1
|
Ding X, Xie S, Zhang W, Zhu Y, Xu D, Xian S, Sun H, Guo X, Li Y, Lu J, Tong X, Huang R, Ji S, Xia Z. Current application of tissue-engineered dermal scaffolds mimicking the extracellular matrix microenvironment in wound healing. Regen Ther 2025; 28:371-382. [PMID: 39896445 PMCID: PMC11786805 DOI: 10.1016/j.reth.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
With the continuous advancement of materials science, cell biology, and biotechnology, tissue engineering has introduced novel solutions to traditional wound healing approaches, particularly demonstrating significant potential in addressing complex or non-healing wounds. One of the key technologies in this field, dermal scaffolds, serve as wound coverage materials that mimic the structural framework of the dermis. They primarily assume the function of extracellular matrix, providing space for cell attachment, migration, and proliferation, thus supporting cellular growth and regulating multiple biological processes in healing. Tissue engineering utilizes combinations of natural or synthetic scaffolds, seeded cells, or growth factors to induce distinct effects in angiogenesis, extracellular matrix deposition, and functional recovery. Therefore, various bioengineered dermal scaffolds hold significant potential for clinical translation in wound healing. This review outlines various extracellular matrix molecules utilized in the development of dermal scaffolds, emphasizes recent progress in cell- and growth factor-modified scaffolds, and discusses the challenges and future perspectives in this evolving field.
Collapse
Affiliation(s)
| | | | | | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
2
|
Choi C, Yun E, Song M, Kim J, Son JS, Cha C. Multiscale Control of Nanofiber-Composite Hydrogel for Complex 3D Cell Culture by Extracellular Matrix Composition and Nanofiber Alignment. Biomater Res 2024; 28:0032. [PMID: 38812742 PMCID: PMC11136538 DOI: 10.34133/bmr.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In order to manipulate the complex behavior of cells in a 3-dimensional (3D) environment, it is important to provide the microenvironment that can accurately portray the complexity of highly anisotropic tissue structures. However, it is technically challenging to generate a complex microenvironment using conventional biomaterials that are mostly isotropic with limited bioactivity. In this study, the gelatin-hyaluronic acid hydrogel incorporated with aqueous-dispersible, short nanofibers capable of in situ alignment is developed to emulate the native heterogeneous extracellular matrix consisting of fibrous and non-fibrous components. The gelatin nanofibers containing magnetic nanoparticles, which could be aligned by external magnetic field, are dispersed and embedded in gelatin-hyaluronic acid hydrogel encapsulated with dermal fibroblasts. The aligned nanofibers via magnetic field could be safely integrated into the hydrogel, and the process could be repeated to generate larger 3D hydrogels with variable nanofiber alignments. The aligned nanofibers in the hydrogel can more effectively guide the anisotropic morphology (e.g., elongation) of dermal fibroblasts than random nanofibers, whereas myofibroblastic differentiation is more prominent in random nanofibers. At a given nanofiber configuration, the hydrogel composition having intermediate hyaluronic acid content induces myofibroblastic differentiation. These results indicate that modulating the degree of nanofiber alignment and the hyaluronic acid content of the hydrogel are crucial factors that critically influence the fibroblast phenotypes. The nanofiber-composite hydrogel capable of directional nanofiber alignment and tunable material composition can effectively induce a wide array of phenotypic plasticity in 3D cell culture.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhye Yun
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minju Song
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiyun Kim
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering,
Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Batsukh S, Oh S, Lee JM, Joo JHJ, Son KH, Byun K. Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin. Mar Drugs 2024; 22:223. [PMID: 38786614 PMCID: PMC11123375 DOI: 10.3390/md22050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Min Lee
- Doctors Dermatologic Clinic, Gangdong Godeok, Seoul 05269, Republic of Korea
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Gheytasvand A, Bagheri H, Pourbeyranvand S, Salehnia M. Enhancement of Wound Healing and Angiogenesis Using Mouse Embryo Fibroblasts Loaded in Decellularized Skin Scaffold. IRANIAN BIOMEDICAL JOURNAL 2024; 28:90-101. [PMID: 38770915 PMCID: PMC11186609 DOI: 10.61186/ibj.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Background Synthetic and natural polymer scaffolds can be used to design wound dressing for repairing the damaged skin tissue. This study investigated acute wound healing process using a decellularized skin scaffold and mouse embryo fibroblast (MEF). Methods Mouse skin fragments were decellularized and evaluated by DNA content, toxicity, H&E staining, Raman confocal microscopy, Masson’s trichrome staining, SEM, and biodegradation assays. The fragments were recellularized by the MEFs, and cell attachment and penetration were studied. De- and decellularized scaffolds were used wound dressings in mouse acute wound models as two experimental groups. Using morphological and immunohistochemical assessments, wound healing was evaluated and compared among the experimental and control groups. Results DNA content of the decellularized tissue significantly reduced compared to the native control group (7% vs. 100%; p < 0.05). extracellular matrix components, e.g. collagen types I, III, and IV, elastin, and glycosaminoglycan, were well preserved in the decellularized group. The porosity and fiber arrangement in the stroma had a structure similar to normal skin tissue. A significant reduction in healing time was observed in the group treated with a decellularized scaffold. A thicker epidermis layer was observed in the recovered tissue in both experimental groups compared to the control group. Immunostaining showed a positive reaction for CD31 as an endothelial marker in both experimental groups, confirming new vascularization in these groups. Conclusion Using MEFs with decellularized skin as a wound dressing increases the rate of wound healing and also the formation of new capillaries. This system could be beneficial for clinical applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Armaghan Gheytasvand
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Hamed Bagheri
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Shahram Pourbeyranvand
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Najafian S, Eskandani M, Derakhshankhah H, Jaymand M, Massoumi B. Extracellular matrix-mimetic electrically conductive nanofibrous scaffolds based on polyaniline-grafted tragacanth gum and poly(vinyl alcohol) for skin tissue engineering application. Int J Biol Macromol 2023; 249:126041. [PMID: 37516227 DOI: 10.1016/j.ijbiomac.2023.126041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
As pivotal role of scaffold in tissue engineering (TE), the aim of present study was to design and development of extracellular matrix (ECM)-mimetic electrically conductive nanofibrous scaffolds composed of polyaniline-grafted tragacanth gum (TG-g-PANI) and poly(vinyl alcohol) (PVA) with different PANI content for skin tissue engineering (STE) application. The fabricated scaffolds were preliminary evaluated in terms of some physicochemical and biological properties. Cytocompatibility and cells proliferation properties of the scaffolds were examined with the well-known MTT assay, and it was found that the developed scaffolds have proper cytocompatibilities and can enhances the mouse fibroblast L929 cells adhesion as well as proliferation, which confirm their potential for STE applications. Hemocompatibility assay revealed that the hemolysis rate of the fabricated scaffolds were <2 % even at a relatively high concentration (200 μgmL-1) of samples, therefore, these scaffolds can be considered as safe. Human serum albumin (HSA) protein adsorption capacities of the fabricated scaffolds were quantified as 42 and 49 μgmg-1 that represent suitable values for a successful TE. Overall, the fabricated scaffold with 20 wt% of TG-g-PANI showed higher potential in both physicochemical and biological features than scaffold with 30 wt% of mentioned copolymer for STE application.
