1
|
Witono NT, Fauzi A, Bangun K. Autologous fat grafting auxiliary methods in craniofacial deformities: A systematic review and network meta-analysis. J Plast Reconstr Aesthet Surg 2024; 99:377-391. [PMID: 39426253 DOI: 10.1016/j.bjps.2024.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND To increase autologous fat grafting (AFG) volume retention, current advancements focus on adding an auxiliary method to the process. This review aimed to address which auxiliary methods prove to be the best in terms of volume retention outcome. METHODS A comprehensive literature search was performed in five medical databases, including PubMed, Proquest, Scopus, CENTRAL, and ScienceDirect, until March 2024, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. RESULTS Twenty-six studies were included in this review, and seven studies were included in the network meta-analysis. Reported auxiliary methods include stromal vascular fractions (SVFs) [12.20, 95% confidence intervals (CI) 0.04 to 24.35], adipose tissue-derived stem cells (ADSCs) (24.20, 95% CI 4.14 to 44.26), and platelet-rich plasma (PRP) [24.10, 95% CI -2.68 to 50.88]. When compared with the standard AFG approach, SVFs (p = 0.049) and ADSCs (p = 0.018) were more successful in retaining volume. However, PRP (p = 0.077) was not as effective. The comparison between auxiliary approaches, ADSCs vs PRP (p = 0.994), ADSCs vs SVFs (p = 0.271), and PRP vs SVF (p = 0.383), did not show any significant differences. Subgroup analysis revealed that the use of volumetric measuring methods has a substantial impact on the reported volume retention (p < 0.0001). CONCLUSION Enhanced volume retention can be attained with the utilization of SVF and ADSCs auxiliary methods in comparison to AFG, with or without PRP. Given the insignificant differences between SVF and ADSC, along with the greater complexity of the ADSC process, we recommend for the preferable use of SVF.
Collapse
Affiliation(s)
- Nathanael Tendean Witono
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.
| | - Ahmad Fauzi
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Kristaninta Bangun
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia; Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
DeLuca JH, Reilly SM. Culture and Differentiation of Primary Preadipocytes from Mouse Subcutaneous White Adipose Tissue. Methods Mol Biol 2023; 2662:11-24. [PMID: 37076667 PMCID: PMC10583291 DOI: 10.1007/978-1-0716-3167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Adipocytes are terminally differentiated cells derived from fibroblastic preadipocyte precursors. Here, we describe a method for the isolation and proliferation of preadipocytes from murine subcutaneous white adipose tissue, followed by differentiation in culture to mature adipocytes; we refer to these cells as primary preadipocytes differentiated in vitro (PPDIVs). Compared to adipogenic cell lines, PPDIV metabolism and adipokine secretion more closely resemble in vivo adipocyte biology. While primary mature adipocytes have the greatest in vivo relevance, their fragility and buoyancy make them unsuitable for many cell culture-based methods. PPDIVs can also take advantage of transgenic and knockout mouse models to produce genetically modified adipocytes. Thus, PPDIVs are a valuable resource for studying adipocyte biology in cell culture.
Collapse
Affiliation(s)
- Julia H DeLuca
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Shannon M Reilly
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Postprandial triglyceride-rich lipoproteins promote the adipogenic differentiation of adipose-derived mesenchymal stem cells via the LRP1/caveolin-1/AKT1 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159236. [PMID: 36179802 DOI: 10.1016/j.bbalip.2022.159236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Diet-induced obesity (OB) is usually accompanied by hypertriglyceridemia, which is characterized by the accumulation of triglyceride (TG)-rich lipoprotein (TRL) particles in the circulation. We previously found that postprandial TRL combined with insulin induced the adipogenic differentiation of 3T3-L1 preadipocytes, which may represent a key mechanism underlying obesity. However, the specific mechanism and signaling pathway involved in this process remain to be fully elucidated. In this study, we found that, in the postprandial state, patients with obesity had significantly higher levels of TG and remnant cholesterol (RC) than normal-weight controls. In vitro, we found that postprandial TRL, together with insulin, promoted the adipogenic differentiation of adipose-derived mesenchymal stem cells (AMSCs), as evidenced by the increased expression of lipogenesis-related genes and their protein products, including low-density lipoprotein related protein 1 (LRP1). Besides, caveolin-1 (Cav-1) expression was also significantly upregulated under this condition. Cav-1 and LRP1 were observed to interact, and then led to the activation of the PI3K/AKT1 signaling pathway. Meanwhile, the inhibition of LRP1 or Cav-1 significantly attenuated the adipogenic differentiation of AMSCs and downregulated AKT1 phosphorylation levels. Moreover, treatment with a selective AKT1 inhibitor significantly suppressed postprandial TRL and insulin-induced adipogenesis in AMSCs. Combined, our results demonstrated that, in association with insulin, postprandial TRL can promote the adipogenic differentiation of AMSCs in a manner that is dependent on the LRP1/Cav-1-mediated activation of the PI3K/AKT1 signaling pathway. Our findings indicated that a postprandial increase in TRL content is a critical factor in the pathogenesis of hypertriglyceridemia and diet-induced obesity.
Collapse
|
5
|
Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Min W, Chen J, Duan JA, Liu P, Wang Y. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals (Basel) 2022; 15:879. [PMID: 35890177 PMCID: PMC9324138 DOI: 10.3390/ph15070879] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bones play an important role in maintaining exercise and protecting organs. Bone defect, as a common orthopedic disease in clinics, can cause tremendous damage with long treatment cycles. Therefore, the treatment of bone defect remains as one of the main challenges in clinical practice. Today, with increased incidence of bone disease in the aging population, demand for bone repair material is high. At present, the method of clinical treatment for bone defects including non-invasive therapy and invasive therapy. Surgical treatment is the most effective way to treat bone defects, such as using bone grafts, Masquelet technique, Ilizarov technique etc. In recent years, the rapid development of tissue engineering technology provides a new treatment strategy for bone repair. This review paper introduces the current situation and challenges of clinical treatment of bone defect repair in detail. The advantages and disadvantages of bone tissue engineering scaffolds are comprehensively discussed from the aspect of material, preparation technology, and function of bone tissue engineering scaffolds. This paper also summarizes the 3D printing technology based on computer technology, aiming at designing personalized artificial scaffolds that can accurately fit bone defects.
