1
|
Carrillo-Muñoz AI, R-Jaimes SY, Hernández-Hernández GC, Castelán F. Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:38. [PMID: 39888528 PMCID: PMC11785713 DOI: 10.1007/s10695-025-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues. They are distributed in mechanosensory, muscle, skin, respiratory, circulatory, digestive, endocrine, urinary, reproductive, and immune systems, suggesting their involvement in the development and maintenance of all tissues/organs/systems. Despite this broad distribution, studies focusing on these molecules outside of the central nervous system have been limited to just 12 fish species. These investigations have revealed diverse expression patterns across different ages and tissues/organs/systems, expanding our comprehension of their functions beyond the central and peripheral nervous systems. Notably, BDNF and NT-3 are prominently expressed outside the central nervous system, particularly in mechanosensory and digestive tissues, whereas NGF is predominantly observed in mechanosensory and urinary systems. The expression and localization of neurotrophins and their receptors vary among organs, underscoring tissue-specific roles. Further research is imperative to decipher the precise functions and mechanisms of action of neurotrophins and their receptors in diverse fish tissues. Enhanced efforts are needed to include a broader range of fish species in these studies to advance our understanding of these agents in complex vertebrates, thereby shedding light on tissue development, regeneration, and maintenance, with potential implications for addressing organ-related issues.
Collapse
Affiliation(s)
- Aldo Isaac Carrillo-Muñoz
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
| | - Sharet Y R-Jaimes
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, 90750, Zacatelco, Mexico
| | | | - Francisco Castelán
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 90070, Tlaxcala, Mexico.
| |
Collapse
|
2
|
Forsell P, Parrado Fernández C, Nilsson B, Sandin J, Nordvall G, Segerdahl M. Positive Allosteric Modulators of Trk Receptors for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:997. [PMID: 39204102 PMCID: PMC11357672 DOI: 10.3390/ph17080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy. Thus, much of the focus during recent years has been on identifying small molecules acting as agonists or positive allosteric modulators (PAMs) of Trk receptors. Two examples of successful discovery and development of PAMs are the TrkA-PAM E2511 and the pan-Trk PAM ACD856. E2511 has been reported to have disease-modifying effects in preclinical models, whereas ACD856 demonstrates both a symptomatic and a disease-modifying effect in preclinical models. Both molecules have reached the stage of clinical development and were reported to be safe and well tolerated in clinical phase 1 studies, albeit with different pharmacokinetic profiles. These two emerging small molecules are interesting examples of possible novel symptomatic and disease-modifying treatments that could complement the existing anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease. This review aims to present the concept of positive allosteric modulators of the Trk receptors as a novel future treatment option for Alzheimer's disease and other neurodegenerative and cognitive disorders, and the current preclinical and clinical data supporting this new concept. Preclinical data indicate dual mechanisms, not only as cognitive enhancers, but also a tentative neurorestorative function.
Collapse
Affiliation(s)
- Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Cristina Parrado Fernández
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Boel Nilsson
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| | - Märta Segerdahl
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden; (C.P.F.); (B.N.); (J.S.); (G.N.); (M.S.)
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels allé 23, 141 52 Huddinge, Sweden
| |
Collapse
|
3
|
Narducci D, Charou D, Rogdakis T, Zota I, Bafiti V, Zervou M, Katsila T, Gravanis A, Prousis KC, Charalampopoulos I, Calogeropoulou T. A quest for the stereo-electronic requirements for selective agonism for the neurotrophin receptors TrkA and TrkB in 17-spirocyclic-dehydroepiandrosterone derivatives. Front Mol Neurosci 2023; 16:1244133. [PMID: 37840771 PMCID: PMC10568017 DOI: 10.3389/fnmol.2023.1244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The neurotrophin system plays a pivotal role in the development, morphology, and survival of the nervous system, and its dysregulation has been manifested in numerous neurodegenerative and neuroinflammatory diseases. Neurotrophins NGF and BDNF are major growth factors that prevent neuronal death and synaptic loss through binding with high affinity to their specific tropomyosin-related kinase receptors namely, TrkA and TrkB, respectively. The poor pharmacokinetic properties prohibit the use of neurotrophins as therapeutic agents. Our group has previously synthesized BNN27, a prototype small molecule based on dehydroepiandrosterone, mimicking NGF through the activation of the TrkA receptor. Methods To obtain a better understanding of the stereo-electronic requirements for selective activation of TrkA and TrkB receptors, 27 new dehydroepiandrosterone derivatives bearing a C17-spiro-dihydropyran or cyclobutyl moiety were synthesized. The new compounds were evaluated for their ability (a) to selectively activate the TrkA receptor and its downstream signaling kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death, and (b) to induce phosphorylation of TrkB and to promote cell survival under serum deprivation conditions in NIH3T3 cells stable transfected with the TrkB receptor and primary cortical astrocytes. In addition the metabolic stability and CYP-mediated reaction was assessed. Results Among the novel derivatives, six were able to selectively protect PC12 cells through interaction with the TrkA receptor and five more to selectively protect TrkB-expressing cells via interaction with the TrkB receptor. In particular, compound ENT-A025 strongly induces TrkA and Erk1/2 phosphorylation, comparable to NGF, and can protect PC12 cells against serum deprivation-induced cell death. Furthermore, ENT-A065, ENT-A066, ENT-A068, ENT-A069, and ENT-A070 showed promising pro-survival effects in the PC12 cell line. Concerning TrkB agonists, ENT-A009 and ENT-A055 were able to induce phosphorylation of TrkB and reduce cell death levels in NIH3T3-TrkB cells. In addition, ENT-A076, ENT-A087, and ENT-A088 possessed antiapoptotic activity in NIH-3T3-TrkB cells exclusively mediated through the TrkB receptor. The metabolic stability and CYP-mediated reaction phenotyping of the potent analogs did not reveal any major liabilities. Discussion We have identified small molecule selective agonists of TrkA and TrkB receptors as promising lead neurotrophin mimetics for the development of potential therapeutics against neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniele Narducci
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Despoina Charou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Thanasis Rogdakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Ioanna Zota
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Achille Gravanis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | - Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Ioannis Charalampopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
| | | |
Collapse
|
4
|
Gatta C, Schiano V, Attanasio C, Lucini C, Palladino A. Neurotrophins in Zebrafish Taste Buds. Animals (Basel) 2022; 12:ani12131613. [PMID: 35804512 PMCID: PMC9265000 DOI: 10.3390/ani12131613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Zebrafish is a powerful vertebrate model organism, whose similarities with mammals are fundamental to validate its use for experimental purposes. In this study, the authors demonstrate the presence of neurotrophic factors, namely neurotrophins, in numerous taste bud cells of this fish. The reported results suggest an essential role of these factors in taste bud function. Interestingly, the results described in this study are in accordance with those reported in some mammalian species. Therefore, despite the different anatomical characteristics of the anterior digestive tract in mammals and fish, the taste buds maintain similarities in both shape and functional mechanisms in the two classes. Abstract The neurotrophin family is composed of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Neurotrophin 3 (NT3) and NT4. These neurotrophins regulate several crucial functions through the activation of two types of transmembrane receptors, namely p75, which binds all neurotrophins with a similar affinity, and tyrosine kinase (Trk) receptors. Neurotrophins, besides their well-known pivotal role in the development and maintenance of the nervous system, also display the ability to regulate the development of taste buds in mammals. Therefore, the aim of this study is to investigate if NGF, BDNF, NT3 and NT4 are also present in the taste buds of zebrafish (Danio rerio), a powerful vertebrate model organism. Morphological analyses carried out on adult zebrafish showed the presence of neurotrophins in taste bud cells of the oropharyngeal cavity, also suggesting that BDNF positive cells are the prevalent cell population in the posterior part of the oropharyngeal region. In conclusion, by suggesting that all tested neurotrophins are present in zebrafish sensory cells, our results lead to the assumption that taste bud cells in this fish species contain the same homologous neurotrophins reported in mammals, further confirming the high impact of the zebrafish model in translational research.