Collapse
Affiliation(s)
- Shila Najafian
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | |
Collapse
|
6
|
Ly TD, Sambale M, Klösener L, Traut P, Fischer B, Hendig D, Kuhn J, Knabbe C, Faust-Hinse I. Understanding of arthrofibrosis: New explorative insights into extracellular matrix remodeling of synovial fibroblasts. PLoS One 2023; 18:e0286334. [PMID: 37235555 DOI: 10.1371/journal.pone.0286334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty is a fibroproliferative joint disorder marked by dysregulated biosynthesis of extracellular matrix proteins, such as collagens and proteoglycans. The underlying cellular events remain incompletely understood. Myofibroblasts are highly contractile matrix-producing cells characterized by increased alpha-smooth muscle actin expression and xylosyltransferase-I (XT-I) secretion. Human XT-I has been identified as a key mediator of arthrofibrotic remodeling. Primary fibroblasts from patients with arthrofibrosis provide a useful in vitro model to identify and characterize disease regulators and potential therapeutic targets. This study aims at characterizing primary synovial fibroblasts from arthrofibrotic tissues (AFib) regarding their molecular and cellular phenotype by utilizing myofibroblast cell culture models. Compared to synovial control fibroblasts (CF), AFib are marked by enhanced cell contractility and a higher XT secretion rate, demonstrating an increased fibroblast-to-myofibroblast transition rate during arthrofibrosis. Histochemical assays and quantitative gene expression analysis confirmed higher collagen and proteoglycan expression and accumulation in AFib compared to CF. Furthermore, fibrosis-based gene expression profiling identified novel modifier genes in the context of arthrofibrosis remodeling. In summary, this study revealed a unique profibrotic phenotype in AFib that resembles some traits of other fibroproliferative diseases and can be used for the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Meike Sambale
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Lara Klösener
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Philipp Traut
- Orthopädische Beratung und Begutachtung, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| |
Collapse
|
7
|
The Extracellular Matrix Vitalizer RATM Increased Skin Elasticity by Modulating Mitochondrial Function in Aged Animal Skin. Antioxidants (Basel) 2023; 12:antiox12030694. [PMID: 36978943 PMCID: PMC10044720 DOI: 10.3390/antiox12030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Oxidative stress-induced cellular senescence and mitochondrial dysfunction result in skin aging by increasing ECM levels-degrading proteins such as MMPs, and decreasing collagen synthesis. MMPs also destroy the basement membrane, which is involved in skin elasticity. The extracellular matrix vitalizer RATM (RA) contains various antioxidants and sodium hyaluronate, which lead to skin rejuvenation. We evaluated whether RA decreases oxidative stress and mitochondrial dysfunction, eventually increasing skin elasticity in aged animals. Oxidative stress was assessed by assaying NADPH oxidase activity, which is involved in ROS generation, and the expression of SOD, which removes ROS. NADPH oxidase activity was increased in aged skin and decreased by RA injection. SOD expression was decreased in aged skin and increased by RA injection. Damage to mitochondrial DNA and mitochondrial fusion markers was increased in aged skin and decreased by RA. The levels of mitochondrial biogenesis markers and fission markers were decreased in aged skin and increased by RA. The levels of NF-κB/AP-1 and MMP1/2/3/9 were increased in aged skin and decreased by RA. The levels of TGF-β, CTGF, and collagen I/III were decreased in aged skin and increased by RA. The expression of laminin and nidogen and basement membrane density were decreased in aged skin and increased by RA. RA increased collagen fiber accumulation and elasticity in aged skin. In conclusion, RA improves skin rejuvenation by decreasing oxidative stress and mitochondrial dysfunction in aged skin.
Collapse
|
8
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
9
|
Wood FM. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J Burn Care Res 2023; 44:S42-S47. [PMID: 36567469 DOI: 10.1093/jbcr/irac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue engineering solutions for skin have been developed over the last few decades with a focus initially on a two-layered structure with epithelial and dermal repair. An essential element of skin restoration is a source of cells capable of differentiating into the appropriate phenotype. The need to repair areas of skin when traditional techniques were not adequate addressed led to cell based therapies being developed initially as a laboratory-based tissue expansion opportunity, both as sheets of cultured epithelial autograft and in composite laboratory-based skin substitutes. The time to availability of the cell-based therapies has been solved in a number of ways, from using allograft cell-based solutions to the use of point of care skin cell harvesting for immediate clinical use. More recently pluripotential cells have been explored providing a readily available source of cells and cells which can express the broad range of phenotypes seen in the mature skin construct. The lessons learnt from the use of cell based techniques has driven the exploration of the use of 3D printing technology, with controlled accurate placement of the cells within a specific printed construct to optimise the phenotypic expression and tissue generation.
Collapse
Affiliation(s)
- Fiona M Wood
- University of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Burns Service of WA, Level 4 Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western, Australia 6150
| |
Collapse
|
10
|
Gould SJ, Foey AD, Salih VM. An organotypic oral mucosal infection model to study host-pathogen interactions. J Tissue Eng 2023; 14:20417314231197310. [PMID: 37873034 PMCID: PMC10590543 DOI: 10.1177/20417314231197310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 10/25/2023] Open
Abstract
Early in vitro oral mucosal infection models (OMMs) failed to consider the suitability of the model environment to represent the host immune response. Denture stomatitis (DS) is mediated by Candida albicans, but the role of Staphylococcus aureus remains uncertain. A collagen hydrogel-based OMM containing HaCaT and HGF cell types was developed, characterised and employed to study of tissue invasion and pro-inflammatory cytokine production in response to pathogens. Models formed a robust epithelium. Despite their inflammatory baseline, 24-h infection with C. albicans, and/or S. aureus led to tissue invasion, and significantly upregulated IL-6 and IL-8 production by OMMs when compared to the unstimulated control. No significant difference in IL-6 or IL-8 production by OMMs was observed between single and dual infections. These attributes indicate that this newly developed OMM is suitable for the study of DS and could be implemented for the wider study of oral infection.
Collapse
Affiliation(s)
- Samantha J Gould
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, Devon, UK
| | - Andrew D Foey
- School of Biomedical Health Sciences, University of Plymouth, Plymouth, Devon, UK
| | - Vehid M Salih
- Peninsula Dental School, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
11
|
Xing H, Huang Y, Kunkemoeller BH, Dahl PJ, Muraleetharan O, Malvankar NS, Murrell MP, Kyriakides TR. Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Sci Rep 2022; 12:22474. [PMID: 36577792 PMCID: PMC9797577 DOI: 10.1038/s41598-022-26337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fibroblasts are a major cell population that perform critical functions in the wound healing process. In response to injury, they proliferate and migrate into the wound space, engaging in extracellular matrix (ECM) production, remodeling, and contraction. However, there is limited knowledge of how fibroblast functions are altered in diabetes. To address this gap, several state-of-the-art microscopy techniques were employed to investigate morphology, migration, ECM production, 2D traction, 3D contraction, and cell stiffness. Analysis of cell-derived matrix (CDM) revealed that diabetic fibroblasts produce thickened and less porous ECM that hindered migration of normal fibroblasts. In addition, diabetic fibroblasts were found to lose spindle-like shape, migrate slower, generate less traction force, exert limited 3D contractility, and have increased cell stiffness. These changes were due, in part, to a decreased level of active Rac1 and a lack of co-localization between F-actin and Waskott-Aldrich syndrome protein family verprolin homologous protein 2 (WAVE2). Interestingly, deletion of thrombospondin-2 (TSP2) in diabetic fibroblasts rescued these phenotypes and restored normal levels of active Rac1 and WAVE2-F-actin co-localization. These results provide a comprehensive view of the extent of diabetic fibroblast dysfunction, highlighting the regulatory role of the TSP2-Rac1-WAVE2-actin axis, and describing a new function of TSP2 in regulating cytoskeleton organization.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Yaqing Huang
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Britta H Kunkemoeller
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | | | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Department of Physics, Yale University, New Haven, USA.,Systems Biology Institute, Yale University, New Haven, USA
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, USA. .,Department of Pathology, Yale University, New Haven, USA. .,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA.
| |
Collapse
|
12
|
Singh G, Singh S, Kumar R, Parkash C, Pruncu C, Ramakrishna S. Tissues and organ printing: An evolution of technology and materials. Proc Inst Mech Eng H 2022; 236:1695-1710. [DOI: 10.1177/09544119221125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its beginnings, three-dimensional printing (3DP) technology has been successful because of ongoing advances in operating principles, the range of materials and cost-saving measures. However, the 3DP technological progressions in the biomedical sector have majorly taken place in the last decade after the evolution of novel 3DP systems, generally categorised as bioprinters and biomaterials to provide a replacement, transplantation or regeneration of the damaged organs and tissue constructs of the human body. There is now substantial scientific literature accessible to support the benefits of digital healthcare procedures with the help of bioprinters. It is of the highest significance to know the fundamental principles of the available printers and the compatibility of biomaterials as their feedstock, notwithstanding the huge potential of bioprinting systems to manufacture organs and other human body components. This paper provides a precise and helpful reading of the different categories of bioprinters, suitable biomaterials, numerical simulations and modelling and examples of much acknowledged clinical practices. The paper will also cite the prominent issues that still have not received desired solutions. Overall, the article will be of great use for all the professionals, scholars and engineers concerned with the 3DP, bioprinting and biomaterials.