Collapse
Affiliation(s)
- Nannan Xue
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Xiaofeng Ding
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Rizhong Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Ruihan Jiang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Heyan Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Xin Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Concord 2137, Australia
| |
Collapse
|
6
|
Abstract
BACKGROUND Autologous fat grafting is a dynamic modality used in plastic surgery as an adjunct to improve functional and aesthetic form. However, current practices in fat grafting for soft-tissue augmentation are plagued by tremendous variability in long-term graft retention, resulting in suboptimal outcomes and repetitive procedures. This systematic review identifies and critically appraises the evidence for various enrichment strategies that can be used to augment and improve the viability of fat grafts. METHODS A comprehensive literature search of the Medline and PubMed databases was conducted for animal and human studies published through October of 2017 with multiple search terms related to adipose graft enrichment agents encompassing growth factors, platelet-rich plasma, adipose-derived and bone marrow stem cells, gene therapy, tissue engineering, and other strategies. Data on level of evidence, techniques, complications, and outcomes were collected. RESULTS A total of 1382 articles were identified, of which 147 met inclusion criteria. The majority of enrichment strategies demonstrated positive benefit for fat graft survival, particularly with growth factors and adipose-derived stem cell enrichment. Platelet-rich plasma and adipose-derived stem cells had the strongest evidence to support efficacy in human studies and may demonstrate a dose-dependent effect. CONCLUSIONS Improved understanding of enrichment strategies contributing to fat graft survival can help to optimize safety and outcomes. Controlled clinical studies are lacking, and future studies should examine factors influencing graft survival through controlled clinical trials in order to establish safety and to obtain consistent outcomes.
Collapse
|
7
|
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 2019; 204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
|
8
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
9
|
Coyle R, Yao J, Richards D, Mei Y. The Effects of Metabolic Substrate Availability on Human Adipose-Derived Stem Cell Spheroid Survival. Tissue Eng Part A 2018; 25:620-631. [PMID: 30226442 DOI: 10.1089/ten.tea.2018.0163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Human adipose-derived stem cells (hADSCs) spheroids have displayed remarkable potential for treating ischemic injury. However, low nutrient (i.e., glucose and oxygen) availability in ischemic environments results in limited tissue viability posttransplantation. To develop an understanding of the effects of nutrient availability on spheroid survival, we utilized both in vitro and computational models to examine the limiting factors in metabolic supply for avascular microtissues, revealing the critical role of glucose to improve hADSC spheroid survival in ischemic conditions. These results may impact future strategies for improving hADSC transplantation efficacy through codelivery of metabolic substrates.
Collapse
Affiliation(s)
- Robert Coyle
- 1 Department of Bioengineering, Clemson University , Charleston, South Carolina
| | - Jenny Yao
- 2 Academic Magnet High School , North Charleston, South Carolina
| | - Dylan Richards
- 1 Department of Bioengineering, Clemson University , Charleston, South Carolina
| | - Ying Mei
- 1 Department of Bioengineering, Clemson University , Charleston, South Carolina.,3 Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
10
|
Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plast Surg Clin North Am 2018; 26:513-532. [PMID: 30213431 DOI: 10.1016/j.fsc.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of stem cells in regenerative medicine and specifically facial rejuvenation is thought provoking and controversial. Today there is increased emphasis on tissue engineering and regenerative medicine, which translates into a need for a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue is currently recognized as an accessible and abundant source for adult stem cells. Cellular therapies and tissue engineering are still in their infancy, and additional basic science and preclinical studies are needed before cosmetic and reconstructive surgical applications can be routinely undertaken and satisfactory levels of patient safety achieved.
Collapse
Affiliation(s)
- David A Wolf
- Johnson Space Center, Houston, TX, USA; EarthTomorrow, Inc, 1714 Neptune Lane, Houston, TX 77062, USA; Purdue University, West Lafayette, IN, USA
| | - William Beeson
- Facial Plastics, Indianapolis, IN, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Gregory S Keller
- Facial Plastics, Santa Barbara, CA, USA; Facial Plastics, Los Angeles, CA, USA
| | - C William Hanke
- Dermatology, Indianapolis, IN, USA; Laser and Skin Center of Indiana, 13400 North Meridian Street, Suite 290, Carmel, IN 46032, USA; ACGME Micrographic Surgery, Dermatologic Oncology Fellowship Training Program, St. Vincent Hospital, Indianapolis, IN, USA; University of Iowa-Carver College of Medicine, Iowa City, IA, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jill Waibel
- Dermatology, Miami Dermatology and Laser Institute, 7800 Southwest 87th Avenue, Suite B200, Miami, FL 33173, USA; Baptist Hospital of Miami, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matt Leavitt
- Dermatology, Orlando, FL, USA; Advanced Dermatology and Cosmetic Surgery, The Hair Foundation, 260 Lookout Place Suite 103, Maitland, FL 32751, USA; University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA; Nova Southeastern University, 4850 Millenium Boulevard, Orlando, FL 32839, USA
| | - Michael Sacopulos
- Medical Risk Management, Medical Risk Institute, 676 Ohio Street, Terre Haute, IN 47807, USA
| |
Collapse
|
11
|
Li DQ, Lu GM, Liang YD, Liang ZJ, Huang MH, Peng QL, Zou DH, Gu RH, Xu FT, Gao H, Chen ZD, Chi GY, Wei ZH, Chen L, Li HM. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration. Oncotarget 2018; 8:46875-46890. [PMID: 28423354 PMCID: PMC5564529 DOI: 10.18632/oncotarget.16777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/22/2017] [Indexed: 01/22/2023] Open
Abstract
Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation.
