1
|
Chung WCJ, Tsai PS. The initiation and maintenance of gonadotropin-releasing hormone neuron identity in congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1166132. [PMID: 37181038 PMCID: PMC10173152 DOI: 10.3389/fendo.2023.1166132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Neurons that secrete gonadotropin-releasing hormone (GnRH) drive vertebrate reproduction. Genetic lesions that disrupt these neurons in humans lead to congenital hypogonadotropic hypogonadism (CHH) and reproductive failure. Studies on CHH have largely focused on the disruption of prenatal GnRH neuronal migration and postnatal GnRH secretory activity. However, recent evidence suggests a need to also focus on how GnRH neurons initiate and maintain their identity during prenatal and postnatal periods. This review will provide a brief overview of what is known about these processes and several gaps in our knowledge, with an emphasis on how disruption of GnRH neuronal identity can lead to CHH phenotypes.
Collapse
Affiliation(s)
- Wilson CJ Chung
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
2
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Rajan SG, Saxena A. Scents from the past: Lineage history and terminal identity in the olfactory system. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220037. [PMID: 36519073 PMCID: PMC9746709 DOI: 10.1002/ntls.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Sriivatsan G. Rajan
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
4
|
Shan Y, Wray S. Hidden 'pit'falls in deciphering the gonadotropin releasing hormone neuroendocrine cell lineage. J Neuroendocrinol 2021; 33:e13039. [PMID: 34553448 PMCID: PMC8616834 DOI: 10.1111/jne.13039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/02/2023]
Abstract
To this day, the identity of gonadotropin-releasing hormone (GnRH) progenitors remains unclear. However, the visualization of different developmental markers in subsets of GnRH neurons during early embryonic stages raised the possibility of at least two GnRH subpopulations. This observation led directly to a second question. Does visualization of different developmental markers in subsets of GnRH neurons reflect functional heterogeneity? This question remains unanswered, but as we learn more about the GnRH system, functional GnRH subpopulations become critically important to understanding GnRH function. This review addresses the development of the neuroendocrine GnRH system, specifically the heterogeneity of the GnRH neuroendocrine population.
Collapse
Affiliation(s)
- Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Schmid T, Boehm U, Braun T. GnRH neurogenesis depends on embryonic pheromone receptor expression. Mol Cell Endocrinol 2020; 518:111030. [PMID: 32931849 DOI: 10.1016/j.mce.2020.111030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons control mammalian reproduction and migrate from their birthplace in the nasal placode to the hypothalamus during development. Despite much work on the origin and migration of GnRH neurons, the processes that control GnRH lineage formation are not fully understood. Here, we demonstrate that Nhlh genes control vomeronasal receptor expression in the developing murine olfactory placode associated with the generation of the first GnRH neurons at embryonic days (E)10-12. Inactivation of ß2-microglobulin (ß2-m), which selectively affects surface expression of V2Rs, dramatically decreased the number of GnRH neurons in the Nhlh2 mutant background, preventing rescue of fertility in female Nhlh2 mutant mice by male pheromones. In addition, we show that GnRH neurons generated after E12 fail to establish synaptic connections to the vomeronasal amygdala, suggesting the existence of functionally specialized subpopulations of GnRH neurons, which process pheromonal information.
Collapse
Affiliation(s)
- Thomas Schmid
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Ludwigstr. 43, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Ludwigstr. 43, Germany; Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
7
|
Chung WCJ, Linscott ML, Rodriguez KM, Stewart CE. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development. Front Endocrinol (Lausanne) 2016; 7:114. [PMID: 27656162 PMCID: PMC5011149 DOI: 10.3389/fendo.2016.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
Collapse
Affiliation(s)
- Wilson C. J. Chung
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Wilson C. J. Chung,
| | - Megan L. Linscott
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Karla M. Rodriguez
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Courtney E. Stewart
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
8
|
|
9
|
Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 2015; 36:165-77. [PMID: 25306902 PMCID: PMC4703044 DOI: 10.1016/j.yfrne.2014.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Gonadotropin releasing hormone (GnRH) neurons originate the nasal placode and migrate into the brain during prenatal development. Once within the brain, these cells become integral components of the hypothalamic-pituitary-gonadal axis, essential for reproductive function. Disruption of this system causes hypogonadotropic hypogonadism (HH). HH associated with anosmia is clinically defined as Kallman syndrome (KS). Recent work examining the developing nasal region has shed new light on cellular composition, cell interactions and molecular cues responsible for the development of this system in different species. This review discusses some developmental aspects, animal models and current advancements in our understanding of pathologies affecting GnRH. In addition we discuss how development of neural crest derivatives such as the glia of the olfactory system and craniofacial structures control GnRH development and reproductive function.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
10
|
Stevenson EL, Corella KM, Chung WCJ. Ontogenesis of gonadotropin-releasing hormone neurons: a model for hypothalamic neuroendocrine cell development. Front Endocrinol (Lausanne) 2013; 4:89. [PMID: 23882261 PMCID: PMC3712253 DOI: 10.3389/fendo.2013.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/02/2013] [Indexed: 02/02/2023] Open
Abstract
The vertebrate hypothalamo-pituitary-gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which in rodents primarily resides in the preoptic/hypothalamic region. In this short review we will focus on: (1) the general embryonic temporal and spatial development of the rodent GnRH neuronal system, (2) the origin(s) of GnRH neurons, and (3) which transcription - and growth factors have been found to be critical for GnRH neuronal ontogenesis and cellular fate-specification. Moreover, we ask the question whether the molecular and cellular mechanisms involved in GnRH neuronal development may also play a role in the development of other hypophyseal secreting neuroendocrine cells in the hypothalamus.
Collapse
Affiliation(s)
- Erica L. Stevenson
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kristina M. Corella
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Wilson C. J. Chung
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Wilson C. J. Chung, Department of Biological Sciences, School of Biomedical Sciences, Kent State University, 222 Cunningham Hall, Kent, OH 44242, USA e-mail:
| |
Collapse
|
11
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
Forni PE, Wray S. Neural crest and olfactory system: new prospective. Mol Neurobiol 2012; 46:349-60. [PMID: 22773137 PMCID: PMC3586243 DOI: 10.1007/s12035-012-8286-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/27/2012] [Indexed: 02/07/2023]
Abstract
Sensory neurons in vertebrates are derived from two embryonic transient cell sources: neural crest (NC) and ectodermal placodes. The placodes are thickenings of ectodermal tissue that are responsible for the formation of cranial ganglia as well as complex sensory organs that include the lens, inner ear, and olfactory epithelium. The NC cells have been indicated to arise at the edges of the neural plate/dorsal neural tube, from both the neural plate and the epidermis in response to reciprocal interactions Moury and Jacobson (Dev Biol 141:243-253, 1990). NC cells migrate throughout the organism and give rise to a multitude of cell types that include melanocytes, cartilage and connective tissue of the head, components of the cranial nerves, the dorsal root ganglia, and Schwann cells. The embryonic definition of these two transient populations and their relative contribution to the formation of sensory organs has been investigated and debated for several decades (Basch and Bronner-Fraser, Adv Exp Med Biol 589:24-31, 2006; Basch et al., Nature 441:218-222, 2006) review (Baker and Bronner-Fraser, Dev Biol 232:1-61, 2001). Historically, all placodes have been described as exclusively derived from non-neural ectodermal progenitors. Recent genetic fate-mapping studies suggested a NC contribution to the olfactory placodes (OP) as well as the otic (auditory) placodes in rodents (Murdoch and Roskams, J Neurosci Off J Soc Neurosci 28:4271-4282, 2008; Murdoch et al., J Neurosci 30:9523-9532, 2010; Forni et al., J Neurosci Off J Soc Neurosci 31:6915-6927, 2011b; Freyer et al., Development 138:5403-5414, 2011; Katoh et al., Mol Brain 4:34, 2011). This review analyzes and discusses some recent developmental studies on the OP, placodal derivatives, and olfactory system.
