1
|
Cusick JA, Wellman CL, Demas GE. Maternal stress and the maternal microbiome have sex-specific effects on offspring development and aggressive behavior in Siberian hamsters (Phodopus sungorus). Horm Behav 2022; 141:105146. [PMID: 35276524 DOI: 10.1016/j.yhbeh.2022.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiome, a community of commensal, symbiotic and pathogenic bacteria, fungi, and viruses, interacts with many physiological systems to affect behavior. Prenatal experiences, including exposure to maternal stress and different maternal microbiomes, are important sources of organismal variation that can affect offspring development. These physiological systems do not act in isolation and can have long-term effects on offspring development and behavior. Here we investigated the interactive effects of maternal stress and manipulations of the maternal microbiome on offspring development and social behavior using Siberian hamsters, Phodopus sungorus. We exposed pregnant females to either a social stressor, antibiotics, both the social stressor and antibiotics, or no treatment (i.e., control) over the duration of their pregnancy and quantified male and female offspring growth, gut microbiome composition and diversity, stress-induced cortisol concentrations, and social behavior. Maternal antibiotic exposure altered the gut microbial communities of male and female offspring. Maternal treatment also had sex-specific effects on aspects of offspring development and aggressive behavior. Female offspring produced by stressed mothers were more aggressive than other female offspring. Female, but not male, offspring produced by mothers exposed to the combined treatment displayed low levels of aggression, suggesting that alteration of the maternal microbiome attenuated the effects of prenatal stress in a sex-specific manner. Maternal treatment did not affect non-aggressive behavior in offspring. Collectively, our study offers insight into how maternal systems can interact to affect offspring in sex-specific ways and highlights the important role of the maternal microbiome in mediating offspring development and behavior.
Collapse
Affiliation(s)
- Jessica A Cusick
- Department of Biology, Utah Valley University, United States of America; Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America.
| | - Cara L Wellman
- Animal Behavior Program, Indiana University, United States of America; Department of Psychological and Brain Sciences, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| | - Gregory E Demas
- Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| |
Collapse
|
2
|
Fischer EK, Alvarez H, Lagerstrom KM, McKinney JE, Petrillo R, Ellis G, O'Connell LA. Neural correlates of winning and losing fights in poison frog tadpoles. Physiol Behav 2020; 223:112973. [DOI: 10.1016/j.physbeh.2020.112973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
|
3
|
Abstract
A closer look at behavioral development in seasonally breeding rodents reveals more complex relations between puberty and social behavior than previously recognized. Pubertal hormones determine gross amounts of behavior, but play recedes and aggression emerges independently of puberty at predetermined chronological ages.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.
| | - Irving Zucker
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Brenhouse HC, Bath KG. Bundling the haystack to find the needle: Challenges and opportunities in modeling risk and resilience following early life stress. Front Neuroendocrinol 2019; 54:100768. [PMID: 31175880 PMCID: PMC6708473 DOI: 10.1016/j.yfrne.2019.100768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Various forms of early life adversity (ELA) have been linked with increased risk for negative health outcomes, including neuropsychiatric disorders. Understanding how the complex interplay between types, timing, duration, and severity of ELA, together with individual differences in genetic, socio-cultural, and physiological differences can mediate risk and resilience has proven difficult in population based studies. Use of animal models provides a powerful toolset to isolate key variables underlying risk for altered neural and behavioral maturational trajectories. However, a lack of clarity regarding the unique features of differing forms of adversity, lab differences in the implementation and reporting of methods, and the ability compare across labs and types of ELA has led to some confusion. Here, we highlight the diversity of approaches available, current challenges, and a possible ways forward to increase clarity and drive more meaningful and fruitful implementation and comparison of these approaches.