Collapse
Affiliation(s)
- Claudia Gatta
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (V.S.); (C.A.)
| | - Valentina Schiano
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (V.S.); (C.A.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (V.S.); (C.A.)
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (V.S.); (C.A.)
- Correspondence:
| | - Antonio Palladino
- Department Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
5
|
Expression of Nerve Growth Factor and Its Receptor TrkA in the Reproductive System of Adult Zebrafish. Vet Sci 2022; 9:vetsci9050225. [PMID: 35622754 PMCID: PMC9144415 DOI: 10.3390/vetsci9050225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, has emerged as an active mediator in different crucial events in the peripheral and central nervous system. At the same time, several studies showed that this neurotrophin can also play a role in non-neuronal tissues (e.g., among gonads). In spite of a large number of studies present in mammals, investigations devoted to NGF and its receptor TrkA in the reproductive system of other animal models, such as teleost fish, are scarce. To increase our knowledge of NGF and its receptor in a vertebrate gonads model, the present report describes the expression patterns of ngf and trka mRNA in the testis and ovary of adult zebrafish. By using chromogenic and fluorescence in situ hybridization, we demonstrate that in the testis of adult zebrafish, ngf and its receptor trka are mainly expressed in spermatogony B and spermatocytes. In the ovary of this fish, ngf and trka are expressed at different stages of oocyte development. Altogether, these results show that this neurotrophin and its receptor have an important role in the reproductive system that is conserved during vertebrate evolution.
Collapse
|
6
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
7
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
10
|
Barbereau C, Yehya A, Silhol M, Cubedo N, Verdier JM, Maurice T, Rossel M. Neuroprotective brain-derived neurotrophic factor signaling in the TAU-P301L tauopathy zebrafish model. Pharmacol Res 2020; 158:104865. [PMID: 32417505 DOI: 10.1016/j.phrs.2020.104865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) dysregulations contribute to the neurotoxicity in neurodegenerative pathologies and could be efficiently targeted by therapies. In Alzheimer's disease (AD), although the relationship between BDNF and amyloid load has been extensively studied, how Tau pathology affects BDNF signaling remains unclear. Using the TAU-P301L transgenic zebrafish line, we investigated how early Tau-induced neurotoxicity modifies BDNF signaling. Alterations in BDNF expression levels were observed as early as 48 h post fertilization in TAU-P301L zebrafish embryos while TrkB receptor expression was not affected. Decreasing BDNF expression, using a knockdown strategy in wild-type embryos to mimic Tau-associated decrease, did not modify TrkB expression but promoted neurotoxicity as demonstrated by axonal outgrowth shortening and neuronal cell death. Moreover, the TrkB antagonist ANA-12 reduced the length of axonal projections. Rescue experiments with exogenous BDNF partially corrected neuronal alterations in TAU-P301L by counteracting primary axonal growth impairment but without effect on apoptosis. Importantly, the axonal rescue was proved functionally effective in a behavioral test, at a similar level as obtained with the GSK3β inhibitor LiCl, known to decrease TAU phosphorylation. Finally, treatment with a TrkB agonist, 7,8-dihydroxyflavone, led to comparable results and allowed full rescue of locomotor response. We provided here strong evidence that Tau neurotoxicity provoked alterations in BDNF system and that BDNF pathway might represent an efficient therapeutic target.
Collapse
Affiliation(s)
- Clément Barbereau
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Alaa Yehya
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Michelle Silhol
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Mireille Rossel
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France.
| |
Collapse
|
11
|
Identification and Expression of Neurotrophin-6 in the Brain of Nothobranchius furzeri: One More Piece in Neurotrophin Research. J Clin Med 2019; 8:jcm8050595. [PMID: 31052296 PMCID: PMC6571927 DOI: 10.3390/jcm8050595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins contribute to the complexity of vertebrate nervous system, being involved in cognition and memory. Abnormalities associated with neurotrophin synthesis may lead to neuropathies, neurodegenerative disorders and age-associated cognitive decline. The genome of teleost fishes contains homologs of some mammalian neurotrophins as well as a gene coding for an additional neurotrophin (NT-6). In this study, we characterized this specific neurotrophin in the short-lived fish Nothobranchius furzeri, a relatively new model for aging studies. Thus, we report herein for the first time the age-related expression of a neurotrophin in a non-mammalian vertebrate. Interestingly, we found comparable expression levels of NT-6 in the brain of both young and old animals. More in detail, we used a locked nucleic acid probe and a riboprobe to investigate the neuroanatomical distribution of NT-6 mRNA revealing a significant expression of the neurotrophin in neurons of the forebrain (olfactory bulbs, dorsal and ventral telencephalon, and several diencephalic nuclei), midbrain (optic tectum, longitudinal tori, and semicircular tori), and hindbrain (valvula and body of cerebellum, reticular formation and octavolateral area of medulla oblongata). By combining in situ hybridization and immunohistochemistry, we showed that NT-6 mRNA is synthesized in mature neurons. These results contribute to better understanding the evolutionary history of neurotrophins in vertebrates, and their role in the adult brain.
