1
|
Gao T, Ying Z, Yang Y, Xu X. Effects of estrogen on social recognition and oxytocin regulating synaptic plasticity. Physiol Behav 2025; 293:114843. [PMID: 39952542 DOI: 10.1016/j.physbeh.2025.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Estrogens play an important role in the regulation of female social recognition; however, their mechanisms have not yet been elucidated. The present study established a mouse model of adolescent ovariectomy (Ovx) supplemented with a physiological dose of estradiol benzoate (EB, 10 µg/kg). Familiar-novel individual identification, urine odor discrimination, and social memory behaviors were assessed after adulthood. The results showed that Ovx-induced impairment of individual identification, urine odor discrimination, and social memory 24 h after testing were significantly improved by EB supplementation. Meanwhile, EB restored 17β-estradiol (17β-E2) and oxytocin (OT) levels in the brain and serum of Ovx females. EB upregulated the expression level of OT receptor (OTR) protein and increased the numbers of ERα-ir and ERβ-ir cell in the medial amygdala (MeA). Electrophysiological studies further showed that OT (10 and 100 nM) promoted the induction and maintenance of long-term potentiation (LTP) in CA2 region of the hippocampal slices in vitro, which could be abolished by pretreatment with OTR antagonist l-368,899. 17β-E2 (10 nM) not only promoted LTP, but also synergistically enhanced the promotion effect of 10 nM OT on LTP, which was eliminated by pretreatment with ERs antagonists ICI182780. These results suggest that estrogen promotes the OT system in the MeA and synergistically promotes OT increasing the synaptic plasticity of the hippocampus through ERs, which enhances social odor discrimination and social memory, and ultimately improves social recognition in female mice.
Collapse
Affiliation(s)
- Tongtong Gao
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Zhangxin Ying
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Yani Yang
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiaohong Xu
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China.
| |
Collapse
|
2
|
Piechota-Polanczyk A, Mariwani Z, Fichna J, Polanczyk A, Jozkowicz A. Chemical Inhibition of NRF2 Transcriptional Activity Influences Colon Function and Oestrogen Receptor Expression in Mice at Different Ages. Int J Mol Sci 2024; 25:13647. [PMID: 39769410 PMCID: PMC11678879 DOI: 10.3390/ijms252413647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
We aim to investigate whether chemical inhibition of NRF2 transcriptional activity (TA) influences distal colon contractions, particularly in an age-dependent manner in females, and whether it impacts oestrogen receptor signalling in female mice. This study was performed on 3 and 6-month-old female mice treated with ML385 (30 mg/kg) or a vehicle for 7 days (i.p.). The colon functionality was verified with a colon bead expulsion test; serum samples were collected for oestradiol levels, and colon samples were stored for various histological analyses. The results show that the seven-day treatment of ML385 significantly downregulated TA (p < 0.05) and impacted its contractility. Additionally, young females treated with ML385 exhibited an increase in goblet cell number and significantly increased ERα, but not ERβ, especially in older mice. It is worth noting that the basal level of the membrane oestrogen receptor GPR30 was higher in older mice within the epithelial layer, and ML385 treatment led to a downregulation of GPR30 in 6-month-old mice. In summary, ML385 decreases NRF2 TA in the colon and impacts its contractility and goblet cell numbers. Additionally, NRF2 TA influences the expression of oestrogen receptors in the colons of female mice.
Collapse
Affiliation(s)
| | - Zanya Mariwani
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (Z.M.); (A.J.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| | - Andrzej Polanczyk
- The Faculty of Safety Engineering and Civil Protection, Fire University, 01-629 Warsaw, Poland;
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (Z.M.); (A.J.)
| |
Collapse
|
3
|
Qin C, Dong MH, Tang Y, Chu YH, Zhou LQ, Zhang H, Yang S, Zhang LY, Pang XW, Zhu LF, Wang W, Tian DS. The foam cell-derived exosomal miRNA Novel-3 drives neuroinflammation and ferroptosis during ischemic stroke. NATURE AGING 2024; 4:1845-1861. [PMID: 39468286 DOI: 10.1038/s43587-024-00727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Large artery atherosclerosis (LAA) is a prevalent cause of acute ischemic stroke (AIS). Understanding the mechanisms linking atherosclerosis to stroke is essential for developing appropriate intervention strategies. Here, we found that the exosomal miRNA Novel-3 is selectively upregulated in the plasma of patients with LAA-AIS. Notably, Novel-3 was predominantly expressed in macrophage-derived foam cells, and its expression correlated with atherosclerotic plaque vulnerability in patients undergoing carotid endarterectomy. Exploring the function of Novel-3 in a mouse model of cerebral ischemia, we found that Novel-3 exacerbated ischemic injury and targeted microglia and macrophages expressing ionized calcium-binding adapter molecule 1 in peri-infarct regions. Mechanistically, Novel-3 increased ferroptosis and neuroinflammation by interacting with striatin (STRN) and downregulating the phosphoinositide 3-kinase-AKT-mechanistic target of rapamycin signaling pathway. Blocking Novel-3 activity or overexpressing STRN provided neuroprotection under ischemic conditions. Our findings suggest that exosomal Novel-3, which is primarily derived from macrophage-derived foam cells, targets microglia and macrophages in the brain to induce neuroinflammation and could serve as a potential therapeutic target for patients with stroke who have atherosclerosis.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
5
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
6
|
Barón-Mendoza I, Martínez-Marcial M, García-Juárez M, Mejía-Hernández M, Cortés-Sánchez Y, Zamora-Sánchez CJ, García-Rebollar JO, Chavira-Ramírez R, Ordaz-Rosado D, Camacho-Arroyo I, Tecamachalzi-Silvarán MB, Montes-Narváez O, González-Flores O, García-Becerra R, González-Arenas A. Disruptions in reproductive health, sex hormonal profiles, and hypothalamic hormone receptors content in females of the C58/J mouse model of autism. Horm Behav 2024; 164:105593. [PMID: 38909429 DOI: 10.1016/j.yhbeh.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mónica Martínez-Marcial