Collapse
Affiliation(s)
- Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, Boston, MA 02115, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St. Box 1821, Providence, RI 02912, United States
| |
Collapse
|
5
|
Demartsev V, Kershenbaum A, Ilany A, Barocas A, Weissman Y, Koren L, Geffen E. Lifetime changes in vocal syntactic complexity of rock hyrax males are determined by social class. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Paul MJ, Probst CK, Brown LM, de Vries GJ. Dissociation of Puberty and Adolescent Social Development in a Seasonally Breeding Species. Curr Biol 2018; 28:1116-1123.e2. [PMID: 29551412 DOI: 10.1016/j.cub.2018.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
Alongside the development of sexual characteristics and reproductive competence, adolescents undergo marked cognitive, social, and emotional development [1]. A fundamental question is whether these changes are triggered by activation of the hypothalamic-pituitary-gonadal (HPG) axis at puberty (puberty dependent) or whether they occur independently of HPG activation (puberty independent). Disentangling puberty-dependent from puberty-independent mechanisms is difficult because puberty and adolescence typically proceed concurrently. Here, we test a new approach that leverages natural adaptations of a seasonally breeding species to dissociate pubertal status from chronological age. Siberian hamsters (Phodopus sungorus) reared in a long, summer-like day length (LD) exhibit rapid pubertal development, whereas those reared in a short, winter-like day length (SD) delay puberty by several months to synchronize breeding with the following spring [2, 3]. We tested whether the SD-induced delay in puberty delays the peri-adolescent decline in juvenile social play and the rise in aggression that characterizes adolescent social development in many species [4-6] and compared the results to those obtained after prepubertal gonadectomy. Neither SD rearing nor prepubertal gonadectomy altered the age at which hamsters transitioned from play to aggression; SD-reared hamsters completed this transition prior to puberty. SD rearing and prepubertal gonadectomy, however, increased levels of play in male and female juveniles, implicating a previously unknown role for prepubertal gonadal hormones in juvenile social behavior. Levels of aggression were also impacted (decreased) in SD-reared and gonadectomized males. These data demonstrate that puberty-independent mechanisms regulate the timing of adolescent social development, while prepubertal and adult gonadal hormones modulate levels of age-appropriate social behaviors.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Clemens K Probst
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Lauren M Brown
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Geert J de Vries
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
7
|
Zimmermann TD, Kaiser S, Hennessy MB, Sachser N. Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence. Proc Biol Sci 2018; 284:rspb.2016.2784. [PMID: 28202817 DOI: 10.1098/rspb.2016.2784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental conditions during early life can adaptively shape the phenotype for the prevailing environment. Recently, it has been suggested that adolescence represents an additional temporal window for adaptive developmental plasticity, though supporting evidence is scarce. Previous work has shown that male guinea pigs living in large mixed-sex colonies develop a low-aggressive phenotype as part of a queuing strategy that is adaptive for integrating into large unfamiliar colonies. By contrast, males living in pairs during adolescence become highly aggressive towards strangers. Here, we tested whether the high-aggressive phenotype is adaptive under conditions of low population density, namely when directly competing with a single opponent for access to females. For that purpose, we established groups of one pair-housed male (PM), one colony-housed male (CM) and two females. PMs directed more aggression towards the male competitor and more courtship and mating towards females than did CMs. In consequence, PMs attained the dominant position in most cases and sired significantly more offspring. Moreover, they showed distinctly higher testosterone concentrations and elevated cortisol levels, which probably promoted enhanced aggressiveness while mobilizing necessary energy. Taken together, our results provide the clearest evidence to date for adaptive shaping of the phenotype by environmental influences during adolescence.
