1
|
Kisner A, Polter AM. Maturation of glutamatergic transmission onto dorsal raphe serotonergic neurons. J Neurophysiol 2024; 131:626-637. [PMID: 38380827 PMCID: PMC11305679 DOI: 10.1152/jn.00037.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024] Open
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher-order emotional, sensory, and cognitive circuitry. The pivotal functions of these cells in brain development make them a critical substrate by which early experience can be wired into the brain. In this study, we investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between postnatal day 6 (P6) and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that DRN excitatory synapses maintain a very high ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptors and a rectifying component of the AMPA response until adulthood. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first three postnatal weeks. This suggests this time is a sensitive period of heightened plasticity for the integration of information from upstream brain areas. Genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.NEW & NOTEWORTHY Serotonergic neurons are regulators of both the development of and ongoing activity in neuronal circuits controlling affective, cognitive, and sensory processing. Here, we characterize the maturation of extrinsic synaptic inputs onto these cells, showing that the first three postnatal weeks are a period of synaptic refinement and a potential window for experience-dependent plasticity in response to both enrichment and adversity.
Collapse
Affiliation(s)
- Alexandre Kisner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Abigail M Polter
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
2
|
Kisner A, Polter AM. Maturation of glutamatergic transmission onto dorsal raphe serotonergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524776. [PMID: 36711665 PMCID: PMC9882295 DOI: 10.1101/2023.01.19.524776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher order emotional, sensory, and cognitive circuitry. This unique position makes these cells a substrate by which early experience can be wired into brain. In this study, we have investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole-cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between P6 and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that the makeup of these synapses onto DRN serotonergic neurons is largely stable after P15. DRN excitatory synapses maintain a very high ratio of AMPA to NMDA receptors and a rectifying component of the AMPA response throughout the lifespan. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first 3 postnatal weeks. This suggests this time as a sensitive period of heightened plasticity for integration of information from upstream brain areas and that genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.
Collapse
Affiliation(s)
- Alexandre Kisner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Department of Neuroscience, American University, Washington DC 20016
| | - Abigail M. Polter
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| |
Collapse
|
3
|
Knogler LD, Drapeau P. Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors. Front Neural Circuits 2014; 8:121. [PMID: 25324729 PMCID: PMC4179717 DOI: 10.3389/fncir.2014.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/13/2014] [Indexed: 01/02/2023] Open
Abstract
In all but the simplest monosynaptic reflex arcs, sensory stimuli are encoded by sensory neurons that transmit a signal via sensory interneurons to downstream partners in order to elicit a response. In the embryonic zebrafish (Danio rerio), cutaneous Rohon-Beard (RB) sensory neurons fire in response to mechanical stimuli and excite downstream glutamatergic commissural primary ascending (CoPA) interneurons to produce a flexion response contralateral to the site of stimulus. In the absence of sensory stimuli, zebrafish spinal locomotor circuits are spontaneously active during development due to pacemaker activity resulting in repetitive coiling of the trunk. Self-generated movement must therefore be distinguishable from external stimuli in order to ensure the appropriate activation of touch reflexes. Here, we recorded from CoPAs during spontaneous and evoked fictive motor behaviors in order to examine how responses to self-movement are gated in sensory interneurons. During spontaneous coiling, CoPAs received glycinergic inputs coincident with contralateral flexions that shunted firing for the duration of the coiling event. Shunting inactivation of CoPAs was caused by a slowly deactivating chloride conductance that resulted in lowered membrane resistance and increased action potential threshold. During spontaneous burst swimming, which develops later, CoPAs received glycinergic inputs that arrived in phase with excitation to ipsilateral motoneurons and provided persistent shunting. During a touch stimulus, short latency glutamatergic inputs produced cationic currents through AMPA receptors that drove a single, large amplitude action potential in the CoPA before shunting inhibition began, providing a brief window for the activation of downstream neurons. We compared the properties of CoPAs to those of other spinal neurons and propose that glycinergic signaling onto CoPAs acts as a corollary discharge signal for reflex inhibition during movement.