Collapse
Affiliation(s)
- Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanical Engineering Department, Chandigarh University, Punjab
| | - Raman Kumar
- Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Chander Parkash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Catalin Pruncu
- Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Correlation of the regenerative potential of dermal fibroblasts in 2D culture with the biological properties of fibroblast-derived tissue spheroids. Cell Tissue Res 2022; 390:453-464. [PMID: 36129531 DOI: 10.1007/s00441-022-03690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids' regenerative potential in vivo.
Collapse
|
14
|
Kashimoto R, Furukawa S, Yamamoto S, Kamei Y, Sakamoto J, Nonaka S, Watanabe TM, Sakamoto T, Sakamoto H, Satoh A. Lattice-patterned collagen fibers and their dynamics in axolotl skin regeneration. iScience 2022; 25:104524. [PMID: 35754731 PMCID: PMC9213773 DOI: 10.1016/j.isci.2022.104524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
The morphology of collagen-producing cells and the structure of produced collagen in the dermis have not been well-described. This lack of insights has been a serious obstacle in the evaluation of skin regeneration. We succeeded in visualizing collagen-producing cells and produced collagen using the axolotl skin, which is highly transparent. The visualized dermal collagen had a lattice-like structure. The collagen-producing fibroblasts consistently possessed the lattice-patterned filopodia along with the lattice-patterned collagen network. The dynamics of this lattice-like structure were also verified in the skin regeneration process of axolotls, and it was found that the correct lattice-like structure was not reorganized after simple skin wounding but was reorganized in the presence of nerves. These findings are not only fundamental insights in dermatology but also valuable insights into the mechanism of skin regeneration. Dermal collagen synthesized by a single cell was visualized in the axolotl skin Collagen-synthetic cells were visualized and revealed lattice-patterned filopodia Collagen pattern was deformed after simple skin wounding The lattice-patterned collagen was only restorable in the presence of nerves
Collapse
Affiliation(s)
- Rena Kashimoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Saya Furukawa
- Department of Biological Sciences, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Sakiya Yamamoto
- Department of Biological Sciences, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences, Okazaki 444-8585, Japan
| | - Joe Sakamoto
- National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences, Okazaki 444-8585, Japan
| | - Shigenori Nonaka
- National Institute for Basic Biology (NIBB), National Institutes for Natural Sciences, Okazaki 444-8585, Japan
- Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes for Natural Sciences, Okazaki 444-8585, Japan
| | - Tomonobu M. Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tatsuya Sakamoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Ushimado Marine Institute (UMI), Okayama University, Setouchi 701-4303, Japan
| | - Hirotaka Sakamoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Ushimado Marine Institute (UMI), Okayama University, Setouchi 701-4303, Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama 700-8530, Japan
- Corresponding author
| |
Collapse
|
15
|
Allam A, Yakou M, Pang L, Ernst M, Huynh J. Exploiting the STAT3 Nexus in Cancer-Associated Fibroblasts to Improve Cancer Therapy. Front Immunol 2021; 12:767939. [PMID: 34858425 PMCID: PMC8632218 DOI: 10.3389/fimmu.2021.767939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.
Collapse
Affiliation(s)
- Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Marina Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lokman Pang
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
16
|
Kawagishi-Hotta M, Hasegawa S, Inoue Y, Hasebe Y, Arima M, Iwata Y, Sugiura K, Akamatsu H. Gremlin 2 suppresses differentiation of stem/progenitor cells in the human skin. Regen Ther 2021; 18:191-201. [PMID: 34307797 PMCID: PMC8280529 DOI: 10.1016/j.reth.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The skin is comprised of various kinds of cells and has three layers, the epidermis, dermis and subcutaneous adipose tissue. Stem cells in each tissue duplicate themselves and differentiate to supply new cells that function in the tissue, and thereby maintain the tissue homeostasis. In contrast, senescent cells accumulate with age and secrete senescence-associated secretory phenotype (SASP) factors that impair surrounding cells and tissues, which lowers the capacity to maintain homeostasis in each tissue. Previously, we found Gremlin 2 (GREM2) as a novel SASP factor in the skin and reported that GREM2 suppressed the differentiation of adipose-derived stromal/stem cells. In the present study, we investigated the effects of GREM2 on stem cells in the epidermis and dermis. METHODS To examine whether GREM2 expression and the differentiation levels in the epidermis and dermis are correlated, the expressions of GREM2, stem cell markers, an epidermal differentiation marker Keratin 10 (KRT10) and a dermal differentiation marker type 3 procollagen were examined in the skin samples (n = 14) randomly chosen from the elderly where GREM2 expression level is high and the individual differences of its expression are prominent. Next, to test whether GREM2 affects the differentiation of skin stem cells, cells from two established lines (an epidermal and a dermal stem/progenitor cell model) were cultured and induced to differentiate, and recombinant GREM2 protein was added. RESULTS In the human skin, the expression levels of GREM2 varied among individuals both in the epidermis and dermis. The expression level of GREM2 was not correlated with the number of stem cells, but negatively correlated with those of both an epidermal and a dermal differentiation markers. The expression levels of epidermal differentiation markers were significantly suppressed by the addition of GREM2 in the three-dimensional (3D) epidermis generated with an epidermal stem/progenitor cell model. In addition, by differentiation induction, the expressions of dermal differentiation markers were induced in cells from a dermal stem/progenitor cell model, and the addition of GREM2 significantly suppressed the expressions of the dermal differentiation markers. CONCLUSIONS GREM2 expression level did not affect the numbers of stem cells in the epidermis and dermis but affects the differentiation and maturation levels of the tissues, and GREM2 suppressed the differentiation of stem/progenitor cells in vitro. These findings suggest that GREM2 may contribute to the age-related reduction in the capacity to maintain skin homeostasis by suppressing the differentiation of epidermal and dermal stem/progenitor cells.
Collapse
Affiliation(s)
- Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Japan
| |
Collapse
|
17
|
Aydoğdu N, Öztel ON, Karaöz E. Isolation, Culture, Cryopreservation, and Preparation of Skin-Derived Fibroblasts as a Final Cellular Product Under Good Manufacturing Practice-Compliant Conditions. Methods Mol Biol 2021; 2286:85-94. [PMID: 33349903 DOI: 10.1007/7651_2020_333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Cell-based therapies have become a popular approach in the field of regenerative medicine. Human fibroblast cells, one of the cell types widely used in clinical applications, have been used for skin regeneration and wound healing procedures. Furthermore, they are utilized for aesthetic purposes since fibroblasts lose their abilities such as collagen synthesis with age. Here, we describe detailed procedures for isolation, culture, cryopreservation, and preparation of fibroblasts derived from adult human skin as a final product under good manufacturing practice-compliant conditions.
Collapse
Affiliation(s)
- Nurullah Aydoğdu
- Liv Hospital, Center of Regenerative Medicine and Stem Cell Research, Istanbul, Turkey
| | - Olga Nehir Öztel
- Liv Hospital, Center of Regenerative Medicine and Stem Cell Research, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center of Regenerative Medicine and Stem Cell Research, Istanbul, Turkey.
- Istinye University, Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey.