Collapse
Affiliation(s)
- Tobias D Zimmermann
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany .,Münster Graduate School of Evolution, University of Münster, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany.,Münster Graduate School of Evolution, University of Münster, 48149 Münster, Germany
| | - Michael B Hennessy
- Department of Psychology, Wright State University, Dayton, OH 45435, USA
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany.,Münster Graduate School of Evolution, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. J Neurosci 2017; 37:10855-10866. [PMID: 29118215 DOI: 10.1523/jneurosci.1834-17.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills. It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased reward-value coupled with an underdeveloped inhibitory control, and thus a hypersensitivity to reward. Perturbations during adolescence can alter the developmental trajectory of the brain, resulting in long-term alterations in reward-associated behaviors. This review highlights recent developments in our understanding of how neural circuits, pubertal hormones, and environmental factors contribute to adolescent-typical reward-associated behaviors with a particular focus on sex differences, the medial prefrontal cortex, social reward, social isolation, and drug use. We then introduce a new approach that makes use of natural adaptations of seasonally breeding species to investigate the role of pubertal hormones in adolescent development. This research has only begun to parse out contributions of the many neural, endocrine, and environmental changes to the heightened reward sensitivity and increased vulnerability to mental health disorders that characterize this life stage.
Collapse
|
9
|
Verona E, Bozzay ML. Biobehavioral Approaches to Aggression Implicate Perceived Threat and Insufficient Sleep: Clinical Relevance and Policy Implications. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/2372732217719910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Besides reducing the burden of aggression and violence on society, the biobehavioral study of aggression can inform our understanding of emotional problems and maladaptive behaviors more broadly, since aggression can often co-occur with psychological disorders (e.g., depression). This article reviews the neuroscience/psychophysiology literature to explain brain processes in aggression that can be targeted to reduce its scourge on society. In particular, the review implicates brain circuitry that is often triggered by feelings of threat, which in turn disrupt higher order cognitive processes and may prompt aggression. One potentially modifiable factor less frequently considered in the study of aggression is sleep insufficiency or problems. The neurophysiological impact of sleep insufficiency can parallel the brain-related risk factors of aggression. Policy recommendations span individual mental health innovations, community-based interventions, and public health campaigns promoting healthy lifestyles to reduce aggression and violence.
Collapse
|
10
|
Rosenhauer AM, McCann KE, Norvelle A, Huhman KL. An acute social defeat stressor in early puberty increases susceptibility to social defeat in adulthood. Horm Behav 2017; 93:31-38. [PMID: 28390864 DOI: 10.1016/j.yhbeh.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
Syrian hamsters readily display territorial aggression. If they lose even a single agonistic encounter, however, hamsters show striking reductions in aggressive behavior and increases in submissive behavior, a distinct behavioral change that we have previously termed conditioned defeat. This acute social defeat stressor is primarily psychological and is effective in both males and females. Therefore, we maintain that this procedure presents an ideal model for studying behavioral and physiological responses to social stress. Here, we demonstrate that social avoidance following social defeat is a particularly useful dependent measure because of its sensitivity and stability between sexes and across the estrous cycle. In addition, we demonstrate that peripubertal hamsters exposed to a single, 15min social defeat exhibit significantly more social avoidance 24h later when compared with no-defeat controls. Later, defeated and non-defeated hamsters display similar agonistic behavior in adulthood indicating that the peripubertal defeat does not alter adult territorial aggression. After experiencing an additional social defeat in adulthood, however, the hamsters that experienced the pubertal defeat respond to the adult defeat with increased social avoidance when compared with hamsters that were defeated only in adulthood and with no-defeat controls. These data are the first to show that a single social defeat in puberty increases susceptibility to later social defeat in both males and females.
Collapse
Affiliation(s)
- Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
|
12
|
|
13
|
Verona E, Bresin K. Aggression proneness: Transdiagnostic processes involving negative valence and cognitive systems. Int J Psychophysiol 2015; 98:321-329. [DOI: 10.1016/j.ijpsycho.2015.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/11/2015] [Accepted: 03/21/2015] [Indexed: 11/16/2022]
|
14
|
Suzuki H, Lucas LR. Neurochemical correlates of accumbal dopamine D2 and amygdaloid 5-HT 1B receptor densities on observational learning of aggression. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 15:460-74. [PMID: 25650085 PMCID: PMC4437814 DOI: 10.3758/s13415-015-0337-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called "chronic passive exposure to aggression," changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, in our study, we used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or nonaggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased the 5-HT1BR density in bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA to predict high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms in the observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions.