Collapse
Affiliation(s)
- Paolo E. Forni
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Rm. 3A-1012, Bethesda, MD 20892-3703, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Rm. 3A-1012, Bethesda, MD 20892-3703, USA
| |
Collapse
|
13
|
Sabado V, Barraud P, Baker CVH, Streit A. Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol 2012; 362:254-62. [PMID: 22200593 PMCID: PMC4561506 DOI: 10.1016/j.ydbio.2011.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
A small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult.
Collapse
Affiliation(s)
- Virginie Sabado
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| | - Perrine Barraud
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Clare V. H. Baker
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Andrea Streit
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| |
Collapse
|
14
|
Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 2011; 31:6915-27. [PMID: 21543621 DOI: 10.1523/jneurosci.6087-10.2011] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The origin of GnRH-1 cells and olfactory ensheathing cells has been controversial. Genetic Cre-lox lineage tracing of the neural crest (NC) versus ectodermal contribution to the developing nasal placode was performed using two complementary mouse models, the NC-specific Wnt1Cre mouse line and an ectodermal-specific Crect mouse line. Using these lines we prove that the NC give rise to the olfactory ensheathing cells and subpopulations of GnRH-1 neurons, olfactory and vomeronasal cells. These data demonstrate that Schwann cells and olfactory ensheathing cells share a common developmental origin. Furthermore, the results indicate that certain conditions that impact olfaction and sexual development, such as Kallmann syndrome, may be in part neurocristopathies.
Collapse
|
15
|
Parkinson N, Collins MM, Dufresne L, Ryan AK. Expression patterns of hormones, signaling molecules, and transcription factors during adenohypophysis development in the chick embryo. Dev Dyn 2010; 239:1197-210. [PMID: 20175188 DOI: 10.1002/dvdy.22250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chick embryo is an ideal model to study pituitary cell-type differentiation. Previous studies describing the temporal appearance of differentiated pituitary cell types in the chick embryo are contradictory. To resolve these controversies, we used RT-PCR to define the temporal onset and in situ hybridization and immunohistochemistry to define the spatial localization of hormone expression within the pituitary. RT-PCR detected low levels of Fshbeta (gonadotropes) and Pomc (corticotropes, melanotropes) mRNA at E4 and Gh (somatotropes), Prl (lactotropes), and Tshbeta (thyrotropes) mRNA at E8. For all hormones, sufficient accumulation of mRNA and/or protein to permit detection by in situ hybridization or immunohistochemistry was observed approximately 3 days later and in all cases corresponded to a notable increase in RT-PCR product. We also describe the expression patterns of signaling (Bmp2, Bmp4, Fgf8, Fgf10, Shh) and transcription factors (Pitx1, Pitx2, cLim3) known to be important for pituitary organogenesis in other model organisms.
Collapse
Affiliation(s)
- Nicole Parkinson
- Department of Pediatrics, McGill University, Montréal, Québec, Canada H3Z 2Z3
| | | | | | | |
Collapse
|
16
|
Abstract
Gonadotrophin-releasing hormone-1 (GnRH-1) is essential for mammalian reproduction, controlling release of gonadotrophins from the anterior pituitary. GnRH-1 neurones migrate from the nasal placode into the forebrain during development. Although first located within the nasal placode, the embryonic origin/lineage of GnRH-1 neurones is still unclear. The migration of GnRH-1 cells is the best characterised example of neurophilic/axophilic migration, with the cells using a subset of olfactory-derived vomeronasal axons as their pathway and numerous molecules to guide their movement into the forebrain. Exciting work in this area is beginning to identify intersecting pathways that orchestrate the movement of these critical neuroendocrine cells into the central nervous system, both spatially and temporally, through a diverse and changing terrain. Once within the forebrain, little is known about how the axons target the median eminence and ultimately secrete GnRH-1 in a pulsatile fashion.
Collapse
Affiliation(s)
- S Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Bhattacharyya S, Bronner-Fraser M. Competence, specification and commitment to an olfactory placode fate. Development 2009; 135:4165-77. [PMID: 19029046 DOI: 10.1242/dev.026633] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nasal placode shares a common origin with other sensory placodes within a pre-placodal domain at the cranial neural plate border. However, little is known about early events in nasal placode development as it segregates from prospective lens, neural tube and epidermis. Here, Dlx3, Dlx5, Pax6 and the pan-neuronal marker Hu serve as molecular labels to follow the maturation of olfactory precursors over time. When competence to form olfactory placode was tested by grafting ectoderm from different axial levels to the anterior neural fold, we found that competence is initially broad for head, but not trunk, ectoderm and declines rapidly with time. Isolated olfactory precursors are specified by HH10, concomitant with their complete segregation from other placodal, epidermal and neural progenitors. Heterotopic transplantation of olfactory progenitors reveals they are capable of autonomous differentiation only 12 hours later, shortly before overt placode invagination at HH14. Taken together, these results show that olfactory placode development is a step-wise process whereby signals from adjacent tissues specify competent ectoderm at or before HH10, followed by gradual commitment just prior to morphological differentiation.
Collapse
Affiliation(s)
- Sujata Bhattacharyya
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
18
|
Developing a sense of scents: plasticity in olfactory placode formation. Brain Res Bull 2007; 75:340-7. [PMID: 18331896 DOI: 10.1016/j.brainresbull.2007.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/17/2007] [Indexed: 11/21/2022]
Abstract
The sense organs of the vertebrate head arise predominantly from sensory placodes. The sensory placodes have traditionally been grouped as structures that share common developmental and evolutionary characteristics. In attempts to build a coherent model for development of all placodes, the fascinating differences that make placodes unique are often overlooked. Here I review olfactory placode development with special attention to the origin and cell movements that generate the olfactory placode, the derivatives of this sensory placode, and the degree to which it shows plasticity during development. Next, through comparison with adenohypophyseal, and lens placodes I suggest we revise our thinking and terminology for these anterior placodes, specifically by: (1) referring to the peripheral olfactory sensory system as neural ectoderm because it expresses the same series of genes involved in neural differentiation and differentiates in tandem with the olfactory bulb, and (2) grouping the anterior placodes with their corresponding central nervous system structures and emphasizing patterning mechanisms shared between placodes and these targets. Sensory systems did not arise independent of the central nervous system; they are part of a functional unit composed of peripheral sensory structures and their targets. By expanding our analyses of sensory system development to also include cell movements, gene expression and morphological changes observed in this functional unit, we will better understand the evolution of sensory structures.