Collapse
|
12
|
Gordy C, Straka H, Houston DW, Fritzsch B, Elliott KL. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Dev Neurobiol 2018; 78:1064-1080. [PMID: 30027559 PMCID: PMC6552669 DOI: 10.1002/dneu.22629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Numerous tissue transplantations have demonstrated that otocysts can develop into normal ears in any location in all vertebrates tested thus far, though the pattern of innervation of these transplanted ears has largely been understudied. Here, expanding on previous findings that transplanted ears demonstrate capability of local brainstem innervation and can also be innervated themselves by efferents, we show that inner ear afferents grow toward the spinal cord mostly along existing afferent and efferent fibers and preferentially enter the dorsal spinal cord. Once in the dorsal funiculus of the spinal cord, they can grow toward the hindbrain and can diverge into vestibular nuclei. Inner ear afferents can also project along lateral line afferents. Likewise, lateral line afferents can navigate along inner ear afferents to reach hair cells in the ear. In addition, transplanted ears near the heart show growth of inner ear afferents along epibranchial placode-derived vagus afferents. Our data indicate that inner ear afferents can navigate in foreign locations, likely devoid of any local ear-specific guidance cues, along existing nerves, possibly using the nerve-associated Schwann cells as substrate to grow along. However, within the spinal cord and hindbrain, inner ear afferents can navigate to vestibular targets, likely using gradients of diffusible factors that define the dorso-ventral axis to guide them. Finally, afferents of transplanted ears functionally connect to native hindbrain vestibular circuitry, indicated by eliciting a startle behavior response, and providing excitatory input to specific sets of extraocular motoneurons.
Collapse
Affiliation(s)
- Clayton Gordy
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
13
|
Nittoli V, Sepe RM, Coppola U, D'Agostino Y, De Felice E, Palladino A, Vassalli QA, Locascio A, Ristoratore F, Spagnuolo A, D'Aniello S, Sordino P. A comprehensive analysis of neurotrophins and neurotrophin tyrosine kinase receptors expression during development of zebrafish. J Comp Neurol 2018; 526:1057-1072. [DOI: 10.1002/cne.24391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Rosa M. Sepe
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ugo Coppola
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ylenia D'Agostino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Elena De Felice
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Quirino A. Vassalli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| |
Collapse
|
14
|
Thakur C. Angiogenesis in Brain Tumors. NANOTECHNOLOGY-BASED TARGETED DRUG DELIVERY SYSTEMS FOR BRAIN TUMORS 2018:27-47. [DOI: 10.1016/b978-0-12-812218-1.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
16
|
Sereno D, Müller WE, Bausen M, Elkhooly TA, Markl JS, Wiens M. An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune and apoptotic pathways. Biochem Biophys Rep 2017; 11:161-173. [PMID: 28955781 PMCID: PMC5614693 DOI: 10.1016/j.bbrep.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Suberites domuncula. The basal positioning of sponges (phylum Porifera) in the animal tree of life offers a unique vantage point on the early evolution of the metazoan-specific genetic toolkit and molecular pathways. Since sponges lack a conventional nervous system, SDMANF presents an enticing opportunity to investigate the evolutionary ancient role of these neurotrophic factors. SDMANF shares considerable sequence similarity with its metazoan homologs. It also comprises a putative protein binding domain with sequence similarities to the Bcl-2 family of apoptotic regulators. In Suberites, SDMANF is expressed in the vicinity of bacteriocytes, where it co-localizes with the toll-like receptor SDTLR. In transfected human cells, SDMANF was detected in both the organelle protein fraction and the cell culture medium. The intracellular SDMANF protein level was up-regulated in response to both a Golgi/ER transport inhibitor and bacterial lipopolysaccharides (LPS). Upon LPS challenge, transfected cells revealed a decreased caspase-3 activity and increased cell viability with no inducible Bax expression compared to the wild type. These results suggest a deep evolutionary original cytoprotective role of MANF, at the crossroads of innate immune and apoptotic pathways, of which a neurotrophic function might have arisen later in metazoan evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Wiens
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg-University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
17
|
Pius-Sadowska E, Machaliński B. BDNF - A key player in cardiovascular system. J Mol Cell Cardiol 2017; 110:54-60. [PMID: 28736262 DOI: 10.1016/j.yjmcc.2017.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
18
|
Chakravarthy R, Mnich K, Gorman AM. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys Res Commun 2016; 478:1541-7. [PMID: 27577679 DOI: 10.1016/j.bbrc.2016.08.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023]
Abstract
Triple negative breast cancer [TNBC] cells are reported to secrete the neurotrophin nerve growth factor [NGF] and express its receptors, p75 neurotrophin receptor [p75(NTR)] and TrkA, leading to NGF-activated pro-survival autocrine signaling. This provides a rationale for NGF as a potential therapeutic target for TNBC. Here we show that exposure of TNBC cells to NGF leads to increased levels of p75(NTR), which was diminished by NGF-neutralizing antibody or NGF inhibitors [Ro 08-2750 and Y1086]. NGF-mediated increase in p75(NTR) levels were partly due to increased transcription and partly due to inhibition of proteolytic processing of p75(NTR). In contrast, proNGF caused a decrease in p75(NTR) levels. Functionally, NGF-induced increase in p75(NTR) caused a decrease in the sensitivity of TNBC cells to apoptosis induction. In contrast, knock-down of p75(NTR) using shRNA or small molecule inhibition of NGF-p75(NTR) interaction [using Ro 08-2750] sensitized TNBC cells to drug-induced apoptosis. In patient samples, the expression of NGF and NGFR [the p75(NTR) gene] mRNA are positively correlated in several subtypes of breast cancer, including basal-like breast cancer. Together these data suggest a positive feedback loop through which NGF-mediated upregulation of p75(NTR) can contribute to the chemo-resistance of TNBC cells.