- Istinye University, Center for Stem Cell and Tissue Engineering Research & Practice, Istanbul, Turkey.
| |
Collapse
|
18
|
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KNC. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair Regen 2021; 29:531-547. [PMID: 34009713 DOI: 10.1111/wrr.12937] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and myofibroblasts play a myriad of important roles in human tissue function, especially in wound repair and healing. Among all cells, fibroblasts are group of cells that decide the status of wound as they maintain tissue homeostasis. Currently, the increase in the deleterious effects of chronic wound and their morbidity rate has necessitated the need to understand the influence of fibroblasts and myofibroblasts, which chiefly originate locally from tissue-resident fibroblasts to address the same. Wound pathophysiology is complex, herein, we have discussed fibroblast and myofibroblast heterogeneity in skin and different organs by understanding the phenotypical and functional properties of each of its sub-populations in the process of wound healing. Recent advancements in fibroblast activation, differentiation to myofibroblasts, proliferation and migration are discussed in detail. Fibroblasts and myofibroblasts are key players in wound healing and wound remodelling, respectively, and their significance in wound repair is discussed. An increased understanding of their biology during wound healing also gives an opportunity to explore more of fibroblast and myofibroblast focused therapies to treat chronic wounds which are clinical challenges. In this regard, in the current review, we have described the different methods for isolation of primary fibroblasts and myofibroblasts from both animal models and humans, and their characterization. Additionally, we have also provided details on possible molecular targets for better understanding of prognosis, diagnosis and treatment of chronic wounds. Information will help both researchers and clinicians in providing molecular insight that enable them for effective chronic wound management. The knowledge of intimate dialogue between the fibroblast, sub-populations like, myofibroblast and their microenvironment, will serve useful in determining novel, efficient and specific therapeutic targets to treat pathological wound conditions.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
19
|
Lin Y, Chen L, Zhang M, Xie S, Du L, Zhang X, Li H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front Cell Dev Biol 2021; 9:667765. [PMID: 34395417 PMCID: PMC8355620 DOI: 10.3389/fcell.2021.667765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) play an important role in temperature regulation by secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge for dermatologists and bum surgeons. To promote and accelerate research on the repair and regeneration of ESGs, we summarized the development, structure and function of ESGs, and current strategies to repair and regenerate ESGs based on stem cells, scaffolds, and possible signaling pathways involved.
Collapse
Affiliation(s)
- Yao Lin
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
20
|
Montes-Gómez AE, García-Cordero J, Marcial-Juárez E, Shrivastava G, Visoso-Carvajal G, Juárez-Delgado FJ, Flores-Romo L, Sanchez-Torres MC, Santos-Argumedo L, Bustos-Arriaga J, Cedillo-Barrón L. Crosstalk Between Dermal Fibroblasts and Dendritic Cells During Dengue Virus Infection. Front Immunol 2020; 11:538240. [PMID: 33193307 PMCID: PMC7645109 DOI: 10.3389/fimmu.2020.538240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Dengue virus infection (DENV-2) is transmitted by infected mosquitoes via the skin, where many dermal and epidermal cells are potentially susceptible to infection. Most of the cells in an area of infection will establish an antiviral microenvironment to control viral replication. Although cumulative studies report permissive DENV-2 infection in dendritic cells, keratinocytes, and fibroblasts, among other cells also infected, little information is available regarding cell-to-cell crosstalk and the effect of this on the outcome of the infection. Therefore, our study focused on understanding the contribution of fibroblast and dendritic cell crosstalk to the control or promotion of dengue. Our results suggest that dendritic cells promote an antiviral state over fibroblasts by enhancing the production of type I interferon, but not proinflammatory cytokines. Infected and non-infected fibroblasts promoted partial dendritic cell maturation, and the fibroblast-matured cells were less permissive to infection and showed enhanced type I interferon production. We also observed that the soluble mediators produced by non-infected or Poly (I:C) transfected fibroblasts induced allogenic T cell proliferation, but mediators produced by DENV-2 infected fibroblasts inhibited this phenomenon. Additionally, the effects of fibroblast soluble mediators on CD14+ monocytes were analyzed to assess whether they affected the differentiation of monocyte derived dendritic cells (moDC). Our data showed that mediators produced by infected fibroblasts induced variable levels of monocyte differentiation into dendritic cells, even in the presence of recombinant GM-CSF and IL-4. Cells with dendritic cell-like morphology appeared in the culture; however, flow cytometry analysis showed that the mediators did not fully downregulate CD14 nor did they upregulate CD1a. Our data revealed that fibroblast-dendritic cell crosstalk promoted an antiviral response mediated manly by type I interferons over fibroblasts. Furthermore, the maturation of dendritic cells and T cell proliferation were promoted, which was inhibited by DENV-2-induced mediators. Together, our results suggest that activation of the adaptive immune response is influenced by the crosstalk of skin resident cells and the intensity of innate immune responses established in the microenvironment of the infected skin.
Collapse
Affiliation(s)
- Alfredo E. Montes-Gómez
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Edith Marcial-Juárez
- Departamento de Biología Celular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Gaurav Shrivastava
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Giovani Visoso-Carvajal
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Leopoldo Flores-Romo
- Departamento de Biología Celular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ma. Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| | - José Bustos-Arriaga
- Unidad de Biomedicina, Laboratorio de Biología Molecular e Inmunología de arbovirus, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
21
|
Sidal H, Colakoglu Erkan P, Uslu M, Kocabas F. Development of small-molecule-induced fibroblast expansion technologies. J Tissue Eng Regen Med 2020; 14:1476-1487. [PMID: 32770632 DOI: 10.1002/term.3112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/25/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022]
Abstract
Dermal fibroblasts are responsible from the production of extracellular matrix and take role in the closure of skin wounds. Dermal fibroblasts are major cells of origin in the generation of induced pluripotent stem cells (IPSCs) and are historically being used as feeder layer and biofiller in the restorative surgeries. ex vivo expansion of the dermal fibroblasts provides a suitable model to study skin biology and to engineer bioartifical skins. Thus, development of efficient fibroblast expansion technologies gets outmost importance day by day. We sought to identify small molecules that induce ex vivo fibroblast expansion and understand their mechanisms. We analyzed the effect of 35 small molecules, which are expected to target molecular pathways involving cellular quiescence. We have found that small molecules, especially AS1949490 and SKF96365, increase human dermal fibroblast expansion of at least three different fibroblasts. Cell cycle analysis confirms that these small molecules allow cell cycle progression, as evident by increased percentage of cells in S-G2 -M phase of cell cycle. They led to a lower profile of apoptotic or necrotic fibroblasts. Intriguingly, we have found that identified small molecules could also endogenously induce the expression of IPSC generation, collagen synthesis, and aging-related genes. Identified small molecules may contribute to the induction of collagen synthesis in the biofiller products, the development of fibroblast products with better aging profile, and the improvement of IPSC generation.
Collapse
Affiliation(s)
- Humeyra Sidal
- Biology Department, Claude Bernard University, Lyon, France.,Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Pinar Colakoglu Erkan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Biotechnology Program, Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Merve Uslu
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Biotechnology Program, Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Biotechnology Program, Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
22
|
Hafezi F, Shorter S, Tabriz AG, Hurt A, Elmes V, Boateng J, Douroumis D. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Pharmaceutics 2020; 12:pharmaceutics12060550. [PMID: 32545741 PMCID: PMC7356948 DOI: 10.3390/pharmaceutics12060550] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) bioprinting is considered as a novel approach in biofabricating cell-laden constructs that could potentially be used to promote skin regeneration following injury. In this study, a novel crosslinked chitosan (CH)–genipin (GE) bioink laden with keratinocyte and human dermal fibroblast cells was developed and printed successfully using an extruder-based bioprinter. By altering the composition and degree of CH–GE crosslinking, bioink printability was further assessed and compared with a commercial bioink. Rheological analysis showed that the viscosity of the optimised bioink was in a suitable range that facilitated reproducible and reliable printing by applying low pressures ranging from 20–40 kPa. The application of low printing pressures proved vital for viability of cells loaded within the bioinks. Further characterisation using MTT assay showed that cells were still viable within the printed construct at 93% despite the crosslinking, processing and after subjecting to physiological conditions for seven days. The morphological study of the printed cells showed that they were mobile within the bioink. Furthermore, the multi-layered 3D printed constructs demonstrated excellent self-supportive structures in a consistent manner.