Collapse
Affiliation(s)
- Laura D Knogler
- Departments of Pathology and Cell Biology and Neuroscience, Centre hospitalier de l'Université de Montréal Research Centre and Le Groupe de Recherche sur le Système Nerveux Central, Université de Montréal Montréal, QC, Canada
| | - Pierre Drapeau
- Departments of Pathology and Cell Biology and Neuroscience, Centre hospitalier de l'Université de Montréal Research Centre and Le Groupe de Recherche sur le Système Nerveux Central, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
4
|
|
5
|
Patten SA, Roy B, Cunningham ME, Stafford JL, Ali DW. Protein kinase Cgamma is a signaling molecule required for the developmental speeding of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor kinetics. Eur J Neurosci 2010; 31:1561-73. [PMID: 20525069 DOI: 10.1111/j.1460-9568.2010.07216.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A key step in the maturation of glutamate synapses is the developmental speeding of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPA-R) kinetics, which occurs via a switch in receptor subtypes. However, the molecular components required for the switch in receptors are unknown. Here, we used the zebrafish preparation to show that activation of protein kinase C (PKC)gamma is necessary for the developmental speeding of AMPA-R kinetics. Targeted knockdown of PKCgamma with an antisense morpholino oligonucleotide [PKCgamma-morpholino (PKCgamma-MO)], prevents the normal speeding up of AMPA-R kinetics in Mauthner cells. PKCgamma-MO-injected embryos are incapable of trafficking AMPA-Rs following application of phorbol 12-myristate 13-acetate or PKCgamma. PKCgamma-MO-injected embryos do not hatch or exhibit the C-start escape response. Increasing synaptic activity (33 h post-fertilization embryos) by application of an elevated K(+) medium or by application of N-methyl-D-aspartate induces rapid PKCgamma-dependent trafficking of fast AMPA-Rs to synapses. Our findings reveal that PKCgamma is a molecular link underlying the developmental speeding of AMPA-Rs in zebrafish Mauthner cells.
Collapse
Affiliation(s)
- Shunmoogum A Patten
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
6
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2612] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Michaelsen K, Lohmann C. Calcium dynamics at developing synapses: mechanisms and functions. Eur J Neurosci 2010; 32:218-23. [DOI: 10.1111/j.1460-9568.2010.07341.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ho MT, Ho TM, Pelkey KA, Pelletier JG, Huganir RL, Lacaille JC, McBain CJ. Burst firing induces postsynaptic LTD at developing mossy fibre-CA3 pyramid synapses. J Physiol 2009; 587:4441-54. [PMID: 19635819 DOI: 10.1113/jphysiol.2009.173880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synaptic development is an activity-dependent process utilizing coordinated network activity to drive synaptogenesis and subsequent refinement of immature connections. Hippocampal CA3 pyramidal neurons (PYRs) exhibit intense burst firing (BF) early in development, concomitant with the period of mossy fibre (MF) development. However, whether developing MF-PYR synapses utilize PYR BF to promote MF synapse maturation remains unknown. Recently, we demonstrated that transient tonic depolarization of postsynaptic PYRs induces a persistent postsynaptic form of long-term depression (depolarization-induced long-term depression, DiLTD) at immature MF-PYR synapses. DiLTD induction is NMDAR independent but does require postsynaptic Ca(2+) influx through L-type voltage gated Ca(2+) channels (L-VGCCs), and is expressed as a reduction in AMPAR function through the loss of GluR2-lacking AMPARs present at immature MF-PYR synapses. Here we examined whether more physiologically relevant phasic L-VGCC activation by PYR action potential (AP) BF activity patterns can trigger DiLTD. Using combined electrophysiological and Ca(2+) imaging approaches we demonstrate that PYR BF effectively drives L-VGCC activation and that brief periods of repetitive PYR BF, produced by direct current injection or intrinsic network activity induces NMDAR-independent LTD by promoting Ca(2+) influx through the activated L-VGCCs. This BF induced LTD, just like DiLTD, is specific for developing MF-PYR synapses, is PICK1 dependent, and is expressed postsynaptically. Our results demonstrate that DiLTD can be induced by phasic L-VGCC activation driven by PYR BF, suggesting the engagement of natural PYR network activity patterns for MF synapse maturation.