Collapse
|
19
|
Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol Neurobiol 2016; 54:3670-3682. [PMID: 27206432 DOI: 10.1007/s12035-016-9915-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Vascular dementia (VD) is defined as a progressive neurodegenerative disease of cognitive decline, attributable to cerebrovascular factors. Numerous studies have demonstrated that chronic cerebral hypoperfusion (CCH) is associated with the initiation and progression of VD and Alzheimer's disease (AD). Suitable animal models were established to replicate such pathological condition in experimental research, which contributes largely to comprehending causal relationships between CCH and cognitive impairment. The most widely used experimental model of VD and CCH is permanent bilateral common carotid artery occlusion in rats. In CCH models, changes of learning and memory, cerebral blood flow (CBF), energy metabolism, and neuropathology initiated by ischemia were revealed. However, in order to achieve potential therapeutic targets, particular mechanisms in cognitive and neuropathological changes from CCH to dementia should be investigated. Recent studies have shown that hypoperfusion resulted in a chain of disruption of homeostatic interactions, including oxidative stress, neuroinflammation, neurotransmitter system dysfunction, mitochondrial dysfunction, disturbance of lipid metabolism, and alterations of growth factors. Evidence from experimental studies that elucidate the damaging effects of such imbalances suggests their critical roles in the pathogenesis of VD. The present review provides a summary of the achievements in mechanisms made with the CCH models, permits an understanding of the causative role played by CCH in VD, and highlights preventative and therapeutic prospects.
Collapse
Affiliation(s)
- Si-Qi Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jian-Feng Tu
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Wen Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Tian He
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
20
|
D'Angelo L, Avallone L, Cellerino A, de Girolamo P, Paolucci M, Varricchio E, Lucini C. Neurotrophin-4 in the brain of adult Nothobranchius furzeri. Ann Anat 2016; 207:47-54. [PMID: 26970500 DOI: 10.1016/j.aanat.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Neurotrophin-4 (NT-4) is a member of the well-known family of neurotrophins that regulate the development of neuronal networks by participating in neuronal survival and differentiation, the growth of neuronal processes, synaptic development and plasticity, as well as myelination. NT-4 interacts with two distinct receptors: TrkB, high affinity receptor and p75 low-affinity neurotrophin receptor (p75(NTR)). In the present survey, we identified the gene encoding NT-4 in the teleost Nothobranchius furzeri, a model species for aging research. The identified gene shows a similarity of about 72% with medaka, the closest related species. The neuroanatomical localization of NT-4 mRNA is obtained by using an LNA probe. NT-4 mRNA expression is observed in neurons and glial cells of the forebrain and hindbrain, with very low signal found in the midbrain. This survey confirms that NT-4 is expressed in the brain of N. furzeri during adulthood, suggesting that it could also be implicated in the maintenance and regulation of neuronal functions.
Collapse
Affiliation(s)
- L D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - A Cellerino
- Scuola Normale Superiore di Pisa, Pisa, Italy; Laboratory of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - P de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - M Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - E Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - C Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Elliott KL, Houston DW, DeCook R, Fritzsch B. Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. Dev Neurobiol 2015; 75:1339-51. [PMID: 25787878 DOI: 10.1002/dneu.22287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022]
Abstract
Second-order sensory neurons are dependent on afferents from the sense organs during a critical period in development for their survival and differentiation. Past research has mostly focused on whole populations of neurons, hampering progress in understanding the mechanisms underlying these critical phases. To move toward a better understanding of the molecular and cellular basis of afferent-dependent neuronal development, we developed a new model to study the effects of ear removal on a single identifiable cell in the hindbrain of a frog, the Mauthner cell. Ear extirpation at various stages of Xenopus laevis development defines a critical period of progressively-reduced dependency of Mauthner cell survival/differentiation on the ear afferents. Furthermore, ear removal results in a progressively decreased reduction in the number of dendritic branches. Conversely, addition of an ear results in an increase in the number of dendritic branches. These results suggest that the duration of innervation and the number of inner ear afferents play a quantitative role in Mauthner cell survival/differentiation, including dendritic development.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242
| | | | - Rhonda DeCook
- Department of Statistics and Actuarial Sciences, University of Iowa, Iowa City, IA, 52242
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
22
|
Fritzsch B, Jahan I, Pan N, Elliott KL. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 2014; 359:295-313. [PMID: 25416504 DOI: 10.1007/s00441-014-2043-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
23
|
BDNF and its TrkB receptor in human fracture healing. Ann Anat 2014; 196:286-95. [DOI: 10.1016/j.aanat.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
|
24
|
Expression and anatomical distribution of TrkB in the encephalon of the adult zebrafish (Danio rerio). Neurosci Lett 2014; 563:66-9. [PMID: 24486890 DOI: 10.1016/j.neulet.2014.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
Neurotrophins are a family of growth factor primarily acting in the nervous system, throughout two categories of membrane receptors on the basis of their high (Trk receptors) or low (p75NTR) affinity. Both neurotrophins and Trk receptors are phylogenetically conserved and are expressed not only in the central and peripheral nervous system but also in non-nervous tissues of vertebrates and some invertebrates. The brain-derived neurotrophic factor (BDNF)/TrkB system plays an important role in the development, phenotypic maintenance and plasticity of specific neuronal populations. Considering that this system is poorly characterized in the central nervous system of teleosts, the expression and anatomical distribution of TrkB in the brain of the adult zebrafish using reverse transcriptase-polymerase chain reaction (RT-PCR), Western-blot and immunohistochemistry were analysed. Both the riboprobe and the antibody used were designed to map within the catalytic domain of TrkB. RT-PCR detected specific TrkB mRNA in brain homogenates, while Western-blot identified one unique protein band with an estimated molecular weight of 145kDa, thus corresponding with the TrkB full-length isiform of the receptor. Immunohistochemistry showed specific TrkB immunoreactivity in restricted areas of the encephalon, i.e. the hypothalamus and a specific neuronal subpopulation of the reticular formation. The present results demonstrate, for the first time, that, as in mammals, the encephalon of adult zebrafish expresses TrkB in specific zones related to food intake, behaviour or motor activity.
Collapse
|
25
|
Abstract
The discovery of nerve growth factor (NGF) was a seminal event in history of research in developmental neurobiology. The further discovery that NGF was just one of a family of structurally similar growth factors, neurotrophins, provided important insights into the way nerve cells communicate, during development of the nervous system, and in neuroplasticity, memory, and learning in the adult nervous system. Four neurotrophins, NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4), regulate a wide variety of neural functions, acting upon p75NTR, TrkA, TrkB, and TrkC receptors.