Collapse
|
19
|
Whitlock KE, Illing N, Brideau NJ, Smith KM, Twomey S. Development of GnRH cells: Setting the stage for puberty. Mol Cell Endocrinol 2006; 254-255:39-50. [PMID: 16777316 DOI: 10.1016/j.mce.2006.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cells containing gonadotropin-releasing hormone (GnRH) are essential not only for reproduction but also for neuromodulatory functions in the adult animal. A variety of studies have hinted at multiple origins for GnRH-containing cells in the developing embryo. We have shown, using zebrafish as a model system, that GnRH cells originate from precursors lying outside the olfactory placode: the region of the anterior pituitary gives rise to hypothalamic GnRH cells and the cranial neural crest gives rise to the GnRH cells of the terminal nerve and midbrain. Cells of both the forming anterior pituitary and cranial neural crest are closely apposed to the precursors of the olfactory epithelium during early development. Disruption of kallmann gene function results in loss of the hypothalamic but not the terminal nerve GnRH cells during early development. The GnRH proteins are expressed early in development and this expression is mirrored by the onset of GnRH receptor (GnRH-R) expression during early development. Thus the signaling of the GnRH neuronal circuitry is set up early in development laying the foundation for the GnRH network that is activated at puberty leading to reproductive function in the mature animal.
Collapse
Affiliation(s)
- K E Whitlock
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | |
Collapse
|
20
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
21
|
Abstract
Neurons that synthesize GnRH are critical brain regulators of the reproductive axis, yet they originate outside the brain and must migrate over long distances and varied environments to get to their appropriate positions during development. Many studies, past and present, are providing clues for the types of molecules encountered and movements expected along the migratory route. Recent studies provide real-time views of the behavior of GnRH neurons in the context of in vitro preparations that model those in vivo. Live images provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more alterations in direction after they enter the brain. The heterogeneity of molecular phenotypes for GnRH neurons likely ensures that multiple external factors will be found that regulate the migration of different portions of the GnRH neuronal population at different steps along the route. Molecules distributed in gradients both in the peripheral olfactory system and basal forebrain may be particularly influential in directing the appropriate movement of GnRH neurons along their arduous migration. Molecules that mediate the adhesion of GnRH neurons to changing surfaces may also play critical roles. It is likely that the multiple external factors converge on selective signal transduction pathways to engage the mechanical mechanisms needed to modulate GnRH neuronal movement and ultimately migration.
Collapse
Affiliation(s)
- Stuart A Tobet
- Colorado State University, Department of Biomedical Sciences, 1617 Campus Delivery, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
22
|
Chapman SC, Sawitzke AL, Campbell DS, Schoenwolf GC. A three-dimensional atlas of pituitary gland development in the zebrafish. J Comp Neurol 2005; 487:428-40. [PMID: 15906316 DOI: 10.1002/cne.20568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pituitary gland is unique to Chordates, with significant variation within this group, offering an excellent opportunity to increase insight into phylogenetic relationships within this phylum. The structure of the pituitary in adult Teleosts (class: Osteichthyes) is quite different from that in other chordates and is also variable among members of the class. Therefore, a complete description of the structure and development of the pituitary in members of this class is a critical component to our overall understanding of this gland. An obvious teleost model organism is the zebrafish, Danio rerio, as a significant amount of work has been done on the molecular control of pituitary development in this fish. However, very little work has been published on the morphological development of the pituitary in the zebrafish; the present study aims to fill this void. The pituitary develops from cells on the rostrodorsal portion of the head and reaches its final position, ventral to the hypothalamus, as the cephalic flexure occurs and the jaws and mouth form. The pituitary placode is juxtaposed to cells that will form the olfactory vesicles, the stomodeum, and the hatching gland. The volume of the pituitary is greatest at 24 hours post fertilization (hpf). From 24 to 120 hpf, the pituitary decreases in height and width as it undergoes convergent extension, increasing in length with the axis. The adenohypophysis is a morphologically distinct structure by 24 hpf, whereas the neurohypophysis remains indistinct until 72 hpf. The findings of this study correlate well with the available molecular data.
Collapse
Affiliation(s)
- Susan C Chapman
- Department of Neurobiology and Anatomy, and Children's Health Research Center, University of Utah School of Medicine, Salt Lake City, Utah 84132-3401, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Gonadotropin-releasing hormone (GnRH) is an essential decapeptide, with both endocrine and neuromodulatory functions in vertebrates. GnRH-containing cells of the forebrain were thought to originate in the olfactory placode and migrate to their central nervous system destinations, and those of the midbrain to arise locally from the neural tube. Here, the embryonic origins of GnRH cells are re-examined in light of recent data suggesting that forebrain GnRH cells arise from the anterior pituitary placode and cranial neural crest, from where they migrate to their final destinations. The emerging picture suggests that GnRH cells do not originate from the olfactory placodes, but arise from multiple embryonic origins, and transiently associate with the developing olfactory system as they migrate to ventral forebrain locations.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, 445/449 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Von Bartheld CS. The terminal nerve and its relation with extrabulbar "olfactory" projections: lessons from lampreys and lungfishes. Microsc Res Tech 2005; 65:13-24. [PMID: 15570592 DOI: 10.1002/jemt.20095] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The definition of the terminal nerve has led to considerable confusion and controversy. This review analyzes the current state of knowledge as well as diverging opinions about the existence, components, and definition of terminal nerves or their components, with emphasis on lampreys and lungfishes. I will argue that the historical terminology regarding this cranial nerve embraces a definition of a terminal nerve that is compatible with its existence in all vertebrate species. This review further summarizes classical and more recent anatomical, developmental, neurochemical, and molecular evidence suggesting that a multitude of terminalis cell types, not only those expressing gonadotropin-releasing hormone, migrate various distances into the forebrain. This results in numerous morphological and neurochemically distinct phenotypes of neurons, with a continuum spanning from olfactory receptor-like neurons in the olfactory epithelium to typical large ganglion cells that accompany the classical olfactory projections. These cell bodies may lose their peripheral connections with the olfactory epithelium, and their central projections or cell bodies may enter the forebrain at several locations. Since "olfactory" marker proteins can be expressed in bona fide nervus terminalis cells, so-called extrabulbar "olfactory" projections may be a collection of disguised nervus terminalis components. If we do not allow this pleiomorphic collection of nerves to be considered within a terminal nerve framework, then the only alternative is to invent a highly species- and stage-specific, and, ultimately, thoroughly confusing nomenclature for neurons and nerve fibers that associate with the olfactory nerve and forebrain.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
25
|
Abstract