Collapse
Affiliation(s)
- Forough Hafezi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Susan Shorter
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Atabak Ghanizadeh Tabriz
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Andrew Hurt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Victoria Elmes
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Correspondence: (J.B.); (D.D.)
| | - Dennis Douroumis
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Correspondence: (J.B.); (D.D.)
| |
Collapse
|
23
|
Katsaros T, Mayer E, Palaiologou A, Romero-Bustillos M, Evans GH, Lallier TE, Maney P. Effect of different concentrations of commercially available mouthwashes on wound healing following periodontal surgery: a randomized controlled clinical trial. Clin Oral Investig 2020; 24:3587-3595. [PMID: 32076866 DOI: 10.1007/s00784-020-03232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the effect of chlorhexidine and essential oils containing mouth rinses on oral wound healing after periodontal flap surgery. MATERIALS AND METHODS Eighty subjects participated in the study and were randomly assigned to use water, 0.12% chlorhexidine (CHX), essential oils (EO), 5% CHX, and 10% EO. Subjects were examined at 1, 2, and 3 weeks postoperatively. Plaque index (PI) and the modified gingival index (GI) were recorded, while wound epithelialization was measured to evaluate the healing process. Numerical data were analyzed with parametric test for multiple comparisons (ANOVA) with Bonferroni correction. Categorical data were analyzed using Chi-square test/fisher exact test. RESULTS All groups demonstrated a gradual GI reduction from first to third visit. Patients in the CHX group presented statistically significant lower PI scores than patients in the water group at the all-time points of the study. Wound epithelialization analysis demonstrated that 100% of the sites in the CHX group were healing by secondary intention at visit 1. This finding was statistically significant. CONCLUSION Full strength concentrations of CHX and EO did not show any detrimental effects on healing after traditional periodontal surgery at the end of the observation period. CLINICAL RELEVANCE The use of chlorhexidine and EO containing mouthwashes does not appear to delay wound healing. Diluting these commercial mouthwashes may present an approach that could possibly reduce the adverse effects (such as tooth staining) associated with their use, while maintaining their antibacterial properties.
Collapse
Affiliation(s)
- Theodoros Katsaros
- Department of Periodontics, University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., S447, Iowa City, IA, 52241, USA.
| | - Elizabeth Mayer
- Department of Periodontics, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Archontia Palaiologou
- Department of Periodontics, UT Health San Antonio School of Dentistry, San Antonio, TX, USA
| | - Miguel Romero-Bustillos
- Department of Periodontics, University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., S447, Iowa City, IA, 52241, USA
| | - Gerald H Evans
- Department of Periodontics, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Thomas E Lallier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, 70119, USA
| | - Pooja Maney
- Department of Periodontics, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| |
Collapse
|
24
|
Duan FF, Barron G, Meliton A, Mutlu GM, Dulin NO, Schuger L. P311 Promotes Lung Fibrosis via Stimulation of Transforming Growth Factor-β1, -β2, and -β3 Translation. Am J Respir Cell Mol Biol 2019; 60:221-231. [PMID: 30230348 DOI: 10.1165/rcmb.2018-0028oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interstitial lung fibrosis, a frequently idiopathic and fatal disease, has been linked to the increased expression of profibrotic transforming growth factor (TGF)-βs. P311 is an RNA-binding protein that stimulates TGF-β1, -β2, and -β3 translation in several cell types through its interaction with the eukaryotic translation initiation factor 3b. We report that P311 is switched on in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and in the mouse model of bleomycin (BLM)-induced pulmonary fibrosis. To assess the in vivo role of P311 in lung fibrosis, BLM was instilled into the lungs of P311-knockout mice, in which fibrotic changes were significantly decreased in tandem with a reduction in TGF-β1, -β2, and -β3 concentration/activity compared with BLM-treated wild-type mice. Complementing these findings, forced P311 expression increased TGF-β concentration/activity in mouse and human lung fibroblasts, thereby leading to an activated phenotype with increased collagen production, as seen in IPF. Consistent with a specific effect of P311 on TGF-β translation, TGF-β1-, -β2-, and -β3-neutralizing antibodies downregulated P311-induced collagen production by lung fibroblasts. Furthermore, treatment of BLM-exposed P311 knockouts with recombinant TGF-β1, -β2, and -β3 induced pulmonary fibrosis to a degree similar to that found in BLM-treated wild-type mice. These studies demonstrate the essential function of P311 in TGF-β-mediated lung fibrosis. Targeting P311 could prove efficacious in ameliorating the severity of IPF while circumventing the development of autoimmune complications and toxicities associated with the use of global TGF-β inhibitors.
Collapse
Affiliation(s)
| | | | - Angelo Meliton
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | - Gokhan M Mutlu
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | - Nickolai O Dulin
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | | |
Collapse
|
25
|
Sun MT, O’Connor AJ, Milne I, Biswas D, Casson R, Wood J, Selva D. Development of Macroporous Chitosan Scaffolds for Eyelid Tarsus Tissue Engineering. Tissue Eng Regen Med 2019; 16:595-604. [PMID: 31824822 PMCID: PMC6879684 DOI: 10.1007/s13770-019-00201-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022] Open
Abstract
Background Reconstruction of large eyelid defects remains challenging due to the lack of suitable eyelid tarsus tissue substitutes. We aimed to evaluate a novel bioengineered chitosan scaffold for use as an eyelid tarsus substitute. Methods Three-dimensional macroporous chitosan hydrogel scaffold were produced via cryogelation with specific biomechanical properties designed to directly match characteristics of native eyelid tarsus tissue. Scaffolds were characterized by confocal microscopy and tensile mechanical testing. To optimise biocompatibility, human eyelid skin fibroblasts were cultured from biopsy-sized samples of fresh eyelid skin. Immunological and gene expression analysis including specific fibroblast-specific markers were used to determine the rate of fibroblast de-differentiation in vitro and characterize cells cultured. Eyelid skin fibroblasts were then cultured over the chitosan scaffolds and the resultant adhesion and growth of cells were characterized using immunocytochemical staining. Results The chitosan scaffolds were shown to support the attachment and proliferation of NIH 3T3 mouse fibroblasts and human orbital skin fibroblasts in vitro. Our novel bioengineered chitosan scaffold has demonstrated biomechanical compatibility and has the ability to support human eyelid skin fibroblast growth and proliferation. Conclusions This bioengineered tissue has the potential to be used as a tarsus substitute during eyelid reconstruction, offering the opportunity to pre-seed the patient's own cells and represents a truly personalised approach to tissue engineering.
Collapse
Affiliation(s)
- Michelle T. Sun
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Andrea J. O’Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Imogen Milne
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Dhee Biswas
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Robert Casson
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - John Wood
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Dinesh Selva
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| |
Collapse
|
26
|
Abs V, Bonicelli J, Kacza J, Zizzadoro C, Abraham G. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface. PLoS One 2019; 14:e0225025. [PMID: 31721813 PMCID: PMC6853605 DOI: 10.1371/journal.pone.0225025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2019] [Indexed: 12/31/2022] Open
Abstract
Interaction between epithelial cells and fibroblasts play a key role in wound repair and remodelling in the asthmatic airway epithelium. We present the establishment of a co-culture model using primary equine bronchial epithelial cells (EBECs) and equine bronchial fibroblasts (EBFs). EBFs at passage between 4 and 8 were seeded on the bottom of 24-well plates and treated with mitomycin C at 80% confluency. Then, freshly isolated (P0) or passaged (P1) EBECs were seeded on the upper surface of membrane inserts that had been placed inside the EBF-containing well plates and grown first under liquid-liquid interface (LLI) then under air-liquid interface (ALI) conditions to induce epithelial differentiation. Morphological, structural and functional markers were monitored in co-cultured P0 and P1 EBEC monolayers by phase-contrast microscopy, scanning and transmission electron microscopy, hematoxylin-eosin, immunocytochemistry as well as by measuring the transepithelial electrical resistance (TEER) and transepithelial transport of selected drugs. After about 15–20 days of co-culture at ALI, P0 and P1 EBEC monolayers showed pseudo-stratified architecture, presence of ciliated cells, typically honeycomb-like pattern of tight junction protein 1 (TJP1) expression, and intact selective barrier functions. Interestingly, some notable differences were observed in the behaviour of co-cultured EBECs (adhesion to culture support, growth rate, differentiation rate) as compared to our previously described EBEC mono-culture system, suggesting that cross-talk between epithelial cells and fibroblasts actually takes place in our current co-culture setup through paracrine signalling. The EBEC-EBF co-culture model described herein will offer the opportunity to investigate epithelial-mesenchymal cell interactions and underlying disease mechanisms in the equine airways, thereby leading to a better understanding of their relevance to pathophysiology and treatment of equine and human asthma.