Collapse
Affiliation(s)
- M Bothwell
- University of Washington, Seattle, WA, USA,
| |
Collapse
|
26
|
Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction. PLoS One 2013; 8:e75902. [PMID: 24124519 PMCID: PMC3790821 DOI: 10.1371/journal.pone.0075902] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/17/2013] [Indexed: 02/08/2023] Open
Abstract
Retrograde growth factors regulating synaptic plasticity at the neuromuscular junction (NMJ) in Drosophila have long been predicted but their discovery has been scarce. In vertebrates, such retrograde factors produced by the muscle include GDNF and the neurotrophins (NT: NGF, BDNF, NT3 and NT4). NT superfamily members have been identified throughout the invertebrates, but so far no functional in vivo analysis has been carried out at the NMJ in invertebrates. The NT family of proteins in Drosophila is formed of DNT1, DNT2 and Spätzle (Spz), with sequence, structural and functional conservation relative to mammalian NTs. Here, we investigate the functions of Drosophila NTs (DNTs) at the larval NMJ. All three DNTs are expressed in larval body wall muscles, targets for motor-neurons. Over-expression of DNTs in neurons, or the activated form of the Spz receptor, Toll10b, in neurons only, rescued the semi-lethality of spz2 and DNT141, DNT2e03444 double mutants, indicating retrograde functions in neurons. In spz2 mutants, DNT141, DNT2e03444 double mutants, and upon over-expression of the DNTs, NMJ size and bouton number increased. Boutons were morphologically abnormal. Mutations in spz and DNT1,DNT2 resulted in decreased number of active zones per bouton and decreased active zone density per terminal. Alterations in DNT function induced ghost boutons and synaptic debris. Evoked junction potentials were normal in spz2 mutants and DNT141, DNT2e03444 double mutants, but frequency and amplitude of spontaneous events were reduced in spz2 mutants suggesting defective neurotransmission. Our data indicate that DNTs are produced in muscle and are required in neurons for synaptogenesis. Most likely alterations in DNT function and synapse formation induce NMJ plasticity leading to homeostatic adjustments that increase terminal size restoring overall synaptic transmission. Data suggest that Spz functions with neuron-type specificity at the muscle 4 NMJ, and DNT1 and DNT2 function together at the muscles 6,7 NMJ.
Collapse
|
27
|
Wiggins LM, Kuta A, Stevens JC, Fisher EMC, von Bartheld CS. A novel phenotype for the dynein heavy chain mutation Loa: altered dendritic morphology, organelle density, and reduced numbers of trigeminal motoneurons. J Comp Neurol 2013; 520:2757-73. [PMID: 22684941 DOI: 10.1002/cne.23085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynein, the retrograde motor protein, is essential for the transport of cargo along axons and proximal dendrites in neurons. The dynein heavy chain mutation Loa has been reported to cause degeneration of spinal motor neurons, as well as defects of spinal sensory proprioceptive neurons, but cranial nerve nuclei have received little attention. Here, we examined the number and morphology of neurons in cranial nerve nuclei of young, adult, and aged heterozygous Loa mice, with a focus on the trigeminal, facial, and trochlear motor nuclei, as well as the proprioceptive mesencephalic trigeminal nucleus. By using stereological counting techniques, we report a slowly progressive and significant reduction, to 75% of wild-type controls, in the number of large trigeminal motoneurons, whereas normal numbers were found for sensory mesencephalic trigeminal, facial, and trochlear motoneurons. The morphology of many surviving large trigeminal motoneurons was substantially altered, in particular the size and length of perpendicularly extending primary dendrites, but not those of facial or trochlear motoneurons. At the ultrastructural level, proximal dendrites of large trigeminal motoneurons, but not other neurons, were significantly depleted in organelle content such as polyribosomes and showed abnormal (vesiculated) mitochondria. These data indicate primary defects in trigeminal α-motoneurons more than γ-motoneurons. Our findings expand the Loa heterozygote phenotype in two important ways: we reveal dendritic in addition to axonal defects or abnormalities, and we identify the Loa mutation as a mouse model for mixed motor-sensory loss when the entire neuraxis is considered, rather than a model primarily for sensory loss.
Collapse
Affiliation(s)
- Larisa M Wiggins
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | |
Collapse
|
28
|
A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep 2013; 3:1213-27. [PMID: 23562154 PMCID: PMC4045214 DOI: 10.1016/j.celrep.2013.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/28/2012] [Accepted: 03/06/2013] [Indexed: 11/22/2022] Open
Abstract
Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting our understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and found that they play a central role in learning-related synaptic plasticity. Blocking ApTrk signaling impairs long-term facilitation, whereas augmenting ApNT expression enhances it and induces the growth of new synaptic varicosities at the monosynaptic connection between sensory and motor neurons of the gill-withdrawal reflex. Unlike vertebrate neurotrophins, ApNT has multiple coding exons and exerts distinct synaptic effects through differentially processed and secreted splice isoforms. Our findings demonstrate the existence of bona fide neurotrophin signaling in invertebrates and reveal a posttranscriptional mechanism that regulates neurotrophin processing and the release of proneurotrophins and mature neurotrophins that differentially modulate synaptic plasticity.
Collapse
|
29
|
Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 2012; 23:357-65. [DOI: 10.1016/j.cytogfr.2012.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022]
|
30
|
R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group. Immunogenetics 2012; 65:145-56. [PMID: 23129146 DOI: 10.1007/s00251-012-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100-115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.
Collapse
|
31
|
Lafuente JV, Ortuzar N, Bengoetxea H, Bulnes S, Argandoña EG. Vascular Endothelial Growth Factor and Other Angioglioneurins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:317-46. [DOI: 10.1016/b978-0-12-386986-9.00012-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates. BMC Evol Biol 2011; 11:332. [PMID: 22085792 PMCID: PMC3280201 DOI: 10.1186/1471-2148-11-332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023] Open
Abstract
Background The three vertebrate pituitary glycoprotein hormones (GPH) are heterodimers of a common α and a specific β subunit. In human, they are located on different chromosomes but in a similar genomic environment. We took advantage of the availability of genomic and EST data from two cartilaginous fish species as well as from two lamprey species to identify their repertoire of neurotrophin, lin7 and KCNA gene family members which are in the close environment of gphβ. Gphα and gphβ are absent outside vertebrates but are related to two genes present in both protostomes and deuterostomes that were named gpa2 and gpb5. Genomic organization and functional characteristics of their protein products suggested that gphα and gphβ might have been generated concomitantly by a duplication of gpa2 and gpb5 just prior to the radiation of vertebrates. To have a better insight into this process we used new genomic resources and tools to characterize the ancestral environment before the duplication occurred. Results An almost similar repertoire of genes was characterized in cartilaginous fishes as in tetrapods. Data in lampreys are either incomplete or the result of specific duplications and/or deletions but a scenario for the evolution of this genomic environment in vertebrates could be proposed. A number of genes were identified in the amphioxus genome that helped in reconstructing the ancestral environment of gpa2 and gpb5 and in describing the evolution of this environment in vertebrates. Conclusion Our model suggests that vertebrate gphα and gphβ were generated by a specific local duplication of the ancestral forms of gpa2 and gpb5, followed by a translocation of gphβ to a new environment whereas gphα was retained in the gpa2-gpb5 locus. The two rounds of whole genome duplication that occurred early in the evolution of vertebrates generated four paralogues of each gene but secondary gene losses or lineage specific duplications together with genomic rearrangements have resulted in the present organization of these genes, which differs between vertebrate lineages.
