1
|
Scafetta T, Kovacs O, Milani GP, Bronz G, Lava SAG, Betti C, Vanoni F, Bianchetti MG, Faré PB, Camozzi P. Drug-Related Pyroglutamic Acidosis: Systematic Literature Review. J Clin Med 2024; 13:5781. [PMID: 39407841 PMCID: PMC11476987 DOI: 10.3390/jcm13195781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Inborn errors of glutathione metabolism may cause high anion gap metabolic acidosis due to pyroglutamic acid accumulation. Since 1988, cases of this acidosis have been reported in individuals without these defects. Methods: Given the poorly characterized predisposing factors, presentation, management, and prognosis of acquired pyroglutamic acidosis, we conducted a systematic review using the National Library of Medicine, Excerpta Medica, Web of Science, and Google Scholar databases. Results: A total of 131 cases were found. Most patients were females (79%), adults (92%) aged 51 years or older (66%) with pre-existing conditions (74%) such as undernutrition, alcohol-use disorder, or kidney disease, and had an ongoing infection (69%). The clinical features included diminished consciousness (60%), Kussmaul breathing (56%), and nausea or vomiting (27%). At least 92% of patients were on paracetamol therapy for >10 days at an appropriate dose, 32% on a β-lactamase-resistant penicillin, and 2.3% on vigabatrin. Besides severe anion gap acidosis, patients also presented with hypokalemia (24%) and kidney function deterioration (41%). Management involved discontinuing the offending drug (100%), bicarbonate (63%), acetylcysteine (42%), and acute kidney replacement therapy (18%). The fatality rate was 18%, which was higher without acetylcysteine (24%) compared to with it (11%). Conclusions: Acquired pyroglutamic acidosis is a rare, potentially fatal metabolic derangement, which usually occurs after paracetamol use, frequently combined with a β-lactamase-resistant penicillin or vigabatrin. This condition predominantly affects adults, especially women with factors like undernutrition, alcohol-use disorder, or kidney disease, often during infection. Increased awareness of this rare condition is necessary.
Collapse
Affiliation(s)
- Tessa Scafetta
- Family Medicine Institue, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (T.S.); (O.K.); (G.B.); (P.B.F.)
| | - Orsolya Kovacs
- Family Medicine Institue, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (T.S.); (O.K.); (G.B.); (P.B.F.)
- Department of Anesthesia, Hôpital du Valais, 1951 Sion, Switzerland;
| | - Gregorio P. Milani
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gabriel Bronz
- Family Medicine Institue, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (T.S.); (O.K.); (G.B.); (P.B.F.)
| | - Sebastiano A. G. Lava
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland;
- Clinical Pharmacology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Céline Betti
- Pediatric Emergency Department, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Federica Vanoni
- Pediatric Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Mario G. Bianchetti
- Family Medicine Institue, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (T.S.); (O.K.); (G.B.); (P.B.F.)
| | - Pietro B. Faré
- Family Medicine Institue, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (T.S.); (O.K.); (G.B.); (P.B.F.)
| | - Pietro Camozzi
- Department of Anesthesia, Hôpital du Valais, 1951 Sion, Switzerland;
| |
Collapse
|
2
|
Kubo Y, Fukuoka H, Shoji K, Mori C, Sakurai K, Nishikawa M, Oshida K, Yamashiro Y, Kawabata T. Longitudinal Analysis of One-Carbon Metabolism-Related Metabolites in Maternal and Cord Blood of Japanese Pregnant Women. Nutrients 2024; 16:1765. [PMID: 38892698 PMCID: PMC11174998 DOI: 10.3390/nu16111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| | - Chisato Mori
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Chiba, Japan;
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan;
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Miyagi, Japan;
| | - Kyoichi Oshida
- Faculty of Beauty & Wellness, Professional University of Beauty & Wellness, 3-9-3 Ushikubo, Tsuzuki-ku, Yokohama 224-0012, Kanagawa, Japan;
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, 2-9-8-3F, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| |
Collapse
|
3
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
OUP accepted manuscript. Nutr Rev 2022; 80:1985-2001. [DOI: 10.1093/nutrit/nuac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Red-emitting fluorescent probe for discrimination of Cys/Hcy and GSH with a large Stokes shift under a single-wavelength excitation. Anal Chim Acta 2020; 1097:245-253. [DOI: 10.1016/j.aca.2019.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022]
|
6
|
Gilley SP, Weaver NE, Sticca EL, Jambal P, Palacios A, Kerns ME, Anand P, Kemp JF, Westcott JE, Figueroa L, Garcés AL, Ali SA, Pasha O, Saleem S, Hambidge KM, Hendricks AE, Krebs NF, Borengasser SJ. Longitudinal Changes of One-Carbon Metabolites and Amino Acid Concentrations during Pregnancy in the Women First Maternal Nutrition Trial. Curr Dev Nutr 2020; 4:nzz132. [PMID: 32175519 PMCID: PMC7064164 DOI: 10.1093/cdn/nzz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas E Weaver
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Evan L Sticca
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Palacios
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mattie E Kerns
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pratibha Anand
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie E Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Ana Lucía Garcés
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Sumera A Ali
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - Omrana Pasha
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sarah Saleem
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - K Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion. PLoS One 2011; 6:e27626. [PMID: 22110699 PMCID: PMC3217996 DOI: 10.1371/journal.pone.0027626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 10/20/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Depletion of blood glutathione (GSH), a key antioxidant, is known to occur in preterm infants. OBJECTIVE Our aim was to determine: 1) whether GSH depletion is present at the time of birth; and 2) whether it is associated with insufficient availability of cysteine (cys), the limiting GSH precursor, or a decreased capacity to synthesize GSH. METHODOLOGY Sixteen mothers delivering very low birth weight infants (VLBW), and 16 mothers delivering healthy, full term neonates were enrolled. Immediately after birth, erythrocytes from umbilical vein, umbilical artery, and maternal blood were obtained to assess GSH [GSH] and cysteine [cys] concentrations, and the GSH synthesis rate was determined from the incorporation of labeled cysteine into GSH in isolated erythrocytes ex vivo, measured using gas chromatography mass spectrometry. PRINCIPAL FINDINGS Compared with mothers delivering at full term, mothers delivering prematurely had markedly lower erythrocyte [GSH] and [cys] and these were significantly depressed in VLBW infants, compared with term neonates. A strong correlation was found between maternal and fetal GSH and cysteine levels. The capacity to synthesize GSH was as high in VLBW as in term infants. CONCLUSION The current data demonstrate that: 1) GSH depletion is present at the time of birth in VLBW infants; 2) As VLBW neonates possess a fully active capacity to synthesize glutathione, the depletion may arise from inadequate cysteine availability, potentially due to maternal depletion. Further studies would be needed to determine whether maternal-fetal cysteine transfer is decreased in preterm infants, and, if so, whether cysteine supplementation of mothers at risk of delivering prematurely would strengthen antioxidant defense in preterm neonates.
Collapse
|