Collapse
Affiliation(s)
- M T Ho
- NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit. J Neurosci 2009; 28:13918-28. [PMID: 19091980 DOI: 10.1523/jneurosci.3229-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many principal neurons undergo an early developmental switch from GluR2-lacking to GluR2-containing synaptic glutamate receptors. We tested the generality and timing of the GluR2 switch in excitatory neurons of rat somatosensory cortex. Previous studies show that the switch occurs between postnatal day 14 (P14) and P16 in layer 5 pyramidal neurons. We show, using sensitivity to intracellular spermine, that a similar switch occurs between P12 and P14 in layer 2/3 pyramidal cells and between P7 and P8 in layer 4 stellate cells. The presence of GluR2-lacking receptors in layer 2/3 pyramidal cells before P12 was confirmed by demonstrating sensitivity to blockade by 1-naphthyl-acetyl-spermine and large single-channel conductances. GluR2 and the postsynaptic protein PSD95 show progressive colocalization in tissue from P10, P14, and P24 rats, mirroring electrophysiological developments. To distinguish whether changes in GluR2 expression or targeting underlie the switch, we characterized dendritic AMPA receptor responses using focal photolysis of caged glutamate. Contrary to synaptic responses, dendritic responses at all ages studied (P6-P40) were characteristic of GluR2-containing receptors. In addition, dendritically and synaptically evoked responses showed a corresponding decrease in NMDA/AMPA ratios in pyramidal cells, suggesting parallel mechanisms that regulate neuronal calcium levels. These data suggest that the GluR2 switch results from changes in AMPA receptor targeting during early postnatal development, and that rather than following the laminar sequence of cortical development, it proceeds sequentially from layer 4 to layer 2/3 and finally to layer 5b.
Collapse
|
10
|
Atkinson R, Rostas JA, Hunter M. Changes in mid-to-late latency auditory evoked reponses in the chicken during neural maturation. Dev Psychobiol 2009; 52:24-34. [DOI: 10.1002/dev.20408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Atkinson R, Migues PV, Cammarota M, Kavanagh JM, Hunter M, Rostas JAP. Biochemical, behavioural and electrophysiological investigations of brain maturation in chickens. Brain Res Bull 2008; 76:217-23. [PMID: 18498934 DOI: 10.1016/j.brainresbull.2008.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
Abstract
It is convenient to divide the development of synaptic networks into two phases: synapse formation during which synaptic contacts are established, and a subsequent maturation phase during which synaptic circuits are fine tuned and the properties of individual synapses are modified. Understanding the complex factors that control the protracted maturation process in humans is likely to be important for understanding a variety of neurological and psychiatric disorders. Chickens provide an ideal experimental model in which maturation specific changes can be identified and the mechanisms controlling them can be elucidated because the maturation phase is protracted and temporally separated from the formation phase. This paper reviews the knowledge about the biological mechanisms involved in the maturation phase of brain development in chickens and presents some new data. Studies of synaptic physiology suggest that maturation may alter the basal set point for stimulus induced synaptic plasticity. Biochemical and pharmacological studies of N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and metabotropic glutamate receptors (mGluRs) revealed major changes in receptor regulation and the intracellular signalling pathways linked to receptor activation. Not surprisingly, therefore, when immature or mature chickens learn the same behavioural task the learning induced molecular events at the synapse are different. Changes in the features of auditory event related potentials and the basal EEG provide non-invasive techniques for monitoring maturation changes in chicken brain but prepulse inhibition (PPI) is too small and variable in chickens to be useful. Experimentally induced mild late-onset hypothyroidism retards some aspects of brain maturation and may help identify some of the mechanisms controlling maturation.
Collapse
Affiliation(s)
- Rebbekah Atkinson
- School of Psychology and the Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Cline H, Haas K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 2008; 586:1509-17. [PMID: 18202093 PMCID: PMC2375708 DOI: 10.1113/jphysiol.2007.150029] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/10/2008] [Indexed: 01/15/2023] Open
Abstract
The synaptotropic hypothesis, which states that synaptic inputs control the elaboration of dendritic (and axonal) arbors was articulated by Vaughn in 1989. Today the role of synaptic inputs in controlling neuronal structural development remains an area of intense research activity. Several recent studies have applied modern molecular genetic, imaging and electrophysiological methods to this question and now provide strong evidence that maturation of excitatory synaptic inputs is required for the development of neuronal structure in the intact brain. Here we critically review data concerning the hypothesis with the expectation that understanding the circumstances when the data do and do not support the hypothesis will be most valuable. The synaptotrophic hypothesis contributes at both conceptual and mechanistic levels to our understanding of how relatively minor changes in levels or function of synaptic proteins may have profound effects on circuit development and plasticity.