Collapse
|
33
|
Effects of increased opportunity for physical exercise and learning experiences on recognition memory and brain-derived neurotrophic factor levels in brain and serum of rats. Neuroscience 2011; 199:284-91. [PMID: 21854836 DOI: 10.1016/j.neuroscience.2011.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 01/29/2023]
Abstract
Studies with animal models showed that cellular, structural, and behavioral changes induced by environmental enrichment are related to increased levels of brain-derived neurotrophic factor (BDNF) in the brain. These evidence suggest that BDNF could be an interesting biomarker of the effects of lifestyle on cognition and other behavioral parameters in humans, mainly if the BDNF alterations in brain are accompanied by correspondent peripheral modifications, since human studies depend basically on the evaluation of this neurotrophin in serum or plasma. To test this hypothesis, we analyzed the effects of environmental enrichment on long-term memory for object recognition and on BDNF levels of hippocampus, frontal cortex, and serum of rats exposed to an experimental protocol that could be more easily translated to human intervention studies. Animals were maintained for 10 weeks in a social (standard laboratory conditions) or enriched (increased opportunity for physical exercise and learning experiences) condition. In the 7th week, they were submitted to behavioral testing (open field and novel object memory task), and at the end of the 10th week, they were killed and BDNF levels were analyzed. Animals maintained in the enriched condition showed enhanced performance on the memory task in the absence of any significant alteration in central or peripheral BDNF levels. The results of this study are important to highlight the need to develop experimental protocols using animal models that more closely resemble the characteristics of studies with humans and motivate more investigations to determine the conditions under which BDNF could be a biomarker of the effects of environment enrichment.
Collapse
|
34
|
Germanà A, Sánchez-Ramos C, Guerrera MC, Calavia MG, Navarro M, Zichichi R, García-Suárez O, Pérez-Piñera P, Vega JA. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development. J Anat 2010; 217:214-22. [PMID: 20649707 DOI: 10.1111/j.1469-7580.2010.01268.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.
Collapse
Affiliation(s)
- A Germanà
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Università di Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Montaño JA, Pérez-Piñera P, García-Suárez O, Cobo J, Vega JA. Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech 2010; 73:513-29. [PMID: 19839059 DOI: 10.1002/jemt.20790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and Adelta nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity.
Collapse
Affiliation(s)
- Juan A Montaño
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio, Murcia, Spain
| | | | | | | | | |
Collapse
|
36
|
Ohashi K, Takizawa F, Tokumaru N, Nakayasu C, Toda H, Fischer U, Moritomo T, Hashimoto K, Nakanishi T, Dijkstra JM. A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes. Immunogenetics 2010; 62:543-59. [PMID: 20614118 DOI: 10.1007/s00251-010-0460-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/17/2010] [Indexed: 12/15/2022]
Abstract
In teleost fish, a novel gene G6F-like was identified, encoding a type I transmembrane molecule with four extracellular Ig-like domains and a cytoplasmic tail with putative tyrosine phosphorylation motifs including YxN and an immunoreceptor tyrosine-based activation motif (ITAM). G6F-like maps to a teleost genomic region where stretches corresponding to human chromosomes 6p (with the MHC), 12p (with CD4 and LAG-3), and 19q are tightly linked. This genomic organization resembles the ancestral "Ur-MHC" proposed for the jawed vertebrate ancestor. The deduced G6F-like molecule shows sequence similarity with members of the CD4/LAG-3 family and with the human major histocompatibility complex-encoded thrombocyte marker G6F. Despite some differences in molecular organization, teleost G6F-like and tetrapod G6F seem orthologous as they map to similar genomic location, share typical motifs in transmembrane and cytoplasmic regions, and are both expressed by thrombocytes/platelets. In the crucian carps goldfish (Carassius auratus auratus) and ginbuna (Carassius auratus langsdorfii), G6F-like was found expressed not only by thrombocytes but also by erythrocytes, supporting that erythroid and thromboid cells in teleost fish form a hematopoietic lineage like they do in mammals. The ITAM-bearing of G6F-like suggests that the molecule plays an important role in cell activation, and G6F-like expression by erythrocytes suggests that these cells have functional overlap potential with thrombocytes.
Collapse
Affiliation(s)
- Ken Ohashi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Germanà A, Laurà R, Montalbano G, Guerrera MC, Amato V, Zichichi R, Campo S, Ciriaco E, Vega JA. Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development. Cell Mol Neurobiol 2010; 30:787-93. [PMID: 20162349 DOI: 10.1007/s10571-010-9506-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/04/2010] [Indexed: 12/29/2022]
Abstract
The neuromasts of the lateral line system are regarded as a model to study the mechanisms of hearing, deafness, and ototoxicity. The neurotrophins (NTs), especially brain-derived neurotrophic factor (BDNF), and its signaling receptor TrkB are involved in the development and maintenance of neuromasts. To know the period in which the BDNF/TrkB complex has more effects in the neuromast biology, the age-related changes were studied. Normal zebrafish from 10 to 180 days post-fertilization (dpf), as well as transgenic ET4 zebrafish 10 and 20 dpf, was analyzed using qRT-PCR, western blot, and immunohistochemistry. BDNF and TrkB mRNAs followed a parallel course, peaking at 20 dpf, and thereafter progressively decreased. Specific immunoreactivity for BDNF and TrkB was found co-localized in all hairy cells of neuromasts in 20 and 30 dpf; then, the number of immunoreactive cells decreased, and by 180 dpf BDNF remains restricted to a subpopulation of hairy cells, and TrkB to a few number of sensory and non-sensory cells. At all ages examined, TrkB immunoreactivity was detected in sensory ganglia innervating the neuromasts. The present results demonstrate that there is a parallel time-related decline in the expression of BDNF and TrkB in zebrafish. Also, the patterns of cell expression suggest that autocrine/paracrine mechanisms for this NT system might occur within the neuromasts. Because TrkB in lateral line ganglia did not vary with age, their neurons are potentially capable to respond to BDNF during the entire lifespan of zebrafish.