Collapse
Affiliation(s)
- De-Quan Li
- Department of Mammary Glands Surgery, The Third Hospital of Nanchang City, Nanchang 330009, China
| | - Guan-Ming Lu
- Department of Glands Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yi-Dan Liang
- Central Laboratory of Medical Science, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Zhi-Jie Liang
- Department of Mammary Glands Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Min-Hong Huang
- Department of Mammary Glands Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Qi-Liu Peng
- Central Laboratory of Medical Science, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Dong-Hua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Rong-He Gu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Fang-Tian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hui Gao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhen-Dong Chen
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Guang-Yi Chi
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Zhong-Heng Wei
- Department of Glands Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| |
Collapse
|
12
|
Application of adipose-derived stromal cells in fat grafting: Basic science and literature review. Exp Ther Med 2017; 14:2415-2423. [PMID: 28962175 PMCID: PMC5609216 DOI: 10.3892/etm.2017.4811] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Autologous fat is considered the ideal material for soft-tissue augmentation in plastic and reconstructive surgery. The primary drawback of autologous fat grafting is the high resorption rate. The isolation of mesenchymal stem cells from adipose tissue inevitably led to research focusing on the study of combined transplantation of autologous fat and adipose derived stem cells (ADSCs) and introduced the theory of ‘cell-assisted lipotransfer’. Transplantation of ADSCs is a promising strategy, due to the high proliferative capacity of stem cells, their potential to induce paracrine signalling and ability to differentiate into adipocytes and vascular cells. The current study examined the literature for clinical and experimental studies on cell-assisted lipotransfer to assess the efficacy of this novel technique when compared with traditional fat grafting. A total of 30 studies were included in the present review. The current study demonstrates that cell-assisted lipotransfer has improved efficacy compared with conventional fat grafting. Despite relatively positive outcomes, further investigation is required to establish a consensus in cell-assisted lipotransfer.
Collapse
|
13
|
Brett E, Chung N, Leavitt WT, Momeni A, Longaker MT, Wan DC. A Review of Cell-Based Strategies for Soft Tissue Reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:336-346. [PMID: 28372485 DOI: 10.1089/ten.teb.2016.0455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue reconstruction to restore volume to damaged or deficient tissue beneath the skin remains a challenging endeavor. Current techniques are centered around autologous fat transfer, or the use of synthetic substitutes, however, a great deal of scientific inquiry has been made into both the molecular mechanisms involved in, and limitations of, de novo adipogenesis, that is, the formation of new adipose tissue from precursor cells. To best comprehend these mechanisms, an understanding of defined markers for adipogenic differentiation, and knowledge of both commercially available and primary cell lines that enable in vitro and in vivo studies is necessary. We review the growth factors, proteins, cytokines, drugs, and molecular pathways that have shown promise in enhancing adipogenesis and vasculogenesis, in addition to the multitude of scaffolds that act as delivery vehicles to support these processes. While progress continues on these fronts, equally important is how researchers are optimizing clinically employed strategies such as autologous fat transfer through cell-based intervention, and the potential to augment this approach through isolation of preferentially adipogenic or angiogenic precursor subpopulations, which exists on the horizon. This review will highlight the novel molecular and synthetic modifications currently being studied for inducing adipose tissue regeneration on a cellular level, which will expand our arsenal of techniques for approaching soft tissue reconstruction.
Collapse
Affiliation(s)
- Elizabeth Brett
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Natalie Chung
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - William Tripp Leavitt
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Arash Momeni
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
14
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
15
|
Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int 2016; 2016:6180487. [PMID: 26880976 PMCID: PMC4736569 DOI: 10.1155/2016/6180487] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Aswati Subramanian
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Conor Flavin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Hassane Oudadesse
- Sciences Chimiques, University of Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| |
Collapse
|
16
|
Huang S, Zhao W, Wang Z, Tao K, Liu X, Chang P. Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review). Mol Med Rep 2015; 13:1063-9. [PMID: 26677061 PMCID: PMC4732852 DOI: 10.3892/mmr.2015.4682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Cell-assisted lipotransfer (CAL) has been widely used in various clinical applications, including breast augmentation following mammectomy, soft-tissue reconstruction and wound healing. However, the clinical application of CAL has been restricted due to the transplanted fat tissues being readily liquefied and absorbed. The present review examines 57 previously published studies involving CAL, including fat grafting or fat transfer with human adipose-stem cells in all known databases. Of these 57 articles, seven reported the clinical application of CAL. In the 57 studies, the majority of the fat tissues were obtained from the abdomen via liposuction of the seven clinical studies, four were performed in patients requiring breast augmentation, one in a patient requiring facial augmentation, one in a patient requiring soft tissue augmentation/reconstruction and one in a patient requiring fat in their upper arms. Despite the potential risks, there has been an increased demand for CAL in in cosmetic or aesthetic applications. Thus, criteria and guidelines are necessary for the clinical application of CAL technology.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Weiliang Zhao
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zihua Wang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Kai Tao
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Xiaoyan Liu
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Peng Chang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| |
Collapse
|
17
|
Valencia Mora M, Ruiz Ibán MA, Díaz Heredia J, Barco Laakso R, Cuéllar R, García Arranz M. Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells 2015; 7:691-9. [PMID: 26029341 PMCID: PMC4444610 DOI: 10.4252/wjsc.v7.i4.691] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Rotator cuff tears are frequent shoulder problems that are usually dealt with surgical repair. Despite improved surgical techniques, the tendon-to-bone healing rate is unsatisfactory due to difficulties in restoring the delicate transitional tissue between bone and tendon. It is essential to understand the molecular mechanisms that determine this failure. The study of the molecular environment during embryogenesis and during normal healing after injury is key in devising strategies to get a successful repair. Mesenchymal stem cells (MSC) can differentiate into different mesodermal tissues and have a strong paracrine, anti-inflammatory, immunoregulatory and angiogenic potential. Stem cell therapy is thus a potentially effective therapy to enhance rotator cuff healing. Promising results have been reported with the use of autologous MSC of different origins in animal studies: they have shown to have better healing properties, increasing the amount of fibrocartilage formation and improving the orientation of fibrocartilage fibers with less immunologic response and reduced lymphocyte infiltration. All these changes lead to an increase in biomechanical strength. However, animal research is still inconclusive and more experimental studies are needed before human application. Future directions include expanded stem cell therapy in combination with growth factors or different scaffolds as well as new stem cell types and gene therapy.