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Montserrat Mejía-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yesenia Cortés-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Jorge Omar García-Rebollar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
7
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
8
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
9
|
Marchant IC, Chabert S, Martínez-Pinto J, Sotomayor-Zárate R, Ramírez-Barrantes R, Acevedo L, Córdova C, Olivero P. Estrogen, Cognitive Performance, and Functional Imaging Studies: What Are We Missing About Neuroprotection? Front Cell Neurosci 2022; 16:866122. [PMID: 35634466 PMCID: PMC9133497 DOI: 10.3389/fncel.2022.866122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023] Open
Abstract
Menopause transition can be interpreted as a vulnerable state characterized by estrogen deficiency with detrimental systemic effects as the low-grade chronic inflammation that appears with aging and partly explains age-related disorders as cancer, diabetes mellitus and increased risk of cognitive impairment. Over the course of a lifetime, estrogen produces several beneficial effects in healthy neurological tissues as well as cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the efficacy of hormone treatment in menopausal women has failed to confirm the benefit reported in observational studies. Unambiguously, enhanced verbal memory is the most robust finding from longitudinal and cross-sectional studies, what merits consideration for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related brain activity and functional connectivity remain, however, unexplored. In this context, the resting state paradigm may provide valuable information about reproductive aging and hormonal treatment effects, and their relationship with brain imaging of functional connectivity may be key to understand and anticipate estrogen cognitive protective effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-to-long lasting protective effects of estrogen, we will provide a comprehensive review of cognitive tasks used in animal studies to evaluate the effect of hormone treatment on cognitive performance and discuss about the tasks best suited to the demonstration of clinically significant differences in cognitive performance to be applied in human studies. Eventually, we will focus on studies evaluating the DMN activity and responsiveness to pharmacological stimulation in humans.
Collapse
Affiliation(s)
- Ivanny Carolina Marchant
- Laboratorio de Modelamiento en Medicina, Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ivanny Carolina Marchant
| | - Stéren Chabert
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
- Escuela de Ingeniería Biomédica, Universidad de Valparaiso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa, Valparaíso, Chile
- Laboratorio de Neuroquímica y Neurofarmacología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Lilian Acevedo
- Servicio de Neurología Hospital Carlos van Buren, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Olivero
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Pablo Olivero
| |
Collapse
|
10
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Koop S, Oster H. Eat, sleep, repeat - endocrine regulation of behavioural circadian rhythms. FEBS J 2021; 289:6543-6558. [PMID: 34228879 DOI: 10.1111/febs.16109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The adaptation of organisms to a rhythmic environment is mediated by an internal timing system termed the circadian clock. In mammals, molecular clocks are found in all tissues and organs. This circadian clock network regulates the release of many hormones, which in turn influence some of the most vital behavioural functions. Sleep-wake cycles are under strict circadian control with strong influence of rhythmic hormones such as melatonin, cortisol and others. Food intake, in contrast, receives circadian modulation through hormones such as leptin, ghrelin, insulin and orexin. A third behavioural output covered in this review is mating and bonding behaviours, regulated through circadian rhythms in steroid hormones and oxytocin. Together, these data emphasize the pervasive influence of the circadian clock system on behavioural outputs and its mediation through endocrine networks.
Collapse
Affiliation(s)
- Sarah Koop
- Centre of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Germany
| | - Henrik Oster
- Centre of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Germany
| |
Collapse
|
12
|
Enriquez KD, Gupta AR, Hoffman EJ. Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Front Psychiatry 2021; 12:716673. [PMID: 34690830 PMCID: PMC8531220 DOI: 10.3389/fpsyt.2021.716673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders associated with deficits in social communication and restrictive, repetitive patterns of behavior, that affect up to 1 in 54 children. ASDs clearly demonstrate a male bias, occurring ~4 times more frequently in males than females, though the basis for this male predominance is not well-understood. In recent years, ASD risk gene discovery has accelerated, with many whole-exome sequencing studies identifying genes that converge on common pathways, such as neuronal communication and regulation of gene expression. ASD genetics studies have suggested that there may be a "female protective effect," such that females may have a higher threshold for ASD risk, yet its etiology is not well-understood. Here, we review common biological pathways implicated by ASD genetics studies as well as recent analyses of sex differential processes in ASD using imaging genomics, transcriptomics, and animal models. Additionally, we discuss recent investigations of ASD risk genes that have suggested a potential role for estrogens as modulators of biological pathways in ASD, and highlight relevant molecular and cellular pathways downstream of estrogen signaling as potential avenues for further investigation.