Collapse
Affiliation(s)
- Hideo Suzuki
- Laureate Institute for Brain Research, 6655 S. Yale Avenue, Tulsa, OK, 74136, USA,
| | | |
Collapse
|
15
|
Haller J, Harold G, Sandi C, Neumann ID. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 2014; 26:724-38. [PMID: 25059307 DOI: 10.1111/jne.12182] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
We review the impact of early adversities on the development of violence and antisocial behaviour in humans, and present three aetiological animal models of escalated rodent aggression, each disentangling the consequences of one particular adverse early-life factor. A review of the human data, as well as those obtained with the animal models of repeated maternal separation, post-weaning social isolation and peripubertal stress, clearly shows that adverse developmental conditions strongly affect aggressive behaviour displayed in adulthood, the emotional responses to social challenges and the neuronal mechanisms activated by conflict. Although similarities between models are evident, important differences were also noted, demonstrating that the behavioural, emotional and neuronal consequences of early adversities are to a large extent dependent on aetiological factors. These findings support recent theories on human aggression, which suggest that particular developmental trajectories lead to specific forms of aggressive behaviour and brain dysfunctions. However, dissecting the roles of particular aetiological factors in humans is difficult because these occur in various combinations; in addition, the neuroscientific tools employed in humans still lack the depth of analysis of those used in animal research. We suggest that the analytical approach of the rodent models presented here may be successfully used to complement human findings and to develop integrative models of the complex relationship between early adversity, brain development and aggressive behaviour.
Collapse
Affiliation(s)
- J Haller
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Chichinadze K, Chichinadze N, Gachechiladze L, Lazarashvili A, Nikolaishvili M. Physical predictors, behavioural/emotional attributes and neurochemical determinants of dominant behaviour. Biol Rev Camb Philos Soc 2014; 89:1005-20. [DOI: 10.1111/brv.12091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Konstantin Chichinadze
- Laboratory of Behavior and Cognitive Functions; I. Beritashvili Center of Experimental Biomedicine; Gotua Street 14 0160 Tbilisi Georgia
- Department of Pathology; I. Javakhishvili Tbilisi State University; 0128 Tbilisi Georgia
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Nodar Chichinadze
- Department of Andrology; A. Natishvili Institute of Morphology; 0159 Tbilisi Georgia
| | - Ledi Gachechiladze
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Ann Lazarashvili
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Marina Nikolaishvili
- Laboratory of Problems of Radiation Safety, Department of Radiobiology; I. Beritashvili Center of Experimental Biomedicine; 0160 Tbilisi Georgia
| |
Collapse
|
17
|
Eccard JA, Herde A. Seasonal variation in the behaviour of a short-lived rodent. BMC Ecol 2013; 13:43. [PMID: 24238069 PMCID: PMC3870992 DOI: 10.1186/1472-6785-13-43] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023] Open
Abstract
Background Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a “young-of-the-year” life history (YY, reproducing and dying in the summer of birth) and an “overwinter” life history (OW, overwintering in a subadult state before reproducing next spring). We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled. We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Results Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Conclusion Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as suggested by the POL theory, however, was not found. Nevertheless, correlations of traits suggest the existence of animal personalities. In conclusion, complex patterns of population dynamics, seasonal variation in life histories, and variability of behaviour due to asset-protection may cause complex seasonal behavioural dynamics in a population.