Collapse
Affiliation(s)
- Vanessa Abs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Jana Bonicelli
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Johannes Kacza
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal-Straße, Leipzig, Germany
| | - Claudia Zizzadoro
- Division of Veterinary Pharmacology and Toxicology, Department of Veterinary Medicine, University of Bari, SP 62 per Casamassima, km, Valenzano (BA), Italy
| | - Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
- * E-mail:
| |
Collapse
|
27
|
Jiménez-Meléndez A, Fernández-Álvarez M, Calle A, Ramírez MÁ, Diezma-Díaz C, Vázquez-Arbaizar P, Ortega-Mora LM, Álvarez-García G. Lytic cycle of Besnoitia besnoiti tachyzoites displays similar features in primary bovine endothelial cells and fibroblasts. Parasit Vectors 2019; 12:517. [PMID: 31685001 PMCID: PMC6829937 DOI: 10.1186/s13071-019-3777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine besnoitiosis, caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti, is a chronic and debilitating cattle disease that continues to spread in Europe in the absence of control tools. In this scenario, in vitro culture systems are valuable tools to carry out drug screenings and to unravel host-parasite interactions. However, studies performed in bovine target cells are scarce. METHODS The objective of the present study was to obtain primary bovine aortic endothelial cells (BAECs) and fibroblast cell cultures, target cells during the acute and the chronic stage of the disease, respectively, from healthy bovine donors. Afterwards, expression of surface (CD31, CD34 and CD44) and intracellular markers (vimentin and cytokeratin) was studied to characterize cell populations by flow cytometry. Next, the lytic cycle of B. besnoiti tachyzoites was studied in both target cells. Invasion rates (IRs) were determined by immunofluorescence at several time points post-infection, and proliferation kinetics were studied by quantitative PCR (qPCR). Finally, the influence of bovine viral diarrhea virus (BVDV) co-infection on the host cell machinery, and consequently on B. besnoiti invasion and proliferation, was investigated in BAECs. RESULTS Morphology and cytometry results confirmed the endothelial and fibroblast origins. CD31 was the surface marker that best discriminated between BAECs and fibroblasts, since fibroblasts lacked CD31 labelling. Expression of CD34 was weak in low-passage BAECs and absent in high-passage BAECs and fibroblasts. Positive labelling for CD44, vimentin and cytokeratin was observed in both BAECs and fibroblasts. Regarding the lytic cycle of the parasite, although low invasion rates (approximately 3-4%) were found in both cell culture systems, more invasion was observed in BAECs at 24 and 72 hpi. The proliferation kinetics did not differ between BAECs and fibroblasts. BVDV infection favoured early Besnoitia invasion but there was no difference in tachyzoite yields observed in BVDV-BAECs compared to BAECs. CONCLUSIONS We have generated and characterized two novel standardized in vitro models for Besnoitia besnoiti infection based on bovine primary target BAECs and fibroblasts, and have shown the relevance of BVDV coinfections, which should be considered in further studies with other cattle pathogens.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María Fernández-Álvarez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12, local 10, 28040 Madrid, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12, local 10, 28040 Madrid, Spain
| | - Carlos Diezma-Díaz
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Patricia Vázquez-Arbaizar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
28
|
Ballesteros-Cillero R, Davison-Kotler E, Kohli N, Marshall WS, García-Gareta E. Biomimetic In Vitro Model of Cell Infiltration into Skin Scaffolds for Pre-Screening and Testing of Biomaterial-Based Therapies. Cells 2019; 8:cells8080917. [PMID: 31426468 PMCID: PMC6721764 DOI: 10.3390/cells8080917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Due to great clinical need, research where different biomaterials are tested as 3D scaffolds for skin tissue engineering has increased. In vitro studies use a cell suspension that is simply pipetted onto the material and cultured until the cells migrate and proliferate within the 3D scaffold, which does not mimic the in vivo reality. Our aim was to engineer a novel biomimetic in vitro model that mimics the natural cell infiltration process occurring in wound healing, thus offering a realistic approach when pre-screening and testing new skin substitutes. Our model consists of porous membrane cell culture inserts coated with gelatin and seeded with human dermal fibroblasts, inside which two different commercially available dermal substitutes were placed. Several features relevant to the wound healing process (matrix contraction, cell infiltration and proliferation, integration of the biomaterial with the surrounding tissue, and secretion of exogenous cytokines and growth factors) were evaluated. Our results showed that cells spontaneously infiltrate the materials and that our engineered model is able to induce and detect subtle differences between different biomaterials. The model allows for room for improvements or "adds-on" and miniaturization and can contribute to the development of functional and efficient skin substitutes for burns and chronic wounds.
Collapse
Affiliation(s)
| | - Evan Davison-Kotler
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
29
|
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med 2019; 6:32. [PMID: 31001541 PMCID: PMC6454035 DOI: 10.3389/fcvm.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
30
|
Asam S, Neag G, Berardicurti O, Gardner D, Barone F. The role of stroma and epithelial cells in primary Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:3503-3512. [PMID: 30945742 DOI: 10.1093/rheumatology/kez050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Primary SS (pSS) is a chronic autoimmune condition characterized by infiltration of the exocrine glands and systemic B cell hyperactivation. This glandular infiltration is associated with loss of glandular function, with pSS patients primarily presenting with severe dryness of the eyes and mouth. Within the affected glands, the infiltrating lymphocytes are organized in tertiary lymphoid structures. Tertiary lymphoid structures subvert normal tissue architecture and impact on organ function, by promoting the activation and maintenance of autoreactive lymphocytes. This review summarizes the current knowledge about the role of stromal cells (including endothelium, epithelium, nerves and fibroblasts) in the pathogenesis of pSS, in particular the interactions taking place between stromal cells and infiltrating lymphocytes. We will provide evidences pointing towards the driving role of stromal cells in the orchestration of the local inflammatory milieu, thus highlighting the need for therapies aimed at targeting this compartment alongside classical immunosuppression in pSS.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Aydogdu MO, Oner ET, Ekren N, Erdemir G, Kuruca SE, Yuca E, Bostan MS, Eroglu MS, Ikram F, Uzun M, Gunduz O. Comparative characterization of the hydrogel added PLA/β-TCP scaffolds produced by 3D bioprinting. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Dyikanov D, Menshikov M, Ovchinnikov A, Ageev F, Parfyonova Y. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3536854. [PMID: 30046593 PMCID: PMC6036839 DOI: 10.1155/2018/3536854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/16/2023]
Abstract
The adult heart contains small populations of multipotent cardiac progenitor cells (CPC) that present a convenient and efficient resource for treatment of myocardial infarction. Several clinical studies of direct CPC delivery by injection have already been performed but showed low engraftment rate that limited beneficial effects of procedure. «Cell sheet» technology has been developed to facilitate longer retention of grafted cells and show new directions for cell-based therapy using this strategy. In this study we hypothesized that СPC-based cell sheet transplantation could improve regeneration after myocardial infarction. We demonstrated that c-kit+ CPC were able to form cell sheets on temperature-responsive surfaces. Cell sheet represented a well-organized structure, in which CPC survived, retained ability to proliferate, expressed progenitor cell marker Gata-4 formed connexin-43+ gap junctions, and were surrounded by significant amount of extracellular matrix proteins. Transplantation of cell sheets after myocardial infarction resulted in CPC engraftment as well as their proliferation, migration, and differentiation; cell sheets also stimulated neovascularization and cardiomyocyte proliferation in underlining myocardium and ameliorated left ventricular remodeling. Obtained data strongly supported potential use of CPC sheet transplantation for repair of damaged heart.
Collapse
Affiliation(s)
- K. Dergilev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Z. Tsokolaeva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - P. Makarevich
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute of Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - I. Beloglazova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Zubkova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Boldyreva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Ratner
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - D. Dyikanov
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Menshikov
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - A. Ovchinnikov
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - F. Ageev
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - Ye. Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
33
|
Levin A, Sharma V, Hook L, García-Gareta E. The importance of factorial design in tissue engineering and biomaterials science: Optimisation of cell seeding efficiency on dermal scaffolds as a case study. J Tissue Eng 2018; 9:2041731418781696. [PMID: 30034769 PMCID: PMC6048616 DOI: 10.1177/2041731418781696] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
This article presents a case study to show the usefulness and importance of using
factorial design in tissue engineering and biomaterials science. We used a full
factorial experimental design (2 × 2 × 2 × 3) to solve a routine query in every
biomaterial research project: the optimisation of cell seeding efficiency for
pre-clinical in vitro cell studies, the importance of which is often overlooked.