Collapse
Affiliation(s)
- Maria Valencia Mora
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel A Ruiz Ibán
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Jorge Díaz Heredia
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Raul Barco Laakso
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Ricardo Cuéllar
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Mariano García Arranz
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
18
|
Fahham D, Merquiol E, Gilon T, Marx G, Blum G. Insoluble fibrinogen particles for harvesting and expanding attachment-dependent cells and for trapping suspended cancer cells in the presence of blood. ACTA ACUST UNITED AC 2015; 10:025010. [PMID: 25886560 DOI: 10.1088/1748-6041/10/2/025010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibrinogen has the potential of being used as a material to harvest and grow normal mesenchymal cells (fibroblasts, endothelial cells) or to trap cancer cells from a suspension with blood as a potential circulatory trap.Insoluble fibrinogen particles (iFP) were prepared from commercial Cohn fraction I paste (source: Kedrion). The sized iFP (~60-180 µm) were not soluble in physiologic buffers, exhibited a density of 1.2 ± 0.02, and did not aggregate or clump when mixed with whole blood or thrombin, but were degraded in lytic solutions.Cell culture studies indicated that the iFP could be used to harvest, expand and transfer normal, mammalian, attachment-dependent cells, notably fibroblasts and stem cells from bone marrow, as well as numerous cancer lines. Cells attached to iFP underwent logarithmic growth kinetics and could be transferred without trypsinization. Transplanted cancer cells-on-iFP generated characteristic tumors and retained their surface marker (by Western immuno-blot). An iFP 'cell-affinity' batch column was shown to trap MCF-7 cancer cells in the presence of red blood cells (RBCs) or serum.The scalable process for fabricating iFP retained the cell attachment properties of native fibrinogen. The results indicate that iFP has the potential to be used as a 3D cell culture matrix, and possibly to trap cancer cells from blood.
Collapse
Affiliation(s)
- Duha Fahham
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel. These authors contributed equally to this manuscript
| | | | | | | | | |
Collapse
|
19
|
Haug V, Torio-Padron N, Stark GB, Finkenzeller G, Strassburg S. Comparison between endothelial progenitor cells and human umbilical vein endothelial cells on neovascularization in an adipogenesis mouse model. Microvasc Res 2015; 97:159-66. [DOI: 10.1016/j.mvr.2014.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023]
|
20
|
Moltó García R, González Alonso V, Villaverde Doménech ME. Fat grafting in immediate breast reconstruction. Avoiding breast sequelae. Breast Cancer 2014; 23:134-140. [PMID: 24872086 DOI: 10.1007/s12282-014-0541-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The remarkable increase that breast-conserving surgery has been experiencing throughout the last decades is as much undeniable as the imposition of the immediate reconstruction as the gold-standard treatment regarding breast reconstruction. Nevertheless, these trends conflict since we do not have a satisfactory immediate reconstruction method for breast-conserving surgery. This work shows the technique we have developed to solve this problem through autologous fat grafting ensuring the same oncological safety. METHODS We present the preliminary results of 37 immediate reconstructions of lumpectomies and quadrantectomies through autologous fat grafting of lumpectomies. Patients have been chosen by a multidisciplinary committee following special criteria based on their low-risk pathology, having undergone different diagnostic tests previous to the resection and 1 year postoperative monitoring by qualified observers. Also, a satisfaction survey has been performed. RESULTS In all cases studied, with a year follow-up, we found excellent aesthetic outcomes with no presence of the feared scar retractions and deformities, even after radiotherapy. According to patient surveys, the satisfaction rate was also very high. No important complications, either acute or chronic, have been observed from the implementation of this technique. CONCLUSION This is a useful, innovative technique, having good aesthetic results, decreasing the incidence of aesthetic sequelae, commonly seen in simple lumpectomies without reconstruction. The complication rate is low, and oncological safety is not compromised.
Collapse
Affiliation(s)
- Roberto Moltó García
- Servicio de Cirugía Plástica y Quemados, Universitari y Politecnic La Fe, Bulevar sur s/n, 46026, Valencia, Spain
| | - Virina González Alonso
- Servicio de Cirugía Plástica y Quemados, Universitari y Politecnic La Fe, Bulevar sur s/n, 46026, Valencia, Spain
| | | |
Collapse
|
21
|
Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity. Expert Rev Mol Med 2014; 16:e9. [PMID: 24810570 PMCID: PMC4017835 DOI: 10.1017/erm.2014.9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of multipotent adipose-derived stromal cells (ASC) has raised hope that tissue regeneration approaches established with bone-marrow-derived stromal cells (BMSC) can be reproduced with a cell-type that is far more accessible in large quantities. Recent detailed comparisons, however, revealed subtle functional differences between ASC and BMSC, stressing the concept of a common mesenchymal progenitor existing in a perivascular niche across all tissues. Focussing on bone and cartilage repair, this review summarises recent in vitro and in vivo studies aiming towards tissue regeneration with ASC. Advantages of good accessibility, high yield and superior growth properties are counterbalanced by an inferiority of ASC to form ectopic bone and stimulate long-bone healing along with their less pronounced osteogenic and angiogenic gene expression signature. Hence, particular emphasis is placed on establishing whether stem cell activity of ASC is so far proven and relevant for successful osteochondral regeneration, or whether trophic activity may largely determine therapeutic outcome.