Collapse
Affiliation(s)
- Kristen D Enriquez
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Abha R Gupta
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Ellen J Hoffman
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Zang KK, Xiao X, Chen LQ, Yang Y, Cao QL, Tang YL, Lv SS, Cao H, Zhang L, Zhang YQ. Distinct Function of Estrogen Receptors in the Rodent Anterior Cingulate Cortex in Pain-related Aversion. Anesthesiology 2020; 133:165-184. [PMID: 32349075 DOI: 10.1097/aln.0000000000003324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Brain-derived estrogen is implicated in pain-related aversion; however, which estrogen receptors mediate this effect remains unclear. This study hypothesized that the different estrogen receptors in the rostral anterior cingulate cortex play distinct roles in pain-related aversion. METHODS Formalin-induced conditioned place avoidance and place escape/avoidance paradigms were used to evaluate pain-related aversion in rodents. Immunohistochemistry and Western blotting were used to detect estrogen receptor expression. Patch-clamp recordings were used to examine N-methyl-D-aspartate-mediated excitatory postsynaptic currents in rostral anterior cingulate cortex slices. RESULTS The administration of the estrogen receptor-β antagonist 4-(2-phenyl-5,7-bis [trifluoromethyl] pyrazolo [1,5-a] pyrimidin-3-yl) phenol (PHTPP) or the G protein-coupled estrogen receptor-1 antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta [c] quinolone (G15) but not the estrogen receptor-α antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP) into the rostral anterior cingulate cortex blocked pain-related aversion in rats (avoidance score, mean ± SD: 1,3-bis [4-hydroxyphenyl]-4-methyl-5-(4-[2-piperidinylethoxy] phenol)-1H-pyrazole dihydrochloride (MPP): 47.0 ± 18.9%, 4-(2-phenyl-5,7-bis [trifluoromethyl] pyrazolo [1,5-a] pyrimidin-3-yl) phenol (PHTPP): -7.4 ± 20.6%, and [3aS*,4R*,9bR*]-4-[6-bromo-1,3-benzodioxol-5-yl]-3a,4,5,9b-3H-cyclopenta [c] quinolone (G15): -4.6 ± 17.0% vs. vehicle: 46.5 ± 12.2%; n = 7 to 9; P < 0.0001). Consistently, estrogen receptor-β knockdown but not estrogen receptor-α knockdown by short-hairpin RNA also inhibited pain-related aversion in mice (avoidance score, mean ± SD: estrogen receptor-α-short-hairpin RNA: 26.0 ± 7.1% and estrogen receptor-β-short-hairpin RNA: 6.3 ± 13.4% vs. control short-hairpin RNA: 29.1 ± 9.1%; n = 7 to 10; P < 0.0001). Furthermore, the direct administration of the estrogen receptor-β agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN) or the G protein-coupled estrogen receptor-1 agonist (±)-1-([3aR*,4S*,9bS*]-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl)-ethanone (G1) into the rostral anterior cingulate cortex resulted in conditioned place avoidance (avoidance score, mean ± SD: 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN): 35.3 ± 9.5% and (±)-1-([3aR*,4S*,9bS*]-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl)-ethanone (G1): 43.5 ± 22.8% vs. vehicle: 0.3 ± 14.9%; n = 8; P < 0.0001) but did not affect mechanical or thermal sensitivity. The activation of the estrogen receptor-β/protein kinase A or G protein-coupled estrogen receptor-1/protein kinase B pathway elicited the long-term potentiation of N-methyl-D-aspartate-mediated excitatory postsynaptic currents. CONCLUSIONS These findings indicate that estrogen receptor-β and G protein-coupled estrogen receptor-1 but not estrogen receptor-α in the rostral anterior cingulate cortex contribute to pain-related aversion by modulating N-methyl-D-aspartate receptor-mediated excitatory synaptic transmission.
Collapse
Affiliation(s)
- Kai-Kai Zang
- From the State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China (K.-K.Z., L.-Q.C., Y.Y., Q.-L.C., Y.-L.T., S.-S.L., H.C., Y.-Q.Z.) the Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China (X.X.) the First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China (L.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rapid Effects of Oestrogen on Intracellular Ca 2+ in the Uterine Junctional Myometrium of Patients With and Without Adenomyosis in Different Phases of the Menstrual Cycle. Reprod Sci 2020; 27:1992-2001. [PMID: 32542538 DOI: 10.1007/s43032-020-00218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
We investigated the role of oestrogen receptor 1 (ESR1) in regulating the [Ca2+]i concentration in the junctional zone (JZ) and its effect on adenomyosis. JZ smooth muscle cells (JZSMCs) were isolated from 17 control and 24 adenomyotic uteri, and membrane proteins were extracted from the cells. In the control group, the levels of membrane ESR1 and [Ca2+]i in the proliferative phase were significantly greater than they were in the secretory phase. While no difference was detected between the two phases, ESR1 and [Ca2+]i levels in the adenomyosis group were significantly higher in the proliferative and secretory phases than they were in the control groups. Oestradiol induced a rapid increase in [Ca2+]i in the JZSMCs of both groups. When pretreated with the ESR1 antagonist ICI 182,780, the increase in [Ca2+]i was clearly reduced in both groups compared with the control, but the differences were not significant. Filtered E-6-BSA also induced [Ca2+]i, and its actions were similar to those of oestrogen. Removal of extracellular Ca2+ did not alter the effect of oestradiol, but the phospholipase C inhibitor U73122 (10 μM) and 2-aminoethoxydiphenyl borate (5 μM) significantly reduced the oestradiol-induced [Ca2+]i flux. Oestradiol was unable to induce a [Ca2+]i flux in thapsigargin-depleted cells; this result indicated that oestradiol mediates the [Ca2+]i flux in JZSMCs through ESR1, which activates the phospholipase C pathway. ESR1 levels were assessed by Western blotting. Changes in the [Ca2+]i concentration induced by oestrogen stimulation were analysed by immunofluorescence. The ΔFCa2+ was calculated as the difference between baseline and peak fluorescence response to stimulation. We found that the abnormal intracellular [Ca2+]i response to oestrogen could account for aberrant JZ peristalsis.