The origin of the nervus terminalis is one of the least well understood developmental events involved in generating the cranial ganglia of the forebrain in vertebrate animals. This cranial nerve forms at the formidable interface of the anteriormost limits of migrating cranial neural crest cells, the terminal end of the neural tube and the differentiating olfactory and adenohypophyseal placodes. The complex cellular interactions that give rise to the various structures associated with the sensory placode (olfactory) and endocrine placode (adenohypophysis) surround and engulf this enigmatic cranial nerve. The tortured history of nervus terminalis development (see von Bartheld, this issue, pages 13-24) reflects the lack of consensus on the origin (or origins), as well as the experimental difficulties in uncovering the origin, of the nervus terminalis. Recent technical advances have allowed us to make headway in understanding the origin(s) of this nerve. The emergence of the externally fertilized zebrafish embryo as a model system for developmental biology and genetics has shed new light on this century-old problem. Coupled with new developmental models are techniques that allow us to trace lineage, visualize gene expression, and genetically ablate cells, adding to our experimental tools with which to follow up on studies provided by our scientific predecessors. Through these techniques, a picture is emerging in which the origin of at least a subset of the nervus terminalis cells lies in the cranial neural crest. In this review, the data surrounding this finding will be discussed in light of recent findings on neural crest and placode origins.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, 445 Biotechnology Building, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
26
|
von Bartheld CS, Baker CVH. Nervus terminalis derived from the neural crest? A surprising new turn in a century-old debate. ACTA ACUST UNITED AC 2004; 278:12-3. [PMID: 15170686 DOI: 10.1002/ar.b.20016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Witkin JW, Dao D, Livne I, Dunn IC, Zhou XL, Pula K, Silverman AJ. Early expression of chicken gonadotropin-releasing hormone-1 in the developing chick. J Neuroendocrinol 2003; 15:865-70. [PMID: 12899681 DOI: 10.1046/j.1365-2826.2003.01073.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH), which is essential for reproductive function, is made by neurones that migrate from the nasal region into the brain during early embryonic development. This migration begins in chick when the olfactory pit is formed. This is approximately the time that GnRH neurones can be detected immunocytochemically. The present study investigated (i). how early in development the GnRH gene is expressed and (ii). the sites of its expression. Accordingly, reverse transcriptase-polymerase chain reaction (PCR) and in situ hybridization were performed on chick embryos before gastrulation up until the stage by which GnRH neurones have begun to migrate into the central nervous system. Primers were made to the 5'- and 3'-UTR region of the message for cGnRH-I, the form of the peptide that is essential for reproductive function in the chicken. PCR product was found in all stages and the sequences of products from all stages were identical. Thus, the GnRH gene is expressed continuously throughout embryonic development. In situ hybridization with a digoxygenin labelled riboprobe revealed staining along the primitive streak immediately before gastrulation. In later stages, cGnRH-I gene expression was seen in association with the anterior neural ridge. The expression was subsequently restricted to a narrow, clearly defined region, which is associated with the presumptive nasal cavity and olfactory placode. Later, GnRH neurones could be seen in their migratory routes by both in situ hybridization and immunocytochemistry. Expression of the GnRH gene has been described in preimplantation stages in mammals and there is evidence that the neuropeptide plays a role in formation and maintenance of the placenta. What role (if any) it may play in early avian development remains unknown. The demonstration of sites of GnRH expression during the early period of neurulation suggests that GnRH neurones arise before olfactory placode formation.
Collapse
Affiliation(s)
- J W Witkin
- Department of Anatomy and Cell Biology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Whitlock KE, Wolf CD, Boyce ML. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio. Dev Biol 2003; 257:140-52. [PMID: 12710963 DOI: 10.1016/s0012-1606(03)00039-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The olfactory placodes generate the primary sensory neurons of the olfactory sensory system. Additionally, the olfactory placodes have been proposed to generate a class of neuroendocrine cells containing gonadotropin-releasing hormone (GnRH). GnRH is a multifunctional decapeptide essential for the development of secondary sex characteristics in vertebrates as well as a neuromodulator within the central nervous system. Here, we show that endocrine and neuromodulatory GnRH cells arise from two separate, nonolfactory regions in the developing neural plate. Specifically, the neuromodulatory GnRH cells of the terminal nerve arise from the cranial neural crest, and the endocrine GnRH cells of the hypothalamus arise from the adenohypophyseal region of the developing anterior neural plate. Our findings are consistent with cell types generated by the adenohypophysis, a source of endocrine tissue in vertebrate animals, and by neural crest, a source of cells contributing to the cranial nerves. The adenohypophysis arises from a region of the anterior neural plate flanked by the olfactory placode fields at early stages of development, and premigratory cranial neural crest lies adjacent to the caudal edge of the olfactory placode domain [Development 127 (2000), 3645]. Thus, the GnRH cells arise from tissue closely associated with the developing olfactory placode, and their different developmental origins reflect their different functional roles in the adult animal.
Collapse
Affiliation(s)
- K E Whitlock
- Field of Genetics and Development/Neurobiology and Behavior, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
29
|
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons, critical for reproduction, are derived from the nasal placode and migrate into the brain during prenatal development. Once within the brain, GnRH-1 cells become integral components of the CNS-pituitary-gonadal axis, essential for reproductive maturation and maintenance of reproductive function in adults. This review focuses on the lineage and development of the GnRH-1 neuroendocrine system. Although the migration of these cells from nose to brain has been well documented in a variety of species, many questions remain concerning the melecules and cues directing GnRH-1 cell differentiation, migration, axon targeting, and establishment and control of GnRH-1 secretion. These process most likely involve multiple and redundant cues because if these mechanisms fail, reproduction dysfunction will ensue and guarantee that this defect does not remain in the gene pool.
Collapse
Affiliation(s)
- S Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 5A-21, Bethesda, MD 20892-4156, USA.
| |
Collapse
|
30
|
Silverman AJ, Cserjesi P, Kanter E. Distribution of gonadotropin-releasing hormone neurones in the chick forebrain is independent of lineage relationships among cells of the early nasal placode. J Neuroendocrinol 2002; 14:207-12. [PMID: 11999720 DOI: 10.1046/j.0007-1331.2001.00762.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of reproduction depends upon the successful migration of gonadotropin-releasing hormone (GnRH) neurones from the nasal placode to the ventral forebrain during embryogenesis. Within the central nervous system (CNS), these neurones migrate to stereotyped, highly reproducible locations in septal, preoptic and hypothalamic nuclei. We postulated that lineage relationships (descent from a common precursor) might predict the final location of these neurones. To test this hypothesis, a complex retroviral library was used to label dividing cells in the placode and subsequently to identify them by the presence of the alkaline phosphatase marker. GnRH was detected immunocytochemically and lineage relationships determined by single cell polymerase chain reaction and sequencing of the degenerate oligonucleotide component of the retrovirus. GnRH-positive and GnRH-negative neurones were confined to the side ipsilateral to the injection; many cells derived from the placode that entered the CNS did not contain GnRH. This precise method of identifying and mapping the progeny of single neurones revealed that GnRH cells in any given area were derived from multiple precursors. This developmental pattern may contribute to assuring that all CNS locations critical to the orchestration of reproductive events will be populated by GnRH neurones.
