (ε4+ vs ε3/ε3: pooled OR 1.35, 95% CI 1.10-1.66, p = 0.005). The association of ε4+ genotypes with strictly lobar BMBs was reasonably robust to potential publication and reporting biases. CONCLUSIONS Given the known associations of APOE alleles with lobar intracerebral hemorrhage and cerebral amyloid angiopathy, these findings support the concept that strictly lobar BMBs may be an imaging biomarker of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- S S Maxwell
- Medical School, Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Shoamanesh A, Kwok C, Benavente O. Cerebral Microbleeds: Histopathological Correlation of Neuroimaging. Cerebrovasc Dis 2011; 32:528-34. [DOI: 10.1159/000331466] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
|
16
|
Hernandez-Guillamon M, Mawhirt S, Fossati S, Blais S, Pares M, Penalba A, Boada M, Couraud PO, Neubert TA, Montaner J, Ghiso J, Rostagno A. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells. J Biol Chem 2010; 285:27144-27158. [PMID: 20576603 PMCID: PMC2930713 DOI: 10.1074/jbc.m110.135228] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/21/2010] [Indexed: 11/06/2022] Open
Abstract
Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Stephanie Mawhirt
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Silvia Fossati
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Steven Blais
- Department of Pharmacology, , New York University School of Medicine, New York, New York 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016
| | - Mireia Pares
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Merce Boada
- Neurovascular Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | | | - Thomas A Neubert
- Department of Pharmacology, , New York University School of Medicine, New York, New York 10016; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; Neurovascular Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, New York 10016; Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, New York 10016.
| |
Collapse
|
17
|
Menon RS, Kidwell CS. Neuroimaging demonstration of evolving small vessel ischemic injury in cerebral amyloid angiopathy. Stroke 2009; 40:e675-7. [PMID: 19850897 DOI: 10.1161/strokeaha.109.552935] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy is a small to medium vasculopathy most commonly associated with symptomatic intracerebral hemorrhage and microbleeds. Summary of Case- We present a patient with cerebral microbleeds and likely amyloid angiopathy with evolving ischemic lesions visualized on diffusion-weighted imaging. CONCLUSIONS This case captures with serial MRI the evolving and dynamic nature of cerebral amyloid angiopathy and particularly illustrates the subclinical, yet progressive, ischemic aspects of this vasculopathic process.
Collapse
Affiliation(s)
- Ravi S Menon
- Department of Neurology and Stroke Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
18
|
Brickman AM, Muraskin J, Zimmerman ME. Structural neuroimaging in Altheimer's disease: do white matter hyperintensities matter? DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19585953 PMCID: PMC2864151 DOI: 10.31887/dcns.2009.11.2/ambrickman] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targeted brain dysfunction that accompanies aging can have a devastating effect on cognitive and intellectual abilities. A significant proportion of older adults experience precipitous cognitive decline that negatively impacts functional activities. Such individuals meet clinical diagnostic criteria for dementia, which is commonly attributed to Alzheimer's disease (AD). Structural neuroimaging, including magnetic resonance imaging (MRI), has contributed significantly to our understanding of the morphological and pathology-related changes that may underlie normal and disease-associated cognitive change in aging. White matter hyperintensities (WMH), which are distributed patches of increased hyperintense signal on T2-weighted MRI, are among the most common structural neuroimaging findings in older adults. In recent years, WMH have emerged as robust radiological correlates of cognitive decline. Studies suggest that WMH distributed in anterior brain regions are related to decline in executive abilities that is typical of normal aging, whereas WMH distributed in more posterior brain regions are common in AD. Although epidemiological, observational, and pathological studies suggest that WMH may be ischemic in origin and caused by consistent or variable hypoperfusion, there is emerging evidence that they may also reflect vascular deposition of (β-amyloid, particularly when they are distributed in posterior areas and are present in patients with AD. Findings from the literature highlight the potential contribution of small-vessel cerebrovascular disease to the pathogenesis of AD, and suggest a mechanistic interaction, but future longitudinal studies using multiple imaging modalities are required to fully understand the complex role of WMH in AD.
Collapse
Affiliation(s)
- Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
19
|
Paternoster L, Chen W, Sudlow CL. Genetic Determinants of White Matter Hyperintensities on Brain Scans. Stroke 2009; 40:2020-6. [DOI: 10.1161/strokeaha.108.542050] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lavinia Paternoster
- From Division of Clinical Neurosciences (L.P., C.L.M.S.), University of Edinburgh, Scotland; Medical Genetics Section (W.C., C.L.M.S.), University of Edinburgh, Scotland, UK
| | - Wanting Chen
- From Division of Clinical Neurosciences (L.P., C.L.M.S.), University of Edinburgh, Scotland; Medical Genetics Section (W.C., C.L.M.S.), University of Edinburgh, Scotland, UK
| | - Cathie L.M. Sudlow
- From Division of Clinical Neurosciences (L.P., C.L.M.S.), University of Edinburgh, Scotland; Medical Genetics Section (W.C., C.L.M.S.), University of Edinburgh, Scotland, UK
| |
Collapse
|
20
|
Altaf N, Morgan PS, Moody A, MacSweeney ST, Gladman JR, Auer DP. Brain White Matter Hyperintensities Are Associated with Carotid Intraplaque Hemorrhage. Radiology 2008; 248:202-9. [DOI: 10.1148/radiol.2481070300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|