Collapse
Affiliation(s)
- Jana A Eccard
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany.
| | | |
Collapse
|
18
|
Arendt DH, Smith JP, Bastida CC, Prasad MS, Oliver KD, Eyster KM, Summers TR, Delville Y, Summers CH. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol Behav 2012; 107:670-9. [PMID: 22450262 DOI: 10.1016/j.physbeh.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 01/03/2023]
Abstract
Social subjugation has widespread consequences affecting behavior and underlying neural systems. We hypothesized that individual differences in stress responsiveness were associated with differential expression of neurotrophin associated genes within the hippocampus and amygdala. To do this we examined the brains of hamsters placed in resident/intruder interactions, modified by the opportunity to escape from aggression. In the amygdala, aggressive social interaction stimulated increased BDNF receptor TrK(B) mRNA levels regardless of the ability to escape the aggressor. In contrast, the availability of escape limited the elevation of GluR(1) AMPA subunit mRNA. In the hippocampal CA(1), the glucocorticoid stress hormone, cortisol, was negatively correlated with BDNF and TrK(B) gene expression, but showed a positive correlation with BDNF expression in the DG. Latency to escape the aggressor was also negatively correlated with CA(1) BDNF expression. In contrast, the relationship between amygdalar TrK(B) and GluR(1) was positive with respect to escape latency. These results suggest that an interplay of stress and neurotrophic systems influences learned escape behavior. Animals which escape faster seem to have a more robust neurotrophic profile in the hippocampus, with the opposite of this pattern in the amygdala. We propose that changes in the equilibrium of hippocampal and amygdalar learning result in differing behavioral stress coping choices.
Collapse
Affiliation(s)
- David H Arendt
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Coppens CM, de Boer SF, Steimer T, Koolhaas JM. Impulsivity and aggressive behavior in Roman high and low avoidance rats: Baseline differences and adolescent social stress induced changes. Physiol Behav 2012; 105:1156-60. [DOI: 10.1016/j.physbeh.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
20
|
Buwalda B, Geerdink M, Vidal J, Koolhaas JM. Social behavior and social stress in adolescence: A focus on animal models. Neurosci Biobehav Rev 2011; 35:1713-21. [DOI: 10.1016/j.neubiorev.2010.10.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/25/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
|
21
|
delBarco-Trillo J, McPhee ME, Johnston RE. Syrian hamster males below an age threshold do not elicit aggression from unfamiliar adult males. Aggress Behav 2011; 37:91-7. [PMID: 20954254 DOI: 10.1002/ab.20368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/14/2010] [Indexed: 11/11/2022]
Abstract
In many species, young males are the dispersers, leaving their natal area after weaning to establish a breeding area of their own. As young males disperse, however, they are bound to encounter unfamiliar adult males with established territories. Such interactions between an adult male and a young male may always be agonistic. Alternatively, there may be an age threshold below which aggression is not elicited and above which the adult male is aggressive toward the juvenile male. To test these two alternative hypotheses, we paired 47 young Syrian hamster (Mesocricetus auratus) males ranging from 24 to 65 days of age with 47 adult male hamsters and measured aggressive and investigatory behavior for 5 min. We observed no aggression by the adult toward young males between 24 and 47 days of age or toward the single male that was 49 days of age. Young males that were 50 days of age or older, however, elicited significant levels of aggression from the adults. These results indicate that in Syrian hamsters, young males are less vulnerable to adult aggression up to an age threshold and are more vulnerable to adult aggression beyond that threshold. This pattern may facilitate the establishment of territories by dispersing young males below that age threshold.
Collapse
|
22
|
Johnson NL, Carini L, Schenk ME, Stewart M, Byrnes EM. Adolescent opiate exposure in the female rat induces subtle alterations in maternal care and transgenerational effects on play behavior. Front Psychiatry 2011; 2:29. [PMID: 21713113 PMCID: PMC3112319 DOI: 10.3389/fpsyt.2011.00029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/08/2011] [Indexed: 01/25/2023] Open
Abstract
The non-medical use of prescription opiates, such as Vicodin(®) and MSContin(®), has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females' spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1) demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e., social grooming and social exploration). Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.