Collapse
Affiliation(s)
- A J Silverman
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
31
|
Abstract
Gonadotropin-releasing hormone (GnRH) regulates the hypothalamo-pituitary-gonadal (HPG) axis in all vertebrates studied. GnRH neurons that regulate the HPG axis are primarily derived from progenitor cells in the nasal compartment (NC) and migrate along olfactory system derived fibers across the cribriform plate to destinations in the forebrain. Across their long and uncommon migratory route many factors are likely important for their successful development. Several classes of molecules are being studied for their potential influences on migration, including those related to cell surface interactions (membrane receptors, adhesion molecules, extracellular matrix (ECM) molecules, etc.) and those related to communication across distances (neurotransmitters, peptides, chemoattractant or repellent molecules). Of the classes of molecules associated with cell surface interactions, glycoconjugates with terminal galactose, are temporally and spatially expressed on olfactory fibers that guide GnRH neurons and may play role(s) in migration. Of the molecules associated with communication across distances, the neurotransmitter gamma-aminobutyric acid (GABA) is associated with the GnRH migration pathway and influences the position and organization of GnRH neurons in vitro and in vivo. Furthermore, galactose-containing glycoconjugates and GABA are associated with GnRH neurons in species ranging from humans to lamprey. In mice and rats, GABA is found transiently within a subpopulation of GnRH neurons as they migrate through the NC. One of the key elements in considering regulators of GnRH neuron migration is the diversity of GnRH synthesizing cells. For example, only subpopulations of GnRH neurons also contain GABA, specific GABA receptors, or select glycoconjugates. Similarly, treatments that influence GnRH neuronal migration may only affect specific subsets and not the entire population. It is likely that we will not be able to characterize the migration of all GnRH neurons by a single factor. By combining molecular inquiries with genetic models, single cell analyses, and an in vitro migration model, we are beginning to decipher one of the most critical events in the establishment of the reproductive axis.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center, School of Medicine, The University of Massachusetts, 200 Trapelo Road, Waltham, MA 02452, USA.
| | | | | |
Collapse
|
32
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|
33
|
Kramer PR, Wray S. Midline nasal tissue influences nestin expression in nasal-placode-derived luteinizing hormone-releasing hormone neurons during development. Dev Biol 2000; 227:343-57. [PMID: 11071759 DOI: 10.1006/dbio.2000.9896] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons differentiating into the luteinizing hormone-releasing hormone (LHRH) neuroendocrine phenotype are derived from the nasal placode. Cells within the vomeronasal organ anlage that turn on LHRH gene and peptide expression subsequently migrate into the forebrain where they influence reproductive function. The molecular and cellular cues regulating differentiation and migration of these cells are unknown. Discovery of developmental markers can indicate proteins directing or associated with differentiation. Analysis of such markers after manipulation of external cues can elucidate important extracellular differentiation signals. Embryonic LHRH neurons were examined in vivo for Mash-1 and nestin, two factors that delineate precursor populations in PNS and forebrain CNS cells. Nestin, but not Mash-1, was detected in early expressing LHRH cells in the vomeronasal organ anlage. These results were duplicated in LHRH neurons maintained in vitro in nasal explants. Such LHRH cells expressed nestin mRNA but not Mash-1 mRNA and were also negative for three other olfactory epithelial developmental transcription factors, Math4A, Math4C/neurogenin1, and NeuroD mRNA. Experimental manipulation of nasal explants revealed dual expression of nestin protein and LHRH in cells proximal to the vomeronasal organ anlage that was dependent upon midline cartilaginous/mesenchymal tissues. Prolonged nestin expression in LHRH cells after midline removal is consistent with nasal midline tissues modulating differentiation of LHRH neurons from the nasal placode.
Collapse
Affiliation(s)
- P R Kramer
- Cellular and Developmental Neurobiology Section, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | |
Collapse
|
34
|
Maas MR, Norgren RB. Disruption of the olfactory placode and brain conditioned medium increase the number of LHRH immunostained neurons in explants. Tissue Cell 2000; 32:216-22. [PMID: 11037791 DOI: 10.1054/tice.2000.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The olfactory placode gives rise to both olfactory receptor neurons, which remain as a component of the peripheral nervous system, and to luteinizing hormone-releasing hormone (LHRH) neurons, which migrate to the central nervous system. In this study, we used chick olfactory placode explants to ask several questions regarding LHRH neuronal differentiation. We found that explants of ectoderm from the fronto-nasal region of embryos as early as Hamilton & Hamburger (HH) stage 12 gave rise to LHRH neurons, that explants from all regions of the olfactory placode were able to generate LHRH neurons, that both brain conditioned medium and disruption of the olfactory placode increase the number of LHRH neurons observed in explants, and that the combination of these two manipulations results in the production of more LHRH neurons than either treatment alone. We conclude that LHRH neurons originate in the olfactory epithelium and that some of the same factors which influence olfactory receptor neuron development also affect LHRH neuronal development.
Collapse
Affiliation(s)
- M R Maas
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha 68198-6395, USA
| | | |
Collapse
|
35
|
Kramer PR, Guerrero G, Krishnamurthy R, Mitchell PJ, Wray S. Ectopic expression of luteinizing hormone-releasing hormone and peripherin in the respiratory epithelium of mice lacking transcription factor AP-2alpha. Mech Dev 2000; 94:79-94. [PMID: 10842061 DOI: 10.1016/s0925-4773(00)00316-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vertebrate transcription factor activator protein-2 (AP-2alpha) is involved in craniofacial morphogenesis. In the nasal placode AP-2alpha expression delineates presumptive respiratory epithelia from olfactory epithelia, with AP-2alpha expression restricted to the anterior region of the respiratory epithelium (absent from the olfactory epithelium) at later stages. To address the role AP-2alpha plays in differentiation of cell groups in the nasal placode, the spatiotemporal expression pattern of four markers normally associated with olfactory epithelial structures was analyzed in mice lacking AP-2alpha. These markers were the intermediate filament protein peripherin, the neuropeptide luteinizing hormone-releasing hormone (LHRH), the neural cell adhesion molecule (NCAM) and the olfactory transcription factor Olf-1. Development of cells expressing these markers was similar in both genotypes until embryonic day 12.5 (E12.5), indicating that the main olfactory epithelium and olfactory pit formation was normal. At E13.5 in mutant mice, ectopic LHRH neurons and peripherin axons were detected in respiratory epithelial areas, areas devoid of Olf-1 and NCAM staining. Over the next few days, an increase in total nasal LHRH neurons occurred. The increase in nasal LHRH neurons could be accounted for by LHRH neurons arising and migrating out of respiratory epithelial regions on peripherin-positive fibers. These results indicate that AP-2alpha is not essential for the separation of the olfactory and respiratory epithelium from the nasal placode and is consistent with AP-2alpha preventing recapitulation of developmental programs within the respiratory epithelium that lead to expression of LHRH and peripherin phenotypes.