Collapse
|
22
|
Schiller ZA, Schiele NR, Sims JK, Lee K, Kuo CK. Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro. Stem Cell Res Ther 2013; 4:79. [PMID: 23838354 PMCID: PMC3856610 DOI: 10.1186/scrt230] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/01/2013] [Indexed: 01/22/2023] Open
Abstract
Introduction Obesity, which is excessive expansion of white adipose tissue, is a major risk factor for several serious health issues, including diabetes, cardiovascular disease and cancer. Efforts to combat obesity and related diseases require understanding the basic biology of adipogenesis. However, in vitro studies do not result in lipid composition and morphology that are typically seen in vivo, likely because the in vitro conditions are not truly representative of in vivo adipose tissue formation. In vitro, low oxygen tension and cytoskeletal tension have been shown to independently regulate adipogenesis, but in vivo, these two factors simultaneously influence differentiation. Methods The purpose of our study was to examine the influence of physiological oxygen tension on cytoskeletal tension-mediated adipogenesis. Adipose-derived stem cells (ASCs) were differentiated under both ambient (20%) and physiological (5%) oxygen conditions and treated with cytoskeletal inhibitors, cytochalasin D or blebbistatin. Adipogenesis was assessed on the basis of gene expression and adipocyte metabolic function. Results Adipose tissue metabolic markers (glycerol-3-phosphate dehydrogenase (GPDH) and triglycerides) were significantly down-regulated by physiological oxygen levels. Reducing cytoskeletal tension through the use of chemical inhibitors, either cytochalasin D or blebbistatin, resulted in an up-regulation of adipogenic gene expression (peroxisome proliferator-activated receptor γ (PPARγ), lipoprotein lipase (LPL) and fatty acid binding protein 4 (FABP4)) and metabolic markers, regardless of oxygen levels. Cytochalasin D and blebbistatin treatment altered cytoskeletal organization and associated tension via different mechanisms; however, both conditions had similar effects on adipogenesis, suggesting that physiological oxygen-mediated regulation of adipogenesis in ASCs is modulated, in part, by cytoskeletal tension. Conclusions These results demonstrated that interactions between the cytoskeleton and oxygen tension influence adipogenic differentiation of ASCs.
Collapse
|
23
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|
24
|
Kim WS, Mooney DJ, Arany PR, Lee K, Huebsch N, Kim J. Adipose Tissue Engineering Using Injectable, Oxidized Alginate Hydrogels. Tissue Eng Part A 2012; 18:737-43. [DOI: 10.1089/ten.tea.2011.0250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Woo Seob Kim
- Department of Plastic Surgery, College of Medicine, Chung-Ang University, Heuk Seok-Dong, Dong Jak-Gu, Seoul, Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Praveen R. Arany
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
- Program in Oral and Maxillofacial Pathology, Leder Human Biology and Translational Medicine and Biological Sciences in Dental Medicine, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kangwon Lee
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Nathaniel Huebsch
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Jaeyun Kim
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
25
|
Barnea I, Haif S, Keshet R, Karaush V, Lev-Ari S, Khafif A, Shtabsky A, Yarden Y, Vexler A, Ben Yosef R. Targeting ErbB-1 and ErbB-4 in irradiated head and neck cancer: results of in vitro and in vivo studies. Head Neck 2012; 35:399-407. [PMID: 22367849 DOI: 10.1002/hed.22967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND ErbB oncogenes have a major role in cancer. The role of ErbB-4 in cancer cell biology and the effect of anti-ErbB-1 and anti-ErbB-4 monoclonal antibodies were evaluated in this study. METHODS ErbB-4 expression and binding was evaluated by Western blot, enzyme-linked immunosorbent assay (ELISA), fluorescent microscopy, and flow cytometry. Cell survival was measured by XTT assay. Tumor progression was followed up in nude mice model. RESULTS High ErbB-1 levels in head and neck cancer cell lines were determined, whereas ErbB-4 expression varied. Specific antibody binding to the cells was demonstrated. High ErbB-4 expressing squamous cell carcinoma 1 (SCC-1) cells proliferated faster and generated faster growing tumors in mice. Cetuximab and mAb-3 reduced cell survival proportional to ErbB-1 and ErbB-4 expression. Combination of antibodies with irradiation was most effective in reducing cell survival and tumor growth. CONCLUSION ErbB-4 plays a role in head and neck cancer cell biology. Anti-ErbB-4 targeted therapy can serve as a new strategy against head and neck cancer when combined with established treatments.
Collapse
Affiliation(s)
- Itay Barnea
- Tel Aviv Sourasky Medical Center, Oncology Division, Radiotherapy Unit, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.
Collapse
|
27
|
|
28
|
|
29
|
Alemany M. Utilization of dietary glucose in the metabolic syndrome. Nutr Metab (Lond) 2011; 8:74. [PMID: 22029632 PMCID: PMC3225301 DOI: 10.1186/1743-7075-8-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022] Open
Abstract
This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome.