Collapse
Affiliation(s)
- Nicole L Johnson
- Department of Biomedical Science, Cummings School of Veterinary Medicine, Tufts University North Grafton, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Pubertal maturation and programming of hypothalamic-pituitary-adrenal reactivity. Front Neuroendocrinol 2010; 31:232-40. [PMID: 20193707 DOI: 10.1016/j.yfrne.2010.02.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Modifications in neuroendocrine function are a hallmark of pubertal development. These changes have many short- and long-term implications for the physiological and neurobehavioral function of an individual. The purpose of the present review is to discuss our current understanding of how pubertal development and stress interact to affect the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis that controls the hormonal stress response. A growing body of literature indicates that puberty is marked by dramatic transitions in stress reactivity. Moreover, recent studies indicate that exposure to stressors during pubertal maturation may result in enduring changes in HPA responsiveness in adulthood. As puberty is marked by a substantial increase in many stress-related psychological and physiological disorders (e.g., depression, anxiety, drug abuse), it is essential to understand the factors that regulate and modulate HPA function during this crucial period of development.
Collapse
|
24
|
Kinsey-Jones JS, Li XF, Knox AMI, Lin YS, Milligan SR, Lightman SL, O'Byrne KT. Corticotrophin-releasing factor alters the timing of puberty in the female rat. J Neuroendocrinol 2010; 22:102-9. [PMID: 20002962 DOI: 10.1111/j.1365-2826.2009.01940.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Puberty is a developmental process that is dependent upon activation of the hypothalamic gonadotrophin-releasing hormone (GnRH) pulse generator. It is well established that the stress neuropeptide, corticotrophin-releasing factor (CRF), has a profound inhibitory action on GnRH pulse generator frequency. Although stress is known to affect the timing of puberty, the role of CRF is unknown. The present study aimed to test the hypothesis that CRF plays a critical role in the timing of puberty. On postnatal day (pnd) 28, female rat pups were chronically implanted with i.c.v. cannulae and received 14 days of administration of either CRF, CRF receptor antagonist (astressin-B) or artificial cerebrospinal fluid via an osmotic mini-pump. A separate group of rats served as nonsurgical controls. As a marker of puberty, rats were monitored for vaginal opening and first vaginal oestrus. Levels of CRF, CRF receptor types 1 and 2 (CRF-R1, CRF-R2) mRNA expression in micropunches of the medial preoptic area (mPOA), hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC) were determined across pubertal development; brain tissue was collected from a naive group of rats on pnd 14, 32, on the day of vaginal opening, and pnd 77 (Adult). Administration of CRF resulted in a delay in the onset of puberty, whereas astressin-B advanced pubertal onset. Additionally, CRF and CRF-R1 mRNA expression was reduced in the mPOA, but not ARC, at puberty. In the PVN, expression of CRF, but not CRF-R1 mRNA, was reduced at the time of puberty. These data support the hypothesis that CRF signalling may play an important role in modulating the timing of puberty in the rat.
Collapse
Affiliation(s)
- J S Kinsey-Jones
- Division of Reproduction & Endocrinology, King's College London, Guy's Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Watt MJ, Burke AR, Renner KJ, Forster GL. Adolescent male rats exposed to social defeat exhibit altered anxiety behavior and limbic monoamines as adults. Behav Neurosci 2009; 123:564-76. [PMID: 19485563 DOI: 10.1037/a0015752] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Social stress in adolescence is correlated with emergence of psychopathologies during early adulthood. In this study, the authors investigated the impact of social defeat stress during mid-adolescence on adult male brain and behavior. Adolescent male Sprague-Dawley rats were exposed to repeated social defeat for 5 days while controls were placed in a novel empty cage. When exposed to defeat-associated cues as adults, previously defeated rats showed increased risk assessment and behavioral inhibition, demonstrating long-term memory for the defeat context. However, previously defeated rats exhibited increased locomotion in both elevated plus-maze and open field tests, suggesting heightened novelty-induced behavior. Adolescent defeat also affected adult monoamine levels in stress-responsive limbic regions, causing decreased medial prefrontal cortex dopamine, increased norepinephrine and serotonin in the ventral dentate gyrus, and decreased norepinephrine in the dorsal raphe. Our results suggest that adolescent social defeat produces both deficits in anxiety responses and altered monoaminergic function in adulthood. This model offers potential for identifying specific mechanisms induced by severe adolescent social stress that may contribute to increased adult male vulnerability to psychopathology.