Collapse
Affiliation(s)
- P R Kramer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20895, USA
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Daikoku S. The olfactory origin of luteinizing hormone-releasing hormone (LHRH) neurons. A new era in reproduction physiology. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:107-17. [PMID: 10399535 DOI: 10.1679/aohc.62.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper reviews those studies which conceived the concept that the brain LHRH-synthesizing neurons originate in the nasal placode. LHRH isolated from mammalian hypothalamus in 1971 was first shown immunohistochemically two years later in the hypothalamic neurons which project processes to the median eminence, to release it into the portal capillaries in the guinea pig. At an early stage of development, the LHRH cells were found in the nasal placode but not in the hypothalamus as shown in in vivo and in vitro developmental studies. The cells arising in the brain were delayed. This discrepancy was solved in 1989-1990 by findings that the cells derived in the placode at an early stage left the site and migrated to the forebrain vesicles along the placode-derived terminal and vomeronasal nerve fibers, both of which were found to express immunoreactive cell adhesion molecules. The neurons, after reaching the surface of the forebrain vesicles, entered into the brain by the guidance of the cell adhesion molecule-positive fibers, and came to be distributed not only in the hypothalamus but also in the telencephalon cortex, midbrain, limbic brain, and main and accessory olfactory bulbs. The attention to these heterogeneties led to discussion of the possible neurobiological significance of this peculiar peripheral neurogenesis from an evolutionary viewpoint.
Collapse
|
38
|
Daikoku S. [Olfactory origin of luteinizing hormone-releasing hormone (LHRH) neurons]. NIHON IKA DAIGAKU ZASSHI 1999; 66:94-106. [PMID: 10339987 DOI: 10.1272/jnms.66.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Mulrenin EM, Witkin JW, Silverman AJ. Embryonic development of the gonadotropin-releasing hormone (GnRH) system in the chick: a spatio-temporal analysis of GnRH neuronal generation, site of origin, and migration. Endocrinology 1999; 140:422-33. [PMID: 9886854 DOI: 10.1210/endo.140.1.6425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present a quantitative immunocytochemical study of GnRH migration by developmental stage. GnRH peptide was detected in cells of the olfactory epithelium at stage 19. Migration was initiated a few hours later at stage 20. Of interest is the observation that GnRH neurons paused at the central nervous system border for 3 days, entering the brain at stage 29. The major expansions of the GnRH population occurred at two points; stages 26 and 42. In one animal a third population expansion occurred after hatching, with the number of GnRH cells reaching 6600. To determine the site of origin of GnRH cells, embryos were exposed to tritiated thymidine and killed 5 h later. Most GnRH cells incorporated label in the olfactory epithelium; however, some autoradiographically labeled GnRH cells, possessing a neuronal morphology, were found in the olfactory nerve and the forebrain, suggesting that some GnRH neurons divide as they migrate. A cumulative labeling method employing tritiated thymidine was used to examine the birth date of GnRH neurons. Postmitotic GnRH cells were first detected at stages 19-21. At stage 24, a peak in GnRH neurogenesis preceded the increase in GnRH neurons expressing their peptide at stage 26. After stage 24, there was a gradual addition of postmitotic cells to the population through stage 35. A pulse-chase paradigm indicated that birth date did not influence the final GnRH cell distribution. Injections at stage 29, when 10% of the GnRH neurons are born, generated double labeled cells in all locations where placode-derived GnRH neurons reside.
Collapse
Affiliation(s)
- E M Mulrenin
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
40
|
Jastrow H, Burda H, Oelschläger HH. Unilateral absence of the terminal nerve and distribution of gonadotropin-releasing hormone immunoreactive neurons in the brain of the common mole-rat (Cryptomys, Rodentia). Brain Res 1998; 813:229-40. [PMID: 9838132 DOI: 10.1016/s0006-8993(98)00771-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A paired terminal nerve with gonadotropin-releasing hormone-immunoreactive (GnRHir) neurons was found in five of six specimens of the Zambian common mole-rat (Cryptomys sp.). In these animals the distribution of GnRHir neurons in the CNS was approximately even on both sides. One adult female lacked a right terminal nerve, yet exhibited a comparable total number of GnRHir neurons, most of which were located on the left side of the brain, i. e., on that side where the terminal nerve was present. An additional population of GnRHir cells was detected in the area of the parafascicular and dorsomedial thalamic nuclei of three non-reproductive adult females, but not in young animals (one female, two males). The additional GnRHir cells, referred to as dark spot cells (DSCs) since their perikarya exhibit large or small strongly immunoreactive vacuoles, were present on both sides of the brain in equal numbers even in the specimen with unilateral absence of the terminal nerve. Obviously, the lack of one terminal nerve correlates with a drastic reduction in the number of ipsilateral genuine neurons but leaves the DSCs unaffected.
Collapse
Affiliation(s)
- H Jastrow
- Department of Anatomy and Histology, J. Gutenberg-University, Becherweg 13, D-55128, Mainz, Germany.
| | | | | |
Collapse
|
41
|
Abstract
To obtain insight into the development of the heterogeneous intracerebral populations of luteinizing hormone-releasing hormone (LHRH) neurons, their spatiotemporal appearance was examined at different stages in normal rat embryos, in nasal epithelial explants in vitro, and in intrauterine nasal-operated embryos. Following the appearance of nerve cell adhesion molecule in the nasal placode at embryonic day (E) 12.5, LHRH neurons, generated in the nasal placode at E13.5, penetrated the forebrain vesicle (FV) by E14.5-15.5. After E16.5, as the FV elongated to form the olfactory bulb, the migrating neurons traversed posteriorly through the interhemispheric space to penetrate the septopreoptic (S-P) area. By E18.5, LHRH neurons were detected in the preoptic-diagonal band (P-D) area as well as in the S-P region, along with some scattered extrahypothalamic LHRH neurons. To determine the source of these neurons, we separately cultured dissected parts of E12.5 nasal pit epithelium. Neuronal generation was predominantly from the medial wall epithelium (NAP), but some LHRH neurons originated in the roof epithelium. Cocultures of the NAP (E12.5) with the FV, median eminence-arcuate complex, Rathke's pouch, mesencephalon, or medulla oblongata from E14.5 embryos revealed the ability of LHRH cells to penetrate all of these tissues. Uni- or bilateral nasal destruction was conducted at E16.5 or E15.5, respectively, and examined at E18.5 and E21.5. In the operated embryos, most LHRH neurons were present in the P-D system and some in the S-P area. This finding suggests that the neurons generated before E15.5 are primarily predisposed to form the P-D system, whereas those derived afterward form the S-P system.