Collapse
Affiliation(s)
- Hollis Cline
- Cold Spring Harbour Laboratory, 1 Bungtown Road, Cold Spring Harbour, NY 11724, USA.
| | | |
Collapse
|
13
|
Atkinson R, Migues PV, Hunter M, Rostas JAP. Molecular changes in the intermediate medial mesopallium after a one trial avoidance learning in immature and mature chickens. J Neurochem 2007; 104:891-902. [PMID: 18067548 DOI: 10.1111/j.1471-4159.2007.05060.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because brain maturation in chickens is protracted and occurs well after the major developmental period of synaptogenesis, chicken forebrain is suitable to investigate whether the molecular mechanisms underlying memory consolidation are different in immature and mature animals. We have used antibodies and western blotting to analyze subcellular fractions from the intermediate medial mesopallium region of 14-day and 8-week chicken forebrain prepared 0, 45, and 120 min after learning a discriminative taste avoidance task. At both ages learning induced changes in the phosphorylation of the glutamate receptor subunit 1 at Ser831, the levels of calcium-calmodulin stimulated/dependent protein kinase II and the phosphorylation of calcium-calmodulin stimulated/dependent protein kinase II at Thr286 were observed only in the fraction enriched in post-synaptic densities. The changes were of the same type at the two ages but occurred faster in mature animals. The changes in extracellular signal regulated kinase and phosphorylated-extracellular signal regulated kinase were more complex with different subcellular fractions showing different patterns of change at the two ages. These results imply that the molecular changes induced by learning a behavioral task are faster in mature than immature brain and may involve a different balance of intracellular signaling pathways.
Collapse
Affiliation(s)
- Rebbekah Atkinson
- School of Psychology and the Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | |
Collapse
|
14
|
Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J Neurosci 2007; 27:11651-62. [PMID: 17959808 DOI: 10.1523/jneurosci.2671-07.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many central excitatory synapses undergo developmental alterations in the molecular and biophysical characteristics of postsynaptic ionotropic glutamate receptors via changes in subunit composition. Concerning AMPA receptors (AMPARs), glutamate receptor 2 subunit (GluR2)-containing, Ca2+-impermeable AMPARs (CI-AMPARs) prevail at synapses between mature principal neurons; however, accumulating evidence indicates that GluR2-lacking, Ca2+-permeable AMPARs (CP-AMPARs) contribute at these synapses early in development. Here, we used a combination of imaging and electrophysiological recording techniques to investigate potential roles for CP-AMPARs at developing hippocampal mossy fiber-CA3 pyramidal cell (MF-PYR) synapses. We found that transmission at nascent MF-PYR synapses is mediated by a mixed population of CP- and CI-AMPARs as evidenced by polyamine-dependent inwardly rectifying current-voltage (I-V) relationships, and partial philanthotoxin sensitivity of synaptic events. CP-AMPAR expression at MF-PYR synapses is transient, being limited to the first 3 postnatal weeks. Moreover, the expression of CP-AMPARs is regulated by the PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-containing protein interacting with C kinase 1 (PICK1), because MF-PYR synapses in young PICK1 knock-out mice are philanthotoxin insensitive with linear I-V relationships. Strikingly, MF-PYR transmission via CP-AMPARs is selectively depressed during depolarization-induced long-term depression (DiLTD), a postsynaptic form of MF-PYR plasticity observed only at young MF-PYR synapses. The selective depression of CP-AMPARs during DiLTD was evident as a loss of postsynaptic CP-AMPAR-mediated Ca2+ transients in PYR spines and reduced rectification of MF-PYR synaptic currents. Preferential targeting of CP-AMPARs during DiLTD is further supported by a lack of DiLTD in young PICK1 knock-out mice. Together, these findings indicate that the transient participation of CP-AMPARs at young MF-PYR synapses dictates the developmental window to observe DiLTD.
Collapse
|