Collapse
|
15
|
Estrogenic biological activity and underlying molecular mechanisms of green tea constituents. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Tozzi A, Durante V, Manca P, Di Mauro M, Blasi J, Grassi S, Calabresi P, Kawato S, Pettorossi VE. Bidirectional Synaptic Plasticity Is Driven by Sex Neurosteroids Targeting Estrogen and Androgen Receptors in Hippocampal CA1 Pyramidal Neurons. Front Cell Neurosci 2019; 13:534. [PMID: 31866827 PMCID: PMC6904272 DOI: 10.3389/fncel.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERβ (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Valentina Durante
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Paolo Manca
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Michela Di Mauro
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Juan Blasi
- Department de Patologia i Terapèutica Experimental, Facultat de Medicina, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Silvarosa Grassi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Department of Medicine, Section of Neurological Clinic, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Suguru Kawato
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Vito Enrico Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW, Vadlamudi RK. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv 2019; 1:vdz042. [PMID: 32309805 PMCID: PMC7147719 DOI: 10.1093/noajnl/vdz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. Results Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/β-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of β-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. Conclusions PELP1 expression is upregulated in GBM and PELP1 signaling via β-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
18
|
Skibinska I, Andrusiewicz M, Soin M, Jendraszak M, Urbaniak P, Jedrzejczak P, Kotwicka M. Increased expression of PELP1 in human sperm is correlated with decreased semen quality. Asian J Androl 2019; 20:425-431. [PMID: 29676290 PMCID: PMC6116689 DOI: 10.4103/aja.aja_11_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein involved in both genomic and nongenomic estrogen signal transduction pathways. To date, the role of PELP1 protein has yet to be characterized in human sperm and has not been associated with sperm parameters. To confirm the presence of PELP1 in human sperm, fresh semen samples were obtained from 178 donors. The study was designed to establish both mRNA and protein presence, and protein cellular localization. Additionally, the number of PELP1-positive spermatozoa was analyzed in men with normal and abnormal semen parameters. Sperm parameters were assessed according to the World Health Organization (WHO) 2010 standards. The presence of PELP1 in spermatozoa was investigated using four precise, independent techniques. The qualitative presence of transcripts and protein was assessed using reverse transcription-polymerase chain reaction (RT-PCR) and western blot protocols, respectively. The cellular localization of PELP1 was investigated by immunocytochemistry. Quantitative analysis of PELP1-positive cells was done by flow cytometry. PELP1 mRNA and protein was confirmed in spermatozoa. Immunocytochemical analysis identified the presence of PELP1 in the midpieces of human sperm irrespective of sperm parameters. Becton Dickinson fluorescence-activated cell sorting (FACSCalibur™) analysis revealed a significantly lower number of PELP1-positive cells in males with normal semen parameters versus abnormal samples (42.78% ± 11.77% vs 61.05% ± 21.70%, respectively; P = 0.014). The assessment of PELP1 may be a time-saving method used to obtain information about sperm quality. The results of our study suggest that PEPL1 may be utilized as an indicator of sperm quality; thereby, PELP1 may be an additional biomarker useful in the evaluation of male infertility.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Michal Soin
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, Poznan 60-535, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| |
Collapse
|
19
|
Wright DM, Small KM, Nag S, Mokha SS. Activation of Membrane Estrogen Receptors Attenuates NOP-Mediated Tactile Antihypersensitivity in a Rodent Model of Neuropathic Pain. Brain Sci 2019; 9:brainsci9060147. [PMID: 31234278 PMCID: PMC6628583 DOI: 10.3390/brainsci9060147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Women manifest a higher prevalence of several chronic pain disorders compared to men. We demonstrated earlier that estrogen rapidly attenuates nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP)-mediated thermal antinociception through the activation of membrane estrogen receptors (mERs). However, the effect of mER activation on NOP-mediated attenuation of tactile hypersensitivity in a neuropathic model of pain and the underlying mechanisms remain unknown. Following spared nerve injury (SNI), male and ovariectomized (OVX) female rats were intrathecally (i.t.) injected with a selective mER agonist and nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for NOP, and their effects on paw withdrawal thresholds (PWTs) were tested. In addition, spinal cord tissue was used to measure changes in phosphorylated extracellular signal regulated kinase (ERK), protein kinase A (PKA), protein kinase C (PKC), and protein kinase B (Akt) levels. SNI significantly reduced PWTs in males and OVX females, indicating tactile hypersensitivity. N/OFQ restored PWTs, indicating an antihypersensitive effect. Selective mER activation attenuated the effect of N/OFQ in an antagonist-reversible manner. SNI led to a robust increase in the phosphorylation of ERK, PKA, PKC, and Akt. However, mER activation did not further affect it. Thus, we conclude that activation of mERs rapidly abolishes NOP-mediated tactile antihypersensitivity following SNI via an ERK-, PKA-, PKC-, and Akt-independent mechanism.
Collapse
Affiliation(s)
- Danyeal M Wright
- Department of Biochemistry, Cancel Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Keri M Small
- Department of Biochemistry, Cancel Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Subodh Nag
- Department of Biochemistry, Cancel Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| | - Sukhbir S Mokha
- Department of Biochemistry, Cancel Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
20
|
G protein-coupled estrogen receptor 1 negatively regulates the proliferation of mouse-derived neural stem/progenitor cells via extracellular signal-regulated kinase pathway. Brain Res 2019; 1714:158-165. [PMID: 30797747 DOI: 10.1016/j.brainres.2019.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) has been reported to play a wide range of function in the central nervous system (CNS). However, whether GPER1 is expressed by neural stem/progenitor cells (NSPCs) and its role has not been established. Here, we found the expression of GPER1 in mouse-derived NSPCs via western blot and immunofluorescent staining. Moreover, we revealed that specific activation of GPER1 by the agonist G1 decreased the proliferation of NSPCs in a dose-dependent manner. The neurosphere formation assay and Ki67 staining further demonstrated that activation of GPER1 inhibited the proliferation of NSPCs. Additionally, the inhibitory effect of G1 on the proliferation of NSPCs could be blocked by the specific GPER1 antagonist G15. Intriguingly, ERK pathway was involved in the negative effect of GPER1 on the proliferation of NSPCs, because the phosphorylation level of ERK in NSPCs was remarkably decreased during G1 treatment. However, the antagonist G15 reversed the down-regulated level of p-ERK. Knock-down GPER1 also reversed the inhibitory effect of G1 on NSPCs proliferation. Together, our results provide the first evidence that GPER1 is expressed by NSPCs and its activation negatively modulates the proliferation of NSPCs, highlighting the importance of GPER1 in regulating NSPC behaviors.