Collapse
Affiliation(s)
- A Germanà
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Università di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moustakas A, Kreisl TN. New treatment options in the management of glioblastoma multiforme: a focus on bevacizumab. Onco Targets Ther 2010; 3:27-38. [PMID: 20616955 PMCID: PMC2895775 DOI: 10.2147/ott.s5307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults and carries the poorest prognosis. Despite recent progress in molecular biology, neuro-imaging and neuro-surgical care, the management of patients with GBM continues to harbor significant challenges. Survival after diagnosis is poor even with the most aggressive approach using multimodality therapy. Although the etiology of malignant gliomas is not known, the dependency of tumor growth on angiogenesis has identified this pathway as a promising therapeutic target. Bevacizumab was the first antiangiogenic therapy approved for use in cancer and received accelerated Food and Drug Administration approval for the treatment of recurrent GBM in 2009, the first new drug for this disease in over a decade. This review describes the rationale behind the treatment of GBM with bevacizumab. The pharmacology, efficacy, safety and tolerability of bevacizumab will also be reviewed.
Collapse
Affiliation(s)
- Argirios Moustakas
- National Cancer Institute, Neuro-Oncology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
39
|
García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217:1-15. [PMID: 20456524 DOI: 10.1111/j.1469-7580.2010.01227.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
Collapse
|
40
|
Phylogenesis of brain-derived neurotrophic factor (BDNF) in vertebrates. Gene 2010; 450:85-93. [PMID: 19879341 DOI: 10.1016/j.gene.2009.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to neurotrophin family, a class of molecules playing key roles in neuronal development, survival and regeneration, neurite growth and plasticity: memory processes are mainly affected, and mutations of the human BDNF gene are associated to cognitive and behavioural disturbances. All neurotrophins contain a highly conserved C-terminal domain and bind to the same receptor family. Both correct folding and post-translational processing of the entire preproprotein are pivotal for sorting to the extracellular space, dimerization and receptor binding. Evolutionary studies conducted so far demonstrate that a single ancestor gene underwent two independent duplication events at an early stage of vertebrate evolution, leading to the formation of the current neurotrophins. However, works focusing on BDNF evolution are scarce and fragmentary, mainly in lower vertebrates. In this work, we report cloning of eight DNA sequences from amphibians and teleosts, and analysis of the entire coding regions (cDNA sequences) of BDNF from 35 organisms, from teleosts to mammals. A phylogenetic tree was constructed and the analysis of non-synonymous-synonymous substitution rates performed for the different branches. Our results suggest that natural selection is acting on mammals, separating them from other classes. Since preproprotein cleavage and 3D structure of mature protein are important for functional activity of BDNF, we also propose a de novo prediction of the 3D structure of translates in at least one species for each class, in order to get hints about the functional constraints of the protein.
Collapse
|
41
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2009; 11:47-59. [PMID: 19997068 DOI: 10.1038/nrg2703] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS - including two lymphoid cell lineages - arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
43
|
Wilson KHS. The genome sequence of the protostome Daphnia pulex encodes respective orthologues of a neurotrophin, a Trk and a p75NTR: evolution of neurotrophin signaling components and related proteins in the bilateria. BMC Evol Biol 2009; 9:243. [PMID: 19807921 PMCID: PMC2772990 DOI: 10.1186/1471-2148-9-243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 10/06/2009] [Indexed: 11/12/2022] Open
Abstract
Background Neurotrophins and their Trk and p75NTR receptors play an important role in the nervous system. To date, neurotrophins, Trk and p75NTR have only been found concomitantly in deuterostomes. In protostomes, homologues to either neurotrophin, Trk or p75NTR are reported but their phylogenetic relationship to deuterostome neurotrophin signaling components is unclear. Drosophila has neurotrophin homologues called Spätzles (Spz), some of which were recently renamed neurotrophins, but direct proof that these are deuterostome neurotrophin orthologues is lacking. Trks belong to the receptor tyrosine kinase (RTK) family and among RTKs, Trks and RORs are closest related. Flies lack Trks but have ROR and ROR-related proteins called NRKs playing a neurotrophic role. Mollusks have so far the most similar proteins to Trks (Lymnaea Trk and Aplysia Trkl) but the exact phylogenetic relationship of mollusk Trks to each other and to vertebrate Trks is unknown. p75NTR belongs to the tumor necrosis factor receptor (TNFR) superfamily. The divergence of the TNFR families in vertebrates has been suggested to parallel the emergence of the adaptive immune system. Only one TNFR representative, the Drosophila Wengen, has been found in protostomes. To clarify the evolution of neurotrophin signaling components in bilateria, this work analyzes the genome of the crustacean Daphnia pulex as well as new genetic data from protostomes. Results The Daphnia genome encodes a neurotrophin, p75NTR and Trk orthologue together with Trkl, ROR, and NRK-RTKs. Drosophila Spz1, 2, 3, 5, 6 orthologues as well as two new groups of Spz proteins (Spz7 and 8) are also found in the Daphnia genome. Searching genbank and the genomes of Capitella, Helobdella and Lottia reveals neurotrophin signaling components in other protostomes. Conclusion It appears that a neurotrophin, Trk and p75NTR existed at the protostome/deuterostome split. In protostomes, a "neurotrophin superfamily" includes Spzs and neurotrophins which respectively form two paralogous families. Trks and Trkl proteins also form closely related paralogous families within the protostomian RTKs, whereby Trkls are absent in deuterostomes. The finding of p75NTR in several protostomes suggests that death domain TNFR superfamily proteins appeared early in evolution.