Collapse
Affiliation(s)
- Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Jeong SH, Han SK, Kim WK. Soft tissue augmentation using in vitro differentiated adipocytes: a clinical pilot study. Dermatol Surg 2011; 37:760-7. [PMID: 21605235 DOI: 10.1111/j.1524-4725.2011.01950..x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although various commercially available filler materials are now commonly used, their variable degrees of resorption require repeated percutaneous injections. To overcome these drawbacks, a new injectable in vitro differentiated adipocyte filler has been developed, and animal studies have demonstrated that implantation of the filler successfully enhances in vivo adipose tissue formation. This study was undertaken to evaluate the clinical efficacy of this method, particularly in soft tissue augmentation. MATERIALS AND METHODS Autologous adipose-derived stromal cells were isolated, cultured, and differentiated to adipocytes in vitro. The differentiated adipocytes were suspended in Dulbecco's modified Eagle medium and injected into the lesion requiring soft tissue augmentation. Eight patients were treated with this tissue-engineered filler. Long-term follow-up for longer than 1 year was possible in all patients. RESULTS Two or 3 weeks after the injection, volume increment of subcutaneous tissue was observed around the injection area in the ensuing 1 to 5 weeks. Thereafter, additional volume augmentation was not found and the augmentation effect was well-maintained. All patients agreed on the clinical effectiveness of the procedure, and no complications occurred. CONCLUSIONS The results obtained indicate that this method is well tolerated and may be an effective means of achieving soft tissue augmentation. The authors have indicated no significant interest with commercial supporters.
Collapse
Affiliation(s)
- Seong-Ho Jeong
- Department of Plastic Surgery, Korea University Guro Hospital, Seoul, Korea
| | | | | |
Collapse
|
31
|
Aoyagi Y, Kuroda M, Asada S, Bujo H, Tanaka S, Konno S, Tanio M, Ishii I, Aso M, Saito Y. Fibrin glue increases the cell survival and the transduced gene product secretion of the ceiling culture-derived adipocytes transplanted in mice. Exp Mol Med 2011; 43:161-7. [PMID: 21339696 DOI: 10.3858/emm.2011.43.3.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of clinically applicable scaffolds is important for the application of cell transplantation in various human diseases. The aims of this study are to evaluate fibrin glue in a novel protein replacement therapy using proliferative adipocytes and to develop a mouse model system to monitor the delivery of the transgene product into the blood and the fate of the transduced cells after transplantation. Proliferative adipocytes from mouse adipose tissue were transduced by a retroviral vector harboring the human lecithin-cholesterol acyltransferase (lcat) gene, and were subcutaneously transplanted into mice combined with fibrin glue. The lcat gene transduction efficiency and the subsequent secretion of the product in mouse adipocytes were enhanced using a protamine concentration of 500 μg/ml. Adipogenesis induction did not significantly affect the lcat gene-transduced cell survival after transplantation. Immunohistochemistry showed the ectopic enzyme production to persist for 28 days in the subcutaneously transplanted gene- transduced adipocytes. The increased viability of transplanted cells with fibrin glue was accompanied with the decrease in apoptotic cell death. The immunodetectable serum LCAT levels in mice implanted with the fibrin glue were comparable with those observed in mice implanted with Matrigel, indicating that the transplanted lcat gene-transduced adipocytes survived and functioned in the transplanted spaces with fibrin glue as well as with Matrigel for 28 days. Thus, this in vivo system using fibrin is expected to serve as a good model to further improve the transplanted cell/scaffold conditions for the stable and durable cell-based replacement of defective proteins in patients with LCAT deficiency.
Collapse
Affiliation(s)
- Yasuyuki Aoyagi
- Center for Advanced Medicine, Chiba University Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mansilla E, Díaz Aquino V, Zambón D, Marin GH, Mártire K, Roque G, Ichim T, Riordan NH, Patel A, Sturla F, Larsen G, Spretz R, Núñez L, Soratti C, Ibar R, van Leeuwen M, Tau JM, Drago H, Maceira A. Could metabolic syndrome, lipodystrophy, and aging be mesenchymal stem cell exhaustion syndromes? Stem Cells Int 2011; 2011:943216. [PMID: 21716667 PMCID: PMC3118295 DOI: 10.4061/2011/943216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 03/22/2011] [Indexed: 12/15/2022] Open
Abstract
One of the most
important and complex diseases of modern society
is metabolic syndrome. This syndrome has not
been completely understood, and therefore an
effective treatment is not available yet. We
propose a possible stem cell mechanism involved
in the development of metabolic syndrome. This
way of thinking lets us consider also other
significant pathologies that could have similar
etiopathogenic pathways, like lipodystrophic
syndromes, progeria, and aging. All these
clinical situations could be the consequence of
a progressive and persistent stem cell
exhaustion syndrome (SCES). The main outcome of
this SCES would be an irreversible loss of the
effective regenerative mesenchymal stem cells
(MSCs) pools. In this way, the normal repairing
capacities of the organism could become
inefficient. Our point of view could open the
possibility for a new strategy of treatment in
metabolic syndrome, lipodystrophic syndromes,
progeria, and even aging: stem cell
therapies.
Collapse
Affiliation(s)
- Eduardo Mansilla
- Tissue Engineering, Regenerative Medicine and Cell Therapies Laboratory, CUCAIBA, Ministry of Health, Province of Buenos Aires, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Effect of mesenchymal stem cells on skin graft to flap prefabrication: an experimental study. Ann Plast Surg 2010; 65:237-44. [PMID: 20585233 DOI: 10.1097/sap.0b013e3181c1ff14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenetic potential has been reported for bone marrow-derived stem cells (BSCs) and adipose-derived stem cells (ASCs). The superficial femoral artery, vein, and fascia were used as a vascular crane for prefabrication model of skin graft to flap. BSCs or ASCs were injected before the adaptation of the graft to the vascular crane depending on the group. The prefabricated grafts were then transferred to inguinal region in every 7 days to observe the viability. In experiment part I (n = 18), the critical time for the prefabrication was found to be 1 week. In experiment part II (n = 12), the control and experiment assays were performed on the same animal to support the data of the experiment part I. The viability of flaps was evaluated. The vascular density was higher in BSC, and ASC groups. The Vascular Endothelial Growth Factor immunohistochemical staining was quantified. Furthermore, mesenchymal stem cells could be helpful in any prefabrication procedure in which neovascularization is indispensable.