Collapse
|
21
|
Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci 2019; 39:2792-2809. [PMID: 30728170 PMCID: PMC6462452 DOI: 10.1523/jneurosci.1970-18.2019] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/27/2023] Open
Abstract
17β-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70–80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro. Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain. SIGNIFICANCE STATEMENT The steroid hormone 17β-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.
Collapse
|
22
|
Zafer D, Aycan N, Ozaydin B, Kemanli P, Ferrazzano P, Levine JE, Cengiz P. Sex differences in Hippocampal Memory and Learning following Neonatal Brain Injury: Is There a Role for Estrogen Receptor-α? Neuroendocrinology 2019; 109:249-256. [PMID: 30884486 PMCID: PMC6893032 DOI: 10.1159/000499661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/17/2019] [Indexed: 01/11/2023]
Abstract
Neonatal encephalopathy due to hypoxia-ischemia (HI) leads to severe, life-long morbidities in thousands of neonates born in the USA and worldwide each year. Varying capacities of long-term episodic memory, verbal working memory, and learning can present without cerebral palsy and have been associated with the severity of neonatal encephalopathy sustained at birth. Among children who sustain a moderate degree of HI at birth, girls have larger hippocampal volumes compared to boys. Clinical studies indicate that female neonatal brains are more resistant to the effects of neonatal HI, resulting in better long-term cognitive outcomes compared to males with comparable brain injury. Our most recent mechanistic studies have addressed the origins and cellular basis of sex differences in hippocampal neuroprotection following neonatal HI-related brain injury and implicate estrogen receptor-α (ERα) in the neurotrophin receptor-mediated hippocampal neuroprotection in female mice. This review summarizes the recent findings on ERα-dependent, neurotrophin-mediated hippocampal neuroprotection and weighs the evidence that this mechanism plays an important role in preservation of long-term memory and learning following HI in females.
Collapse
Affiliation(s)
- Dila Zafer
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Nur Aycan
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Burak Ozaydin
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Pinar Kemanli
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Peter Ferrazzano
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, Wisconsin, USA,
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA,
| |
Collapse
|
23
|
Kow LM, Pfaff DW. Can distinctly different rapid estrogen actions share a common mechanistic step? Horm Behav 2018; 104:156-164. [PMID: 29476777 DOI: 10.1016/j.yhbeh.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This paper reviews early evidence for the existence of rapid, non-genomic effects of estrogens on neurons, and, further, proposes that these rapid effects are often synergistic with later, genomic effects. Finally, suggestions about potential molecular mechanisms underlying the rapid effects of estrogens are offered. A mechanistic step we propose to be common among rapid estrogenic actions includes membrane ER's binding to histamine, and NMDA receptors and subsequent dimerization, and clustering (respectively) in a manner that enhances histamine and NMDA actions.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
24
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
25
|
Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, Wandosell FG. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Front Neurosci 2018; 12:60. [PMID: 29497356 PMCID: PMC5818460 DOI: 10.3389/fnins.2018.00060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
Intense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia.
Collapse
Affiliation(s)
- Maria J Perez-Alvarez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mario Villa Gonzalez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
26
|
Somayaji MR, Przekwas AJ, Gupta RK. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr Neuropharmacol 2018; 16:484-504. [PMID: 28847295 PMCID: PMC6018188 DOI: 10.2174/1570159x15666170828165711] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for 'multi-target manipulation' of the secondary injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a given time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary injury biomechanics, secondary injury mechanobiology/neurobiology, physiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, to optimize pharmacological COMT protocols and to improve treatment outcomes.
Collapse
Affiliation(s)
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
27
|
Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats. Brain Struct Funct 2017; 223:837-850. [PMID: 28942480 DOI: 10.1007/s00429-017-1514-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.
Collapse
|
28
|
Estrogen Receptor β Mediated Neuroprotective Efficacy of Cicer microphyllum Seed Extract in Global Hypoxia. Neurochem Res 2017; 42:3474-3489. [DOI: 10.1007/s11064-017-2395-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
|
29
|
Yang X, Guo Y, He J, Zhang F, Sun X, Yang S, Dong H. Estrogen and estrogen receptors in the modulation of gastrointestinal epithelial secretion. Oncotarget 2017; 8:97683-97692. [PMID: 29228643 PMCID: PMC5722595 DOI: 10.18632/oncotarget.18313] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) epithelial ion transport is physiologically important in many aspects of humans, such as in maintaining fluid balance of whole body, and also plays a role in the development and progression of common GI disease. Estrogen and estrogen receptors have been shown to modulate the activity of epithelial ion secretion in GI tract. This review aims to address the current state of knowledge about the role of estrogen and estrogen receptors in modulation of GI epithelial secretion and to elucidate the underlying mechanisms. We highlight the recent findings regarding the importance of estrogen and estrogen receptors in GI epithelia protection and body fluid balance by modulation of gastrointestinal epithelial HCO3- and Cl- secretion, especially current information about the regulatory mechanisms of duodenal HCO3- secretion based on our study in this field. Since there are no reviews on this topic but only few papers to address the main issues, we hope to timely provide new perspectives for the association between estrogen and GI disease.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
30
|
Eag1 K + Channel: Endogenous Regulation and Functions in Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7371010. [PMID: 28367272 PMCID: PMC5358448 DOI: 10.1155/2017/7371010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 01/31/2017] [Indexed: 02/04/2023]
Abstract
Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.