Collapse
Affiliation(s)
- Michael J Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
26
|
Donaldson ZR, Yang SH, Chan AWS, Young LJ. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors. Biol Reprod 2009; 81:1189-95. [PMID: 19641177 DOI: 10.1095/biolreprod.109.077529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.
Collapse
Affiliation(s)
- Zoe R Donaldson
- Program in Neuroscience, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
27
|
Malkesman O, Pine DS, Tragon T, Austin DR, Henter ID, Chen G, Manji HK. Animal models of suicide-trait-related behaviors. Trends Pharmacol Sci 2009; 30:165-73. [PMID: 19269045 DOI: 10.1016/j.tips.2009.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 11/19/2022]
Abstract
Although antidepressants are moderately effective in treating major depressive disorder (MDD), concerns have arisen that selective serotonin-reuptake inhibitors (SSRIs) are associated with suicidal thinking and behavior, especially in children, adolescents and young adults. Almost no experimental research in model systems has considered the mechanisms by which SSRIs might be associated with this potential side effect in some susceptible individuals. Suicide is a complex behavior and impossible to fully reproduce in an animal model. However, by investigating traits that show strong cross-species parallels in addition to associations with suicide in humans, animal models might elucidate the mechanisms by which SSRIs are associated with suicidal thinking and behavior. Traits linked with suicide in humans that can be successfully modeled in rodents include aggression, impulsivity, irritability and hopelessness/helplessness. Modeling these relevant traits in animals can help to clarify the impact of SSRIs on these traits, suggesting avenues for reducing suicide risk in this vulnerable population.
Collapse
Affiliation(s)
- Oz Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sterlemann V, Ganea K, Liebl C, Harbich D, Alam S, Holsboer F, Müller MB, Schmidt MV. Long-term behavioral and neuroendocrine alterations following chronic social stress in mice: implications for stress-related disorders. Horm Behav 2008; 53:386-94. [PMID: 18096163 DOI: 10.1016/j.yhbeh.2007.11.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/19/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
The period of adolescence is characterized by a high vulnerability to stress and trauma, which might result in long-lasting consequences and an increased risk to develop psychiatric disorders. Using a recently developed mouse model for chronic social stress during adolescence, we studied persistent neuroendocrine and behavioral effects of chronic social stress obtained 12 months after cessation of the stressor. As a reference, we investigated immediate effects of chronic stress exposure obtained at the end of the chronic stress period. Immediately after the 7 week chronic stress period stressed animals show significantly increased adrenal weights, decreased thymus weight, increased basal corticosterone secretion and a flattened circadian rhythm. Furthermore, stressed animals display an increased anxiety-like behavior in the elevated plus maze and the novelty-induced suppression of feeding test. Hippocampal mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mRNA levels were significantly decreased. To investigate persistent consequences of this early stressful experience, the same parameters were assessed in aged mice 12 months after the cessation of the stressor. Interestingly, we still found differences between formerly stressed and control mice in important stress-related parameters. MR expression levels were significantly lower in stressed animals, suggesting lasting, possibly epigenetic alterations in gene expression regulation. Furthermore, we observed long-term behavioral alterations in animals stressed during adolescence. Thus, we could demonstrate that chronic stress exposure during a crucial developmental time period results in long-term, persistent effects on physiological and behavioral parameters throughout life, which may contribute to an enhanced vulnerability to stress-induced diseases.
Collapse
|