Collapse
Affiliation(s)
- S Daikoku
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Japan.
| | | |
Collapse
|
42
|
Wu TJ, Gibson MJ, Rogers MC, Silverman AJ. New observations on the development of the gonadotropin-releasing hormone system in the mouse. JOURNAL OF NEUROBIOLOGY 1997; 33:983-98. [PMID: 9407018 DOI: 10.1002/(sici)1097-4695(199712)33:7<983::aid-neu9>3.0.co;2-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In ongoing efforts to study the ontogeny of gonadotropin-releasing hormone (GnRH) neurons, we serendipitously observed that increasing times of incubation in antibodies enhanced signal detection. Here, we describe significant differences in the early migration pattern, population dynamics, and growth cone morphology from published reports. The first immunoreactive GnRH cells were detected in the mouse at E10.75 (7.6 +/- 2.8 cells; morning after mating = E0.5), prior to the closure of the olfactory placode. Although half of these cells were in the medial wall of the olfactory pit, the other half had already initiated their migration, and approximately one quarter had reached the telencephalic vesicle. Although the migratory pattern of the GnRH cells after E11.00 was identical to that described previously, these earliest migrating cells traveled singly rather than in cords, with some reaching the presumptive preoptic area (posterior to the ganglionic eminence) by E11.75. The number of GnRH cells increased significantly (p < 0.05) to 777 +/- 183 at E11.75 and peaked at 1949.6 +/- 161.6 (p < 0.05) at E12.75. The adult population was approximately 800 cells distributed between the central nervous system (CNS) and the nasal region. Hence, the population of GnRH neurons during early development is much larger than previously appreciated; mechanisms for its decline are discussed. Neuritic extensions on the earliest GnRH neurons are short (30-50 microm) and blunt and may represent the leading edge of the moving cell. By E12.75, GnRH axons in the CNS had a ribboned or beaded morphology and increasingly more complex growth cones were noted from this time until the day of birth. The most complex growth cones were associated with apparent choice points along the axons' trajectory. By E13.75, GnRH axons were seen at the presumptive median eminence in all animals, and it was at this stage that the axons began to branch profusely. Branching, as well as the presence of growth cones, continued post-natally. These results provide further insights into the pathfinding mechanisms of GnRH cells and axons.
Collapse
Affiliation(s)
- T J Wu
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
43
|
Tobet SA, Sower SA, Schwarting GA. Gonadotropin-releasing hormone containing neurons and olfactory fibers during development: from lamprey to mammals. Brain Res Bull 1997; 44:479-86. [PMID: 9370214 DOI: 10.1016/s0361-9230(97)00229-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gonadotropin releasing-hormone (GnRH) regulates the hypothalamo-pituitary-gonadal axis in all vertebrates. The vast majority of GnRH neurons are thought to be derived from progenitor cells in medial olfactory placodes. Several antibodies and lectins that recognize cell surface carbohydrates have been useful for delineating the migratory pathway from the olfactory placodes and vomeronasal organ, through the nasal compartment, and across the cribriform plate into the brain. In rats, alpha-galactosyl-linked glycoconjugates (immunoreactive with the CC2 monoclonal antibody) are expressed on fibers along the GnRH migration pathway and approximately 10% of the GnRH neuronal population. In lamprey, the alpha-galactosyl binding lectin, Grifonia simplicifolia-I (GS-1), identifies cells and fibers of the developing olfactory system. In contrast to the CC2 immunoreactive GnRH neurons in rats, the GS-1 does not label a subpopulation of presumptive GnRH neurons in lamprey. Results from these and other experiments suggest that GnRH neurons in developing lamprey do not originate within the olfactory placode, but rather within proliferative zones of the diencephalon. However, the overlap of olfactory- and GnRH-containing fibers from prolarval stages to metamorphosis, suggest that olfactory stimuli may play a major role in the regulation of GnRH secretion in lamprey throughout life. By contrast, olfactory fibers are directly relevant to the migration of GnRH neurons from the olfactory placodes in mammalian species. Primary interactions between olfactory fibers and GnRH neurons are likely transient in mammals, and so in later life olfactory modulation of GnRH secretion is likely to be indirect.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center and Harvard Medical School, Waltham, MA 02254, USA
| | | | | |
Collapse
|
44
|
Abstract
Classically, it was thought that the adenohypophyseal gland originated from the oral ectoderm. Its development has been the object of numerous studies over many years. However, several questions are still raised about its origin, differentiation, and commitment. The adenohypophyseal gland could originate from the anterior ridge of the neural plate. Glandular adenohypophyseal cells are committed very early in embryonic life. Interactions between adenohypophyseal presumptive territory and neighboring tissues can exist very soon, as early as at the open neural stage. The expression of a given phenotype by the committed cells seems to be controlled by a number of differentiation and/or transcription factors. In view of all these studies, performed with the use of different in vivo and in vitro models, classical concepts of the embryology of the adenohypophyseal gland need to be reevaluated. Indeed, many questions remain unanswered concerning the molecular mechanisms of known and unknown factors controlling development of the adenohypophyseal gland.
Collapse
Affiliation(s)
- P M Dubois
- CNRS ER 102, Université Claude Bernard Lyon I, France
| | | | | |
Collapse
|
45
|
Verney C, el Amraoui A, Zecevic N. Comigration of tyrosine hydroxylase- and gonadotropin-releasing hormone-immunoreactive neurons in the nasal area of human embryos. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:251-9. [PMID: 8997509 DOI: 10.1016/s0165-3806(96)00147-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tyrosine hydroxylase (TH) immunoreactive (IR) central catecholaminergic neurons have been observed in human CNS from 4.5 gestational weeks (g.w.) on [Verney, C., Zecevic, N. and Puelles, L. Eur. J. Neurosci., Suppl. 8 (1995) 7044; Zecevic, N. and Verney, C., J. Comp, Neurol., 351 (1995) 509-535]. We describe here a discrete TH-IR cell population localized in the rostral nasal region during embryonic development. Tyrosine hydroxylase-IR cells spread from the olfactory placode towards the basal and medial telencephalon. They follow the same migration path as the gonadotropin-releasing hormone (GnRH)-IR hypothalamic neurons. Tyrosine hydroxylase-IR neurons are first detected at 4.5 g.w., while GnRH-IR cells are visualized later at 5.5 g.w. Double immunocytochemical labeling reveals the presence of three neuronal populations comigrating along the developing vomeronasal-nervus terminalis complex. These populations express either one or both TH and GnRH phenotypes depending on their position in the migration route. At 6 g.w., most of the neurons express TH immunoreactivity as they leave the vomeronasal organ whereas most of the GnRH-IR neurons are detected closer to the CNS and in the CNS itself. These results emphasize the early phenotypic heterogeneity of the different migrating neuronal populations generated in the olfactory placode in humans. At later stages, very few TH-IR neurons are detected in the anterior forebrain suggesting a transient expression of TH immunoreactivity within these neuronal populations.