Collapse
|
31
|
Yang JA, Stires H, Belden WJ, Roepke TA. The Arcuate Estrogen-Regulated Transcriptome: Estrogen Response Element-Dependent and -Independent Signaling of ERα in Female Mice. Endocrinology 2017; 158:612-626. [PMID: 28359086 PMCID: PMC5460777 DOI: 10.1210/en.2016-1663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/29/2016] [Indexed: 01/14/2023]
Abstract
To influence energy homeostasis and reproduction, 17β-estradiol (E2) controls the arcuate nucleus (ARC) through multiple receptor-mediated mechanisms, but primarily via estrogen receptor (ER) α, which signals through both estrogen response element (ERE)-dependent and -independent mechanisms. To determine ERα-mediated, ERE-dependent, and ERE-independent E2 signaling in the ARC, we examined the differential regulation of the mouse arcuate transcriptome by E2 using three mice genotypes: (1) wild-type, (2) ERα knock-in/knockout (ERE-independent mechanisms), and (3) total ERα knockout (ERα-independent mechanisms). Females were ovariectomized and injected with oil or E2, and RNA sequencing on the ARC was used to identify E2-regulated genes in each genotype. Our results show that E2 regulates numerous genes involved in cell signaling, cytoskeleton structure, inflammation, neurotransmission, neuropeptide production, and transcription. Furthermore, ERE-independent signaling regulates ARC genes expressed in kisspeptin neurons and transcription factors that control the hypothalamic/pituitary/gonadal axis. Interestingly, a few genes involved in mitochondrial oxidative respiration were regulated by E2 through ERα-independent signaling. A comparison within oil- and E2-treated females across the three genotypes suggests that genes involved in cell growth and proliferation, extracellular matrices, neuropeptides, receptors, and transcription are differentially expressed across the genotypes. Comparing with previously published chromatin immunoprecipitation sequencing analysis, we found that ERE-independent regulation in the ARC is mainly mediated by tethering of ERα, which is consistent with previous findings. We conclude that the mouse arcuate estrogen-regulated transcriptome is regulated by multiple receptor-mediated mechanisms to modulate the central control of energy homeostasis and reproduction, including novel E2-responsive pathways.
Collapse
Affiliation(s)
- Jennifer A Yang
- Department of Animal Sciences and Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hillary Stires
- Department of Animal Sciences and Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - William J Belden
- Department of Animal Sciences and Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Troy A Roepke
- Department of Animal Sciences and Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
32
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat. Eur J Neurosci 2017; 45:499-509. [DOI: 10.1111/ejn.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia – I.R.C.C.S. Rome Italy
- Dipartimento di Medicina Clinica Neurologica Università di Perugia Perugia Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale Sezione di Fisiologia e Biochimica Università di Perugia Via Gambuli 06156 Perugia Italy
| |
Collapse
|
33
|
Khan MM. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 2016; 30:589-601. [PMID: 27193386 DOI: 10.1007/s40263-016-0343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raloxifene is a selective estrogen receptor modulator that has been approved for treating osteoporosis and breast cancer in high-risk postmenopausal women. However, recent evidence suggests that raloxifene adjunct therapy improves cognition and reduces symptom severity in men and women with schizophrenia. In animal models, raloxifene increases forebrain neurogenesis and enhances working memory and synaptic plasticity. It may consequently repair the neuronal and synaptic connectivity that is disrupted in schizophrenia. It also reduces oxidative stress and neuroinflammation, which are potent etiological factors in the neuropathology of schizophrenia. Furthermore, in postmenopausal women, raloxifene reduces the risks for atherosclerosis, diabetes mellitus, and weight gain, which are serious adverse effects associated with long-term antipsychotic treatment in schizophrenia; therefore, it may improve the safety and efficacy of antipsychotic drugs. In this review, recent insights into the neurocognitive, neuroprotective, and cardiometabolic effects of raloxifene in relation to therapeutic outcomes in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, Jamal Abdul Nassre Street, P.O. Box 16418, Az-Zawiyah, Libya.
| |
Collapse
|
34
|
Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol Neurobiol 2016; 54:4113-4126. [PMID: 27324789 PMCID: PMC5509832 DOI: 10.1007/s12035-016-9979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.
Collapse
Affiliation(s)
- Yu-Jie Lai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
35
|
PELP1: Structure, biological function and clinical significance. Gene 2016; 585:128-134. [PMID: 26997260 DOI: 10.1016/j.gene.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1.
Collapse
|
36
|
Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson's disease. Neurosci Biobehav Rev 2015; 67:79-88. [PMID: 26708712 DOI: 10.1016/j.neubiorev.2015.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
Abstract
The existence of sex differences in Parkinson's disease (PD) incidence is well documented with greater prevalence and earlier age at onset in men than in women. These reported sex differences could be related to estrogen exposure. In PD animal models, estrogen is well documented to be neuroprotective against dopaminergic neuron loss induced by neurotoxins. Using the 1-methyl 4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) mouse model, we showed that several compounds are neuroprotective on dopaminergic neurons including estrogen, the selective estrogen receptor modulator raloxifene, progesterone, dehydroepiandrosterone, the estrogen receptor alpha (ERα) agonist PPT as well as the G protein-coupled membrane estrogen receptor (GPER1) specific agonist G1. Accumulating evidence suggests that GPER1 could be implicated in the neuroprotective effects of estrogen, raloxifene and G1 in collaboration with ERα. We recently reported that the 5α-reductase inhibitor Dutasteride is also neuroprotective and could bring an alternative to estrogens for therapy in male. Additional studies are needed to optimize therapies with these gonadal drugs into safe personalized treatments according to sex for treatment of PD.