Collapse
Affiliation(s)
- Karen H S Wilson
- University of Gothenburg, The Sven Lovén Centre for Marine Sciences - Kristineberg, S-450 34 Fiskebäckskil, Sweden.
| |
Collapse
|
44
|
Dalton VS, Roberts BL, Borich SM. Brain derived neurotrophic factor and trk B mRNA expression in the brain of a brain stem-spinal cord regenerating model, the European eel, after spinal cord injury. Neurosci Lett 2009; 461:275-9. [DOI: 10.1016/j.neulet.2009.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/09/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
|
45
|
Kim WY, Lee HY. Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors. FEBS J 2009; 276:4653-64. [PMID: 19664069 PMCID: PMC2847309 DOI: 10.1111/j.1742-4658.2009.07177.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Formation of new blood vessels is required for the growth and metastasis of all solid tumors. New blood vessels are established in tumors mainly through angiogenesis. Brain tumors in particular are highly angiogenic. Therefore, interventions designed to prevent angiogenesis may be effective at controlling brain tumors. Indeed, many recent findings from preclinical and clinical studies of antiangiogenic therapy for brain tumors have shown that it is a promising approach to managing this deadly disease, especially when combined with other cytotoxic treatments. In this minireview, we summarize the basic characteristics of brain tumor angiogenesis and the role of known angiogenic factors in regulating this angiogenesis, which may be targets of antiangiogenic therapy. We also discuss the current status of antiangiogenic therapy for brain tumors, the suggested mechanisms of this therapy and the limitations of this strategy.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
46
|
Rodger J, Frost DO. Effects of trkB knockout on topography and ocular segregation of uncrossed retinal projections. Exp Brain Res 2009; 195:35-44. [PMID: 19283373 DOI: 10.1007/s00221-009-1746-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
TrkB is an important receptor for brain-derived neurotrophic factor and NT4, members of the neurotrophin family. TrkB signaling is crucial in many activity-dependent and activity-independent processes of neural development. Here, we investigate the role of trkB signaling in the development of two distinct, organizational features of retinal projections--the segregation of crossed and uncrossed retinal inputs along the "lines of projection" that represent a single point in the visual field and the "retinotopic" mapping of retinofugal axons within their cerebral targets. Using anterograde tracing, we obtained quantitative measures of the distribution of retinal projections in the dorsal nucleus of the lateral geniculate body (LGd) and superior colliculus (SC) of wild-type mice and mice homozygous for constitutive null mutation (knockout) of the full-length trkB receptor (trkB(FL)(-/-)). In trkB(FL)(-/-) mice, uncrossed retinal projections cluster normally but there is a topographic expansion in the distribution of these clusters across the SC. By contrast, the absence of trkB signaling has no significant effect on the segregation of crossed and uncrossed retinal projections along the lines of projection in LGd or SC. We conclude that the normal topographic organization of uncrossed retinal projections depends upon trkB signaling, whereas the segregation of crossed and uncrossed retinal projections is trkB-independent. We also found that in trkB(FL)(-/-) mice, neuronal number was reduced in the LGd and SC and in the caudate-putamen. Previous studies by ourselves and others have shown that the number of retinal ganglion cells (RGCs) is unchanged in trkB(FL)(-/-) mice. Together, these results demonstrate that there is no matching of the numbers of RGCs with neuronal numbers in the LGd or SC.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology M317, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | |
Collapse
|
47
|
Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, Sutcliffe B, Gu CJ, Fenton JC, Hidalgo A. Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol 2009; 6:e284. [PMID: 19018662 PMCID: PMC2586362 DOI: 10.1371/journal.pbio.0060284] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 10/08/2008] [Indexed: 01/05/2023] Open
Abstract
Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects. By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spätzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases. Neurotrophins are secreted proteins that link nervous system structure and function in vertebrates. They regulate neuronal survival, thus adjusting cell populations, and connectivity, enabling the formation of neuronal circuits. They also regulate patterns of dendrites and axons, synaptic function, memory, learning, and cognition; and abnormal neurotrophin function underlies psychiatric disorders. Despite such relevance for nervous system structure and function, neurotrophins have been missing from invertebrates. We show here the identification and functional demonstration of a neurotrophin family in the fruit fly, Drosophila. Our findings imply that the neurotrophins may be present in all animals with a centralised nervous system (motor and sensory systems) or brain, supporting the notion of a common origin for the brain in evolution. This work bridges a void in the understanding of the Drosophila and human nervous systems, and it opens the opportunity to use the powerful fruit fly for neurotrophin related studies. Members of the neurotrophin superfamily mediate critical roles in neuronal survival and targeting in the fruit flyDrosophila. Although this is an accepted role for neurotrophins in vertebrates, scant previous evidence has been able to demonstrate such a conserved role in invertebrates.
Collapse
Affiliation(s)
- Bangfu Zhu
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jenny A Pennack
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter McQuilton
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Manuel G Forero
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Kenji Mizuguchi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, United Kingdom
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Ben Sutcliffe
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Chun-Jing Gu
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Janine C Fenton
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Brain-derived neurotrophic factor, stress and depression: a minireview. Brain Res Bull 2008; 78:267-9. [PMID: 19111910 DOI: 10.1016/j.brainresbull.2008.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/15/2008] [Accepted: 12/02/2008] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family, and is widely expressed in the adult mammalian brain. Besides its well known neuroprotective activity after traumatic brain injury the evidences regarding its activity dependent release by the pathophysiology of major depression are rapidly replicating. Considering the data that stress plays an important role by the development of depression which is characterized with prominent hippocampal cell death, as well as the well known neuroprotective effects of BDNF, we aimed to investigate the link between the BDNF, stress and depression. Thus we prepared a minireview in order to evaluate the neuroprotective role of BDNF by psychiatric disorders which are characterized with prominent neuronal cell death.
Collapse
|
49
|
Okoruwa OE, Weston MD, Sanjeevi DC, Millemon AR, Fritzsch B, Hallworth R, Beisel KW. Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol Dev 2008; 10:300-15. [PMID: 18460092 DOI: 10.1111/j.1525-142x.2008.00239.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66-503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide.
Collapse
Affiliation(s)
- Oseremen E Okoruwa
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2008; 56 Suppl 1:73-82. [PMID: 18647613 DOI: 10.1016/j.neuropharm.2008.06.059] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/10/2008] [Accepted: 06/14/2008] [Indexed: 12/11/2022]
Abstract
Drugs of abuse produce widespread effects on the structure and function of neurons throughout the brain's reward circuitry, and these changes are believed to underlie the long-lasting behavioral phenotypes that characterize addiction. Although the intracellular mechanisms regulating the structural plasticity of neurons are not fully understood, accumulating evidence suggests an essential role for neurotrophic factor signaling in the neuronal remodeling which occurs after chronic drug administration. Brain-derived neurotrophic factor (BDNF), a growth factor enriched in brain and highly regulated by several drugs of abuse, regulates the phosphatidylinositol 3'-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase Cgamma (PLCgamma), and nuclear factor kappa B (NFkappaB) signaling pathways, which influence a range of cellular functions including neuronal survival, growth, differentiation, and structure. This review discusses recent advances in our understanding of how BDNF and its signaling pathways regulate structural and behavioral plasticity in the context of drug addiction.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|