Collapse
|
34
|
Moioli EK, Chen M, Yang R, Shah B, Wu J, Mao JJ. Hybrid adipogenic implants from adipose stem cells for soft tissue reconstruction in vivo. Tissue Eng Part A 2010; 16:3299-307. [PMID: 20528671 DOI: 10.1089/ten.tea.2010.0157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10 mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipogenic medium for 28 days showed no delamination. Upon 4-week in vivo implantation in athymic rats, hybrid implants well integrated with host subcutaneous tissue and could only be surgically separated. Vascularized adipose tissue regenerated in the thin, painted alginate layer only if ASC-derived adipogenic cells were delivered. Contrastingly, abundant fibrous tissue filled ASC-free alginate layer encapsulating the acellular PEGDA core in control implants. Human-specific peroxisome proliferator-activated receptor-γ (PPAR-γ) was detected in human ASC-seeded implants. Interestingly, rat-specific PPAR-γ was absent in either human ASC-seeded or ASC-free implants. Glycerol content in ASC-delivered implants was significantly greater than that in ASC-free implants. Remarkably, rat-specific platelet/endothelial cell adhesion molecule (PECAM) was detected in both ASC-seeded and ASC-free implants, suggesting anastomosis of vasculature in bioengineered tissue with host blood vessels. Human nuclear staining revealed that a substantial number of adipocytes were of human origin, whereas endothelial cells of vascular wall were of chemaric human and nonhuman (rat host) origins. Together, hybrid implant appears to be a viable scale-up approach with volumetric retention attributable primarily to the acellular biomaterial core, and yet has a biologically viable cellular interface with the host. The present 40-mm soft tissue implant may serve as a biomaterial tissue expander for reconstruction of lumpectomy defects.
Collapse
Affiliation(s)
- Eduardo K Moioli
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
35
|
ELFadl D, Garimella V, Mahapatra T, Mcmanus P, Drew P. Lipomodelling of the Breast: A review. Breast 2010; 19:202-9. [DOI: 10.1016/j.breast.2010.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/17/2009] [Accepted: 02/23/2010] [Indexed: 11/29/2022] Open
|
36
|
Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J 2010; 30:381-7. [PMID: 20601560 DOI: 10.1177/1090820x10373063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent technical advances in fat grafting and the development of surgical devices such as liposuction cannulae have made fat grafting a relatively safe and effective procedure. However, new guidelines issued by the American Society of Plastic Surgeons in 2009 announced that fat grafting to the breast is not a strongly recommended procedure, as there are limited scientific data on the safety and efficacy of this particular type of fat transfer. Recent progress by several groups has revealed that multipotent adult stem cells are present in human adipose tissue. This cell population, termed adipose-derived stem cells (ADSC), represents a promising approach to future cell-based therapies, such as tissue engineering and regeneration. In fact, several reports have shown that ADSC play a pivotal role in graft survival through both adipogenesis and angiogenesis. Although tissue augmentation by fat grafting does have several advantages in that it is a noninvasive procedure and results in minimal scarring, it is essential that such a procedure be supported by evidence-based medicine and that further basic scientific and clinical research is conducted to ensure that fat grafting is a safe and effective procedure.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
37
|
Comparison of readily available scaffolds for adipose tissue engineering using adipose-derived stem cells. J Plast Reconstr Aesthet Surg 2010; 63:858-64. [DOI: 10.1016/j.bjps.2009.01.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/08/2009] [Accepted: 01/31/2009] [Indexed: 11/23/2022]
|
38
|
Abstract
Humans and other mammals have three main adipose tissue depots: visceral white adipose tissue, subcutaneous white adipose tissue and brown adipose tissue, each of which possesses unique cell-autonomous properties. In contrast to visceral adipose tissue, which can induce detrimental metabolic effects, subcutaneous white adipose tissue and brown adipose tissue have the potential to benefit metabolism by improving glucose homeostasis and increasing energy consumption. In addition, adipose tissue contains adipose-derived stem cells, which possess the ability to differentiate into multiple lineages, a property that might be of value for the repair or replacement of various damaged cell types. Adipose tissue transplantation has primarily been used as a tool to study physiology and for human reconstructive surgery. Transplantation of adipose tissue is, however, now being explored as a possible tool to promote the beneficial metabolic effects of subcutaneous white adipose tissue and brown adipose tissue, as well as adipose-derived stem cells. Ultimately, the clinical applicability of adipose tissue transplantation for the treatment of obesity and metabolic disorders will reside in the achievable level of safety, reliability and efficacy compared with other treatments.
Collapse
Affiliation(s)
- Thien T Tran
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
39
|
Ogawa R, Mizuno S, Murphy GF, Orgill DP. The effect of hydrostatic pressure on three-dimensional chondroinduction of human adipose-derived stem cells. Tissue Eng Part A 2009; 15:2937-45. [PMID: 19290804 DOI: 10.1089/ten.tea.2008.0672] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The optimal production of three-dimensional cartilage in vitro requires both inductive factors and specified culture conditions (e.g., hydrostatic pressure [HP], gas concentration, and nutrient supply) to promote cell viability and maintain phenotype. In this study, we optimized the conditions for human cartilage induction using human adipose-derived stem cells (ASCs), collagen scaffolds, and cyclic HP treatment. METHODS Human ASCs underwent primary culture and three passages before being seeded into collagen scaffolds. These constructs were incubated for 1 week in an automated bioreactor using cyclic HP at 0-0.5 MPa, 0.5 Hz, and compared to constructs exposed to atmospheric pressure. In both groups, chondrogenic differentiation medium including transforming growth factor-beta1 was employed. One, 2, 3, and 4 weeks after incubation, the cell constructs were harvested for histological, immunohistochemical, and gene expression evaluation. RESULTS In histological and immunohistochemical analyzes, pericellular and extracellular metachromatic matrix was observed in both groups and increased over 4 weeks, but accumulated at a higher rate in the HP group. Cell number was maintained in the HP group over 4 weeks but decreased after 2 weeks in the atmospheric pressure group. Chondrogenic-specific gene expression of type II and X collagen, aggrecan, and SRY-box9 was increased in the HP group especially after 2 weeks. CONCLUSION Our results demonstrate chondrogenic differentiation of ASCs in a three-dimensional collagen scaffolds with treatment of a cyclic HP. Cyclic HP was effective in enhancing accumulation of extracellular matrix and expression of genes indicative of chondrogenic differentiation.