Collapse
|
37
|
Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A 2015; 112:E6673-82. [PMID: 26627258 DOI: 10.1073/pnas.1516729112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.
Collapse
|
38
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Front Cell Neurosci 2015; 9:376. [PMID: 26483631 PMCID: PMC4591489 DOI: 10.3389/fncel.2015.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022] Open
Abstract
Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.
Collapse
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy ; Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy ; Dipartimento di Medicina, Clinica Neurologica, Università di Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| |
Collapse
|
39
|
Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 2015; 28:279-87. [PMID: 26112336 DOI: 10.1016/j.intimp.2015.05.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
The present study was designed to explore whether administration of estrogen affects brain cytokine levels in TBI. We also sought determine which one of type of classical estrogen receptors (ERs) is involved. Ovariectomized female rats were divided in to eight groups. Estrogen or vehicle was administered following TBI (E2 and oil groups). Antagonist of ER(ICI 182, 780) or vehicle was also administered following TBI (ICI and DMSO groups). The ICI or vehicle was administered either before induction of TBI and administration of estrogen (ICI+E2 and DMSO+E2 groups). TBI was induced by Marmarou's method. In addition to brain water content, the levels of brain proinflammatory and anti-inflammatory cytokines were measured 24 hours post- TBI. Present results demonstrated that, estrogen reduced TBI- induced brain edema. The antiedema effect of estrogen was attenuated by ICI. The brain measures of IL-1β, IL-6 and TNF-α in TBI were also reduced by estrogen. The anti-inflammatory effect of estrogen was attenuated by ICI. The inhibition level of estrogen by ICI was 53.2%, 12.09% and 48.45% for IL-1β, IL-6 and TNF-α, respectively. Estrogen also elevated IL-10 in TBI. ICI inversely controlled the effect of estrogen on IL-10, by 33.84%. This effect was not observed once ICI was used alone. The estrogen administration following TBI probably results in proinflammatory cytokines reduction, and inversely enhancement of anti-inflammatory cytokines. In our study, the neuroprotective effect of estrogen is proposed to be mediated by both ERα and ERα, and accordingly the inhibition of neuroprotective effect of estrogen by ICI.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dehghan
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Dept. of Biochemistry, Medical School of Afzalipour, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
40
|
Bourque M, Morissette M, Di Paolo T. Neuroprotection in Parkinsonian-treated mice via estrogen receptor α activation requires G protein-coupled estrogen receptor 1. Neuropharmacology 2015; 95:343-52. [DOI: 10.1016/j.neuropharm.2015.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
41
|
Male-Specific Alleviation of Iron-Induced Striatal Injury by Inhibition of Autophagy. PLoS One 2015; 10:e0131224. [PMID: 26147959 PMCID: PMC4492841 DOI: 10.1371/journal.pone.0131224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/30/2015] [Indexed: 02/03/2023] Open
Abstract
Men exhibit a worse survival rate than premenopausal women after intracerebral hemorrhage (ICH), however, no sex-specific management has been concerned. In a rat model involving infusion of ferrous citrate (FC) that simulates iron accumulation after hemorrhage, a higher degree of autophagy associated with higher injury severity was observed in striatum of males than in females. Since the imbalance between the levels of autophagy and energy demand may lead to cell death, we proposed that FC-induced autophagy is detrimental in a male specific manner and autophagy modulation affects injury severity in a sex-dependent manner. Rapamycin, an autophagy inducer, and conditional knockout gene of autophagy-related protein 7 (Atg7) in dopamine receptor D2 (DRD2) neurons were used to test our hypothesis using a mouse model with striatal FC infusion. The result showed that the levels of autophagic cell death and injury severity were higher in male than in female mice. Pre-treatment of FC-infused females with rapamycin increased the FC-induced behavioral deficit and DRD2 neuron death. However, DRD2 neuron-specific knockout of Atg7 decreased FC-induced injury severity and the number of TUNEL(+) DRD2 neurons in males. These results suggest that autophagy in FC-infusion males is overactive with maladaptive consequences and inhibition of autophagy decreases the severity of FC-induced striatal injury in males. These findings present prospects for male-specific therapeutic strategy that targets autophagy in patients suffering from iron overload.