In addition, tissue-engineered scaffolds can be cellularised with relevant cell
type(s) to form implantable tissue constructs, where the cell seeding method
must be reliable and robust. Our results show the complex relationship between
cells and scaffolds and suggest that the optimum seeding conditions for each
material may be different due to different material properties, and therefore,
should be investigated for individual scaffolds. Our factorial experimental
design can be easily translated to other cell types and three-dimensional
biomaterials, where multiple interacting variables can be thoroughly
investigated for better understanding of cell–biomaterial interactions.
Collapse
Affiliation(s)
- Alexandra Levin
- Regenerative Biomaterials Group, RAFT Institute, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Northwood, UK
| | | | | |
Collapse
|
34
|
Zorin V, Zorina A, Smetanina N, Kopnin P, Ozerov IV, Leonov S, Isaev A, Klokov D, Osipov AN. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation. Aging (Albany NY) 2018; 9:1404-1413. [PMID: 28522793 PMCID: PMC5472740 DOI: 10.18632/aging.101240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 01/13/2023]
Abstract
Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.
Collapse
Affiliation(s)
- Vadim Zorin
- Human Stem Cells Institute, Moscow, 119333, Russia
| | - Alla Zorina
- Human Stem Cells Institute, Moscow, 119333, Russia
| | - Nadezhda Smetanina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123098, Russia
| | - Pavel Kopnin
- Blokhin Cancer Research Center, Moscow, 115478, Russia
| | - Ivan V Ozerov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123098, Russia
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia.,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Artur Isaev
- Human Stem Cells Institute, Moscow, 119333, Russia
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, K0J1J0, Canada
| | - Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123098, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
35
|
López JF, Sarkanen JR, Huttala O, Kaartinen IS, Kuokkanen HO, Ylikomi T. Adipose tissue extract shows potential for wound healing: in vitro proliferation and migration of cell types contributing to wound healing in the presence of adipose tissue preparation and platelet rich plasma. Cytotechnology 2018; 70:1193-1204. [PMID: 29511946 DOI: 10.1007/s10616-018-0211-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.
Collapse
Affiliation(s)
- Jenny F López
- Cell Biology, Faculty of Medicine and Life Sciences, University of Tampere, PL100, 33014, Tampere, Finland. .,Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland.
| | - Jertta-Riina Sarkanen
- Cell Biology, Faculty of Medicine and Life Sciences, University of Tampere, PL100, 33014, Tampere, Finland.,Science Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Outi Huttala
- FICAM, Finnish Center for Alternative Methods, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka S Kaartinen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland.,Science Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Hannu O Kuokkanen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland.,Science Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Timo Ylikomi
- Cell Biology, Faculty of Medicine and Life Sciences, University of Tampere, PL100, 33014, Tampere, Finland.,Science Center, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
36
|
Flat Incision Technique for Reconstructive Brow Surgery: A Wound Healing Model and Clinical Evaluation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1684. [PMID: 29616177 PMCID: PMC5865913 DOI: 10.1097/gox.0000000000001684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/05/2018] [Indexed: 11/27/2022]
Abstract
Background: Skin incision is considered to be placed at 90° in reference to the skin to get perfect wound edge adaptation. The incision on hair-bearing tissues, as the scalp, is considered to be bevelled at 45° to promote hair growth through the scar. There is no consensus about the preferred incision angle on the brow. The aim of this article was to demonstrate the feasibility of the “flat incision technique” for brow repositioning, where brow deformation results after forehead reconstruction. A wound-healing model for the bevelled incision is presented. Methods: Brow incisions are bevelled with an angle of 20°. The lower incision is placed inside the brow so that the upper 2 rows of hair are included; the dermis is completely transected and dissection is continued into the subdermal plane. The procedure is presented in a patient who underwent resection of the forehead due to melanoma. Results: The bevelled incision increases the surface area of dermal layer by a factor of 2 compared with the standard vertical skin incision at 90°. Loss of the dermal tissue integrity and continuity due to trauma hinders the recovery of cell migration and function, resulting in a more prominent scar formation. It appears reasonable that with the increased surface area of the dermal layers in the wound edges, the scar quality improves. The case study demonstrates the feasibility of the procedure. Conclusion: The bevelled 20° incision for brow repositioning and reshaping showed to be a viable and predictable procedure.
Collapse
|
37
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
38
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Sharma V, Kohli N, Moulding D, Afolabi H, Hook L, Mason C, García-Gareta E. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores. Macromol Biosci 2017; 17. [PMID: 28895290 DOI: 10.1002/mabi.201700185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Indexed: 12/16/2022]
Abstract
The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK.,Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Dale Moulding
- Institute of Child Health, University College London, UCL Great Ormond Street, 30 Guilford Street, London, WC1N 1EH, UK
| | - Halimat Afolabi
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Lilian Hook
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK
| |
Collapse
|
40
|
Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev 2017; 36:32-41. [PMID: 28238941 DOI: 10.1016/j.arr.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Cutaneous wounding in late-gestational fetal or postnatal humans results in scar formation without any skin appendages. Early or mid- gestational skin healing in humans is characterized by the absence of scaring in a process resembling regeneration. Tremendous cellular and molecular mechanisms contribute to this distinction, and fibroblasts play critical roles in scar or scarless wound healing. This review discussed the different repair mechanisms involved in wound healing of fibroblasts at different developmental stages and further confirmed that fetal fibroblast transplantation resulted in reduced scar healing in vivo. We also discussed the possible problem in fetal fibroblast transplantation for wound repair. We proposed the use of small molecules to improve the regenerative potential of repairing cells in the wound given that remodeling of the wound microenvironment into a regenerative microenvironment in adults might improve skin regeneration.
Collapse
|
41
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
42
|
Hur W, Lee HY, Min HS, Wufuer M, Lee CW, Hur JA, Kim SH, Kim BK, Choi TH. Regeneration of full-thickness skin defects by differentiated adipose-derived stem cells into fibroblast-like cells by fibroblast-conditioned medium. Stem Cell Res Ther 2017; 8:92. [PMID: 28427476 PMCID: PMC5399413 DOI: 10.1186/s13287-017-0520-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 01/26/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background Fibroblasts are ubiquitous cells in the human body and are absolutely necessary for wound healing such as for injured skin. This role of fibroblasts was the reason why we aimed to differentiate human adipose-derived stem cells (hADSCs) into fibroblasts and to test their wound healing potency. Recent reports on hADSC-derived conditioned medium have indicated stimulation of collagen synthesis as well as migration of dermal fibroblasts in wound sites with these cells. Similarly, human fibroblast-derived conditioned medium (F-CM) was reported to contain a variety of factors known to be important for growth of skin. However, it remains unknown whether and how F-CM can stimulate hADSCs to secrete type I collagen. Methods In this study, we obtained F-CM from the culture of human skin fibroblast HS27 cells in DMEM media. For an in-vivo wound healing assay using cell transplantation, balb/c nude mice with full-thickness skin wound were used. Results Our data showed that levels of type I pro-collagen secreted by hADSCs cultured in F-CM increased significantly compared with hADSCs kept in normal medium for 72 h. In addition, from a Sircol collagen assay, the amount of collagen in F-CM-treated hADSC conditioned media (72 h) was markedly higher than both the normal medium-treated hADSC conditioned media (72 h) and the F-CM (24 h). We aimed to confirm that hADSCs in F-CM would differentiate into fibroblast cells in order to stimulate wound healing in a skin defect model. To investigate whether F-CM induced hADSCs into fibroblast-like cells, we performed FACS analysis and verified that both F-CM-treated hADSCs and HS27 cells contained similar expression patterns for CD13, CD54, and CD105, whereas normal medium-treated hADSCs were significantly different. mRNA level analysis for Nanog, Oct4A, and Sox2 as undifferentiation markers and vimentin, HSP47, and desmin as matured fibroblast markers supported the characterization that hADSCs in F-CM were highly differentiated into fibroblast-like cells. To discover the mechanism of type I pro-collagen expression in hADSCs in F-CM, we observed that phospho-smad 2/3 levels were increased in the TGF-β/Smad signaling pathway. For in-vivo analysis, we injected various cell types into balb/c nude mouse skin carrying a 10-mm punch wound, and observed a significantly positive wound healing effect in this full-thickness excision model with F-CM-treated hADSCs rather than with untreated hADSCs or the PBS injected group. Conclusions We differentiated F-CM-treated hADSCs into fibroblast-like cells and demonstrated their efficiency in wound healing in a skin wound model.