Collapse
Affiliation(s)
- Rei Ogawa
- Division of Plastic Surgery, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
40
|
The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 2009; 124:804-815. [PMID: 19730299 DOI: 10.1097/prs.0b013e3181b17bb4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Advances in the treatment of reperfusion injury have created an opportunity for plastic surgeons to apply these treatments to flaps and implanted tissues. The authors examined the direct and indirect effects of adipose-derived stem cells on ischemia-reperfusion injury on a skin flap model to determine the in vivo differentiation of adipose-derived stem cells to endothelial cells; the levels of vascular endothelial growth factor (VEGF), transforming growth factor-beta, and fibroblast growth factor; and the ultrastructural changes apparent with scanning electron microscopy to clarify the initial events and the following cascades. METHODS Two identical cranial based random flaps with a dimension of 1 x 5 cm were elevated on the dorsums of 20 ICR mice. The left flap was designated as the control and the right flap was injected with adipose-derived stem cells. The flaps were then subjected to 6 hours of ischemia by clamping the pedicle, and then reperfusion. RESULTS The mean viable flap length in the control and experimental groups was 15.2 +/- 3.4 mm and 24.4 +/- 2.9 mm, respectively. The mean viable flap area in the control and experimental groups was 12.9 +/- 4.1 mm and 21.8 +/- 3.7 mm, respectively. The in vivo differentiation of adipose-derived stem cells to endothelial cells was observed. The immunohistochemical stainings, VEGF, transforming growth factor-beta, and fibroblast growth factor revealed increased levels in the experimental groups. Scanning electron microscopy indicated mild injury in the experimental group. CONCLUSIONS The adipose-derived stem cells could prevent ischemia-reperfusion injury, mainly by regulating the growth factors. Although VEGF was the foremost inhibitor of injury, the overall cascade was enhanced by adipose-derived stem cells, with the help of the other growth factors.
Collapse
|
41
|
Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J NIPPON MED SCH 2009; 76:56-66. [PMID: 19443990 DOI: 10.1272/jnms.76.56] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem cell based therapies for the repair and regeneration of various tissues and organs offer a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. Although embryonic stem cells and induced pluripotent stem cells are theoretically highly beneficial, there are various limitations to their use imposed by cell regulations, ethical considerations, and genetic manipulation. Adult stem cells, on the other hand, are more easily available, with neither ethical nor immunoreactive considerations, as long as they are of autologous tissue origin. Much research has focused on mesenchymal stem cells isolated from bone marrow stroma which have been shown to possess adipogenic, osteogenic, chondrogenic, myogenic, and neurogenic potential in vitro. However bone marrow procurement is extremely painful for patients and yields low numbers of harvested cells. When compared with bone marrow-derived mesenchymal stem cells, adipose-derived stem cells are equally capable of differentiating into cells and tissues of mesodermal origin. Because human adipose tissue is ubiquitous and easily obtainable in large quantities under local anesthesia with little patient discomfort, it may provide an alternative source of stem cells for mesenchymal tissue regeneration and engineering. Based on our previous experimental findings, this review highlights the molecular characteristics, the potential for differentiation, the potential for wound healing, and the future role of adipose-derived stem cells in cell-based therapies and tissue engineering.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
42
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ogawa R, Mizuno S, Murphy GF, Orgill DP. The effect of hydrostatic pressure on three-dimensional chondroinduction of human adipose-derived stem cells. TISSUE ENGINEERING. PART A 2009. [PMID: 19290804 DOI: 10.1089/ten.tea.2008.0672.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The optimal production of three-dimensional cartilage in vitro requires both inductive factors and specified culture conditions (e.g., hydrostatic pressure [HP], gas concentration, and nutrient supply) to promote cell viability and maintain phenotype. In this study, we optimized the conditions for human cartilage induction using human adipose-derived stem cells (ASCs), collagen scaffolds, and cyclic HP treatment. METHODS Human ASCs underwent primary culture and three passages before being seeded into collagen scaffolds. These constructs were incubated for 1 week in an automated bioreactor using cyclic HP at 0-0.5 MPa, 0.5 Hz, and compared to constructs exposed to atmospheric pressure. In both groups, chondrogenic differentiation medium including transforming growth factor-beta1 was employed. One, 2, 3, and 4 weeks after incubation, the cell constructs were harvested for histological, immunohistochemical, and gene expression evaluation. RESULTS In histological and immunohistochemical analyzes, pericellular and extracellular metachromatic matrix was observed in both groups and increased over 4 weeks, but accumulated at a higher rate in the HP group. Cell number was maintained in the HP group over 4 weeks but decreased after 2 weeks in the atmospheric pressure group. Chondrogenic-specific gene expression of type II and X collagen, aggrecan, and SRY-box9 was increased in the HP group especially after 2 weeks. CONCLUSION Our results demonstrate chondrogenic differentiation of ASCs in a three-dimensional collagen scaffolds with treatment of a cyclic HP. Cyclic HP was effective in enhancing accumulation of extracellular matrix and expression of genes indicative of chondrogenic differentiation.
Collapse
Affiliation(s)
- Rei Ogawa
- Division of Plastic Surgery, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|