Collapse
Affiliation(s)
- C Verney
- INSERM U.106, Hôpital Salpêtrière, Paris, France.
| | | | | |
Collapse
|
46
|
Hilal EM, Chen JH, Silverman AJ. Joint migration of gonadotropin-releasing hormone (GnRH) and neuropeptide Y (NPY) neurons from olfactory placode to central nervous system. JOURNAL OF NEUROBIOLOGY 1996; 31:487-502. [PMID: 8951106 DOI: 10.1002/(sici)1097-4695(199612)31:4<487::aid-neu8>3.0.co;2-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28-34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected.
Collapse
Affiliation(s)
- E M Hilal
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
47
|
Magrassi L, Graziadei PP. Lineage specification of olfactory neural precursor cells depends on continuous cell interactions. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 96:11-27. [PMID: 8922664 DOI: 10.1016/0165-3806(96)00068-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We transplanted, as a single cell suspension, cells dissociated from the mature and immature olfactory epithelium of rats or TgR(ROSA26)26Sor mice expressing constitutively the LacZ gene into the developing brain (cerebellum, striatum, inferior colliculus, lateral ventricles) of E15 rat fetuses. Grafted cells or their descendants were still present in the central nervous system more than a month after transplantation. Transplanted cells either integrated as isolated cells or, during the first day after transplantation, reaggregated into clusters. Scattered cells, despite their placodal origin, differentiated into neuron or glial cells with a central phenotype. This was demonstrated by anatomical methods and selective amplification of cDNA encoding for neuronal specific transcripts (microtubule-associated protein 2 and middle-molecular-mass neurofilament protein) expressed by the engrafted cells. Cells in large clusters generated an epithelium containing mature olfactory neurons. Some of them were immunoreactive for the olfactory marker protein. Our findings show that cells dissociated from the developing and adult olfactory organs when transplanted into the rat fetal brain can either completely change their fate and differentiate according to their final position or generate an olfactory epithelium if they reaggregate into large clusters.
Collapse
Affiliation(s)
- L Magrassi
- Department of Biological Science, Florida State University, Tallahassee 32306-4075, USA
| | | |
Collapse
|
48
|
Kjaer I, Hansen BF. Luteinizing hormone-releasing hormone and innervation pathways in human prenatal nasal submucosa: factors of importance in evaluating Kallmann's syndrome. APMIS 1996; 104:680-8. [PMID: 8972693 DOI: 10.1111/j.1699-0463.1996.tb04929.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A previous study has demonstrated that luteinizing hormone-releasing hormone (LHRH) is localized in the human bilateral vomeronasal organs in the nasal septum during a 4-week period of intrauterine life (22). The purpose of the present study was to elucidate the location of LHRH-expressing cells outside the vomeronasal organs, with special emphasis on the submucosa of the medial wall and roof of the nasal cavity. An additional aim was to study the innervation pathways in the same regions. Both regions can be affected in Kallmann's syndrome, which is characterized by hypogonadotropic hypogonadism (lack of LHRH) and often associated with anosmia. Histological sections of craniofacial regions (49 normal human fetuses, 6-19 weeks) were examined by immunohistochemical techniques for LHRH and for neuronal tissue (protein gene product 9.5, PGP 9.5). LHRH reactions were only seen in the septal submucosa extending from the vomeronasal organs to the olfactory bulb. There was a close spatiotemporal association between the occurrence of LHRH and neuronal tissue. From the rhino-olfactory epithelium separate nerve tissue extended to the olfactory bulb. It is suggested that the medial region of the nasal placode giving rise to the septal wall is always affected in Kallmann's syndrome, and in cases in which the phenotypic features are associated with anosmia, also the more lateral part of the nasal placode, from which the rhino-olfactory region originates, is affected.
Collapse
Affiliation(s)
- I Kjaer
- Department of Orthodontics, School of Dentistry, University of Copenhagen, Denmark
| | | |
Collapse
|
49
|
Nishizuka M, Ikeda S, Arai Y, Maeda N, Noda M. Cell surface-associated extracellular distribution of a neural proteoglycan, 6B4 proteoglycan/phosphacan, in the olfactory epithelium, olfactory nerve, and cells migrating along the olfactory nerve in chick embryos. Neurosci Res 1996; 24:345-55. [PMID: 8861104 DOI: 10.1016/0168-0102(95)01010-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunocytochemical and immuno-electron microscopic distribution of a neural proteoglycan (PG) was investigated with a monoclonal antibody, MAb 6B4, in the olfactory epithelium, the olfactory nerve, and the cells originating the epithelium and migrating along the olfactory nerve toward the forebrain in chick embryos. The PG recognized by MAb 6B4, that is 6B4 PG, in the brain of early postnatal rats, is identical to phosphacan. In chick embryos, immunoreactivity to 6B4 PG appeared on embryonic day (ED) 3-3.5 in a thin layer beneath the olfactory epithelium. It disappeared immediately, then becoming apparent in the bundles of the olfactory nerve. The immunoreactivity in the nerve bundles gradually increased during ED 5-11. On the other hand, cell surface-associated extracellular localization of the immunoreactivity was seen in the olfactory epithelium on ED 6 and afterwards. Immunofluorescent double-labeling of 6B4 PG and gonadotropin-releasing hormone (GnRH) revealed that the cell bodies of both GnRH-containing cells and other cells migrating along the olfactory nerve were surrounded by a rim immunoreactive to the PG. Under an electron microscope, the surfaces of the cell bodies and of the neurites in the nerve bundles were surrounded by deposits immunoreactive to 6B4 PG. These results indicate that 6B4 PG in chick embryos is one type of cell surface-associated extracellular matrix molecule, and that 6B4 PG covered the surfaces of migrating cells and of elongating olfactory nerve. The cell surface-associated extracellular localization of 6B4 PG found in the nasal region, taken together with the binding properties of this PG with cell adhesion molecules shown in rat brains, suggested that 6B4 PG played a role in guiding the migration of cells along the olfactory nerve in chick embryos.
Collapse
Affiliation(s)
- M Nishizuka
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Kjaer I, Fischer Hansen B. The human vomeronasal organ: prenatal developmental stages and distribution of luteinizing hormone-releasing hormone. Eur J Oral Sci 1996; 104:34-40. [PMID: 8653495 DOI: 10.1111/j.1600-0722.1996.tb00043.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to describe in 49 normal human prenatal specimens, 15-156 mm crown-rump length (CRL), the histomorphological development of the bilateral vomeronasal organ localized in the mucosa of the nasal septum. In addition, immunohistochemical localization of luteinizing hormone-releasing hormone (LHRH) was undertaken. The material was classified into five developmental stages (NAS I/V), based on the morphology of the nasal cavity. The vomeronasal organ was visible in stages NAS II, III and IV, corresponding to 21-102 mm CRL. Positive immunohistochemical reaction for LHRH neurons was pronounced in the vomeronasal organ in NAS II and III, corresponding approximately to fetal ages 8-12 gestational weeks (21-51 mm CRL). The study demonstrates in normal human prenatal material that LHRH can be recorded in the bilateral vomeronasal organs during approximately 4 weeks of intrauterine life.
Collapse
Affiliation(s)
- I Kjaer
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | |
Collapse
|