Collapse
Affiliation(s)
- Woojune Hur
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-744, Republic of Korea
| | - Hoon Young Lee
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Hye Sook Min
- Department of Preventive Medicine, Graduate School of Public Health, Seoul National University, Seoul, 152-742, Republic of Korea
| | - Maierdanjiang Wufuer
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-744, Republic of Korea
| | - Chang-Won Lee
- Department of Naval Architecture and Ocean Engineering, College of Engineering, Seoul National University 110-744, Seoul, Republic of Korea
| | - Ji An Hur
- Department of Internal Medicine, School of Medicine, Yeungnam University, Daegu, 712-749, Republic of Korea
| | - Sang Hyon Kim
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, 700-712, Republic of Korea
| | - Byeung Kyu Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-744, Republic of Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
43
|
Soft Tissue Regeneration Incorporating 3-Dimensional Biomimetic Scaffolds. Oral Maxillofac Surg Clin North Am 2017; 29:9-18. [DOI: 10.1016/j.coms.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Yu J, Choi S, Um J, Park KS. Reduced Expression of YAP in Dermal Fibroblasts is Associated with Impaired Wound Healing in Type 2 Diabetic Mice. Tissue Eng Regen Med 2017; 14:49-55. [PMID: 30603461 DOI: 10.1007/s13770-016-0019-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
Dermal fibroblasts play essential roles in wound healing and their dysfunction has been shown to be associated with impaired wound healing in diabetes. In the present study, we aimed at investigating whether Yes-associated protein (YAP), a mediator of mechanotransduction in dermal fibroblasts, is associated with impaired wound healing in diabetic mice. Compared with that in the control, the rate of wound contraction was decreased twofold in db/db type 2 diabetic mice (db/db mice). To mimic diabetic pathological condition, dermal fibroblasts were cultured under high glucose conditions (25.5 mM glucose). Further, dermal fibroblast-mediated contraction of wound was evaluated by in vitro collagen gel contraction assay. Dermal fibroblasts cultured under hyperglycemic condition showed impaired gel contraction and mitochondrial dysfunction, compared to the cells cultured under normoglycemic conditions (5.5 mM glucose). Importantly, compared with the normal dermal fibroblasts, diabetic db/db dermal fibroblasts expressed lower levels of growth factors and cytokines that enhance wound healing, such as insulin-like growth factor-1, stromal cell-derived factor-1, connective tissue growth factor, and transforming growth factor-β (TGF-β). The quantity of YAP mRNA was also lower in diabetic db/db dermal fibroblasts, compared with that in the control fibroblasts. These results indicate that impaired wound healing in diabetics is associated with the dysfunction of dermal fibroblasts, including downregulation of YAP, which plays essential roles in extracellular matrix remodeling and TGF-β-mediated wound healing.
Collapse
Affiliation(s)
- Jinyeong Yu
- 1Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong-In, 17104 Korea
| | - Sanghyuk Choi
- 1Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong-In, 17104 Korea
| | - Jihyun Um
- 1Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong-In, 17104 Korea
| | - Ki-Sook Park
- 2East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Korea
| |
Collapse
|
45
|
Naves L, Dhand C, Almeida L, Rajamani L, Ramakrishna S. In vitro skin models and tissue engineering protocols for skin graft applications. Essays Biochem 2016; 60:357-369. [DOI: 10.1042/ebc20160043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In this review, we present a brief introduction of the skin structure, a concise compilation of skin-related disorders, and a thorough discussion of different in vitro skin models, artificial skin substitutes, skin grafts, and dermal tissue engineering protocols. The advantages of the development of in vitro skin disorder models, such as UV radiation and the prototype model, melanoma model, wound healing model, psoriasis model, and full-thickness model are also discussed. Different types of skin grafts including allografts, autografts, allogeneic, and xenogeneic are described in detail with their associated applications. We also discuss different tissue engineering protocols for the design of various types of skin substitutes and their commercial outcomes. Brief highlights are given of the new generation three-dimensional printed scaffolds for tissue regeneration applications.
Collapse
Affiliation(s)
- Lucas B. Naves
- CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Luis Almeida
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
| | | | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Sharma V, Patel N, Kohli N, Ravindran N, Hook L, Mason C, García-Gareta E. Viscoelastic, physical, and bio-degradable properties of dermal scaffolds and related cell behaviour. ACTA ACUST UNITED AC 2016; 11:055001. [PMID: 27586397 DOI: 10.1088/1748-6041/11/5/055001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dermal scaffolds promote healing of debilitating skin injuries caused by burns and chronic skin conditions. Currently available products present disadvantages and therefore, there is still a clinical need for developing new dermal substitutes. This study aimed at comparing the viscoelastic, physical and bio-degradable properties of two dermal scaffolds, the collagen-based and clinically well established Integra(®) and a novel fibrin-based dermal scaffold developed at our laboratory called Smart Matrix(®), to further evaluate our previous published findings that suggested a higher influx of cells, reduced wound contraction and less scarring for Smart Matrix(®) when used in vivo. Rheological results showed that Integra(®) (G' = 313.74 kPa) is mechanically stronger than Smart Matrix(®) (G' = 8.26 kPa), due to the presence of the silicone backing layer in Integra(®). Micro-pores were observed on both dermal scaffolds, although nano-pores as well as densely packed nano-fibres were only observed for Smart Matrix(®). Average surface roughness was higher for Smart Matrix(®) (Sa = 114.776 nm) than for Integra(®) (Sa = 75.565 nm). Both scaffolds possess a highly porous structure (80-90%) and display a range of pore micro-sizes that represent the actual in vivo scenario. In vitro proteolytic bio-degradation suggested that Smart Matrix(®) would degrade faster upon implantation in vivo than Integra(®). For both scaffolds, the enzymatic digestion occurs via bulk degradation. These observed differences could affect cell behaviour on both scaffolds. Our results suggest that fine-tuning of scaffolds' viscoelastic, physical and bio-degradable properties can maximise cell behaviour in terms of attachment, proliferation and infiltration, which are essential for tissue repair.
Collapse
Affiliation(s)
- Vaibhav Sharma
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, HA6 2RN, UK. Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci 2016; 73:3453-72. [PMID: 27154041 PMCID: PMC4982839 DOI: 10.1007/s00018-016-2252-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Marc G Jeschke
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
49
|
Nicholas MN, Yeung J. Current Status and Future of Skin Substitutes for Chronic Wound Healing. J Cutan Med Surg 2016; 21:23-30. [PMID: 27530398 DOI: 10.1177/1203475416664037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic wounds, including diabetic ulcers, pressure ulcers, venous ulcers, and arterial insufficiency ulcers, are both difficult and expensive to treat. Conventional wound care may sometimes lead to suboptimal wound healing and significant morbidity and mortality for patients. The use of skin substitutes provides an alternative therapy showing superior efficacy and, in some cases, similar cost-effectiveness compared to traditional treatments. This review discusses the different types of currently available commercial skin substitutes for use in chronic wounds as well as the paucity of strong evidence supporting their use. It then delves into the limitations of these skin substitutes and examines the most recent research targeting these limitations.
Collapse
Affiliation(s)
| | - Jensen Yeung
- 2 Department of Dermatology, Women's College Hospital and Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,3 Division of Dermatology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Brow reduction, reshaping and suspension by a 20-degree beveled brow incision technique. J Craniomaxillofac Surg 2016; 44:958-63. [DOI: 10.1016/j.jcms.2016.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
|