Collapse
|
42
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
43
|
Tozzi A, de Iure A, Tantucci M, Durante V, Quiroga-Varela A, Giampà C, Di Mauro M, Mazzocchetti P, Costa C, Di Filippo M, Grassi S, Pettorossi VE, Calabresi P. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system. Front Cell Neurosci 2015; 9:192. [PMID: 26074768 PMCID: PMC4445326 DOI: 10.3389/fncel.2015.00192] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Michela Tantucci
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Ana Quiroga-Varela
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | | | - Michela Di Mauro
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Cinzia Costa
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Silvarosa Grassi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS Rome, Italy ; Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| |
Collapse
|
44
|
Dietrich AK, Humphreys GI, Nardulli AM. Expression of estrogen receptor α in the mouse cerebral cortex. Mol Cell Endocrinol 2015; 406:19-26. [PMID: 25700604 PMCID: PMC4773199 DOI: 10.1016/j.mce.2015.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
Abstract
Although estrogen receptor alpha (ERα) and 17β-estradiol play critical roles in protecting the cerebral cortex from ischemia-induced damage, there has been some controversy about the expression of ERα in this region of the brain. We have examined ERα mRNA and protein levels in the cerebral cortices of female mice at postnatal days 5 and 17 and at 4, 13, and 18 months of age. We found that although ERα transcript levels declined from postnatal day 5 through 18 months of age, ERα protein levels remained stable. Importantly, expression of the E2-regulated progesterone receptor gene was sustained in younger and in older females suggesting that age-related changes in estrogen responsiveness in the cerebral cortex are not due to the absence of ERα protein.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gwendolyn I Humphreys
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
45
|
Xu X, Yang Y, Wang R, Wang Y, Ruan Q, Lu Y. Perinatal exposure to di-(2-ethylhexyl) phthalate affects anxiety- and depression-like behaviors in mice. CHEMOSPHERE 2015; 124:22-31. [PMID: 25441928 DOI: 10.1016/j.chemosphere.2014.10.056] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 05/22/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an environmental endocrine disrupter. The present study investigated the effect of DEHP on emotional behavior of mice following perinatal exposure (10, 50, and 200 mg kg(-1) d(-1)) from gestation day 7 through postnatal day 21. The results showed that, in pubertal males (6-w-old), DEHP decreased the time spent in the open arms and the number of entries into them in elevated plus maze and decreased the time in the mirrored chamber and in the light-box; in pubertal females, DEHP decreased the time spent in the open arms and the number of entries into them, suggesting that DEHP exposure made a anxiogenic effect in pubertal offspring regardless of sex. While DEHP effect on anxiety of adult (12-w-old) displayed sex differences, with decreased time spent in the open arms in the adult females. Perinatal exposure to DEPH significantly extended the time of immobility in forced swim task of pubertal offspring and adulthood regardless of sex. Furthermore, DEHP down-regulated the expressions of androgen receptor (AR) in pubertal male hippocampus and of estrogen receptor (ER) β in pubertal female and adult hippocampus of both sexes and inhibited the phosphorylation of ERK1/2 of hippocampus in pubertal mice and adult males. These results suggest that exposure to DEHP early in life affected the anxiety- and depressive-like behaviors of pubertal offspring and even adult. The disruption of gonadal hormones' modulation of behaviors due to down-regulation of AR or ERβ in the hippocampus may be associated with the aggravated anxiety- and depression-like status induced by DEHP.
Collapse
Affiliation(s)
- Xiaohong Xu
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China.
| | - Yanling Yang
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| | - Ran Wang
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| | - Yu Wang
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| | - Qin Ruan
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| | - Yang Lu
- Institute of Ecology, Chemistry and Life Sciences College, Zhejiang Normal University, PR China
| |
Collapse
|
46
|
Nuclear receptors in transgenerational epigenetic inheritance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:34-43. [PMID: 25792088 DOI: 10.1016/j.pbiomolbio.2015.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
Nuclear Receptors are ligand-activated transcription factors that translate information about the lipid environment into specific genetic programs, a property that renders them good candidates to be mediators of rapid adaptation changes of a species. Lipid-based morphogens, endocrine hormones, fatty acids and xenobiotics might act through this class of transcription factors making them regulators able to fine-tune physiological processes. Here we review the basic concepts and current knowledge on the process whereby small molecules act through nuclear receptors and contribute to transgenerational changes. Several molecules shown to cause transgenerational changes like phthalates, BPA, nicotine, tributylin bind and activate nuclear receptors like ERs, androgen receptors, glucocorticoid receptors or PPARγ. A specific subset of observations involving nuclear receptors has focused on the effects of environmental stress or maternal behaviour on the development of transgenerational traits. While these effects do not involve environmental ligands, they change the expression levels of Estrogen and glucocorticoid receptors of the second generation and consequently initiate an altered genetic program in the second generation. In this review we summarize the available literature about the role of nuclear receptors in transgenerational inheritance.
Collapse
|
47
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
48
|
Humphreys GI, Ziegler YS, Nardulli AM. 17β-estradiol modulates gene expression in the female mouse cerebral cortex. PLoS One 2014; 9:e111975. [PMID: 25372139 PMCID: PMC4221195 DOI: 10.1371/journal.pone.0111975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023] Open
Abstract
17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment.
Collapse
Affiliation(s)
- Gwendolyn I. Humphreys
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yvonne S. Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
50
|
Henderson VW. Alzheimer's disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol 2014; 142:99-106. [PMID: 23727128 PMCID: PMC3830600 DOI: 10.1016/j.jsbmb.2013.05.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/08/2013] [Accepted: 05/18/2013] [Indexed: 12/27/2022]
Abstract
Hormonal changes associated with the menopausal transition and postmenopause have the potential to influence processes linked to Alzheimer's disease symptoms and pathogenesis, but effects of menopause on Alzheimer risk can be addressed only indirectly. Nine randomized clinical trials of estrogen-containing hormone therapy in Alzheimer's disease patients were identified by a systematic literature search. Findings suggest that hormone therapy does not improve cognitive symptoms of women with Alzheimer's disease. No clinical trials of hormone therapy address Alzheimer prevention, but one clinical trial provides moderate evidence that continuous, combined estrogen plus progestogen initiated at age 65 years or older increases the risk of dementia. The timing, or critical window, hypothesis suggests that hormone therapy initiated at a younger age in closer temporal proximity to menopause may reduce the risk of Alzheimer's disease. This hypothesis is supported by observational research but is not addressed by clinical trial data. Unrecognized confounding is of concern in interpreting observational results, and research that helps resolve this issue will have important public health implications. Well-designed cohort studies, convergent evidence from appropriate laboratory models, and long-term clinical trials using surrogate biomarkers of brain function and neural pathology could provide relevant answers. Other estrogenic compounds are of theoretical interest with respect to Alzheimer treatment and risk. Effects of selective estrogen receptor modulators such as raloxifene may differ from those of estrogens; potential effects of phytoestrogens are not well studied. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Victor W Henderson
- Department of Health Research & Policy (Epidemiology), Stanford University, Stanford, CA, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|