1
|
Makowczenko KG, Jastrzebski JP, Kiezun M, Paukszto L, Dobrzyn K, Smolinska N, Kaminski T. Adaptation of the Porcine Pituitary Transcriptome, Spliceosome and Editome during Early Pregnancy. Int J Mol Sci 2023; 24:ijms24065946. [PMID: 36983019 PMCID: PMC10053595 DOI: 10.3390/ijms24065946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The physiological mechanisms of the porcine reproduction are relatively well-known. However, transcriptomic changes and the mechanisms accompanying transcription and translation processes in various reproductive organs, as well as their dependence on hormonal status, are still poorly understood. The aim of this study was to gain a principal understanding of alterations within the transcriptome, spliceosome and editome occurring in the pituitary of the domestic pig (Sus scrofa domestica L.), which controls basic physiological processes in the reproductive system. In this investigation, we performed extensive analyses of data obtained by high-throughput sequencing of RNA from the gilts' pituitary anterior lobes during embryo implantation and the mid-luteal phase of the estrous cycle. During analyses, we obtained detailed information on expression changes of 147 genes and 43 long noncoding RNAs, observed 784 alternative splicing events and also found the occurrence of 8729 allele-specific expression sites and 122 RNA editing events. The expression profiles of the selected 16 phenomena were confirmed by PCR or qPCR techniques. As a final result of functional meta-analysis, we acquired knowledge regarding intracellular pathways that induce changes in the processes accompanying transcription and translation regulation, which may induce modifications in the secretory activity of the porcine adenohypophyseal cells.
Collapse
Affiliation(s)
- Karol G Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
4
|
Aizawa S, Sakai T, Sakata I. Glutamine and glutamic acid enhance thyroid-stimulating hormone β subunit mRNA expression in the rat pars tuberalis. J Endocrinol 2012; 212:383-94. [PMID: 22219301 DOI: 10.1530/joe-11-0388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid-stimulating hormone (TSH)-producing cells of the pars tuberalis (PT) display distinct characteristics that differ from those of the pars distalis (PD). The mRNA expression of TSHβ and αGSU in PT has a circadian rhythm and is inhibited by melatonin via melatonin receptor type 1; however, the detailed regulatory mechanism for TSHβ expression in the PT remains unclear. To identify the factors that affect PT, a microarray analysis was performed on laser-captured PT tissue to screen for genes coding for receptors that are abundantly expressed in the PT. In the PT, we found high expression of the KA2, which is an ionotropic glutamic acid receptor (iGluR). In addition, the amino acid transporter A2 (ATA2), also known as the glutamine transporter, and glutaminase (GLS), as well as GLS2, were highly expressed in the PT compared to the PD. We examined the effects of glutamine and glutamic acid on TSHβ expression and αGSU expression in PT slice cultures. l-Glutamine and l-glutamic acid significantly stimulated TSHβ expression in PT slices after 2- and 4-h treatments, and the effect of l-glutamic acid was stronger than that of l-glutamine. In contrast, treatment with glutamine and glutamic acid did not affect αGSU expression in the PT or the expression of TSHβ or αGSU in the PD. These results strongly suggest that glutamine is taken up by PT cells through ATA2 and that glutamic acid locally converted from glutamine by Gls induces TSHβ expression via the KA2 in an autocrine and/or paracrine manner in the PT.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | | | | |
Collapse
|
5
|
Abstract
L-glutamate, the main excitatory neurotransmitter, influences virtually all neurones of the neuroendocrine hypothalamus via synaptic mechanisms. Vesicular glutamate transporters (VGLUT1-3), which selectively accumulate L-glutamate into synaptic vesicles, provide markers with which to visualise glutamatergic neurones in histological preparations; excitatory neurones in the endocrine hypothalamus synthesise the VGLUT2 isoform. Results of recent dual-label in situ hybridisation studies indicate that glutamatergic neurones in the preoptic area and the hypothalamic paraventricular, supraoptic and periventricular nuclei include parvocellular and magnocellular neurosecretory neurones which secrete peptide neurohormones into the bloodstream to regulate endocrine functions. Neurosecretory terminals of GnRH, TRH, CRF-, somatostatin-, oxytocin- and vasopressin-secreting neurones contain VGLUT2 immunoreactivity, suggesting the co-release of glutamate with hypophysiotrophic peptides. The presence of VGLUT2 also indicates glutamate secretion from non-neuronal endocrine cells, including gonadotrophs and thyrotrophs of the anterior pituitary. Results of in vitro studies show that ionotropic glutamate receptor analogues can elicit hormone secretion at neuroendocrine/endocrine release sites. Structural constituents of the median eminence, adenohypophysis and neurohypophysis contain elements of glutamatergic transmission, including glutamate receptors and enzymes of the glutamate/glutamine cycle. The synthesis of VGLUT2 exhibits robust up-regulation in response to certain endocrine challenges, indicating that altered glutamatergic signalling may represent an important adaptive mechanism. This review article discusses the newly emerged non-synaptic role of glutamate in neuroendocrine and endocrine communication.
Collapse
Affiliation(s)
- E Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
6
|
Kiss J, Csaba Z, Csáki A, Halász B. Glutamatergic innervation of growth hormone-releasing hormone-containing neurons in the hypothalamic arcuate nucleus and somatostatin-containing neurons in the anterior periventricular nucleus of the rat. Brain Res Bull 2006; 70:278-88. [PMID: 17027763 DOI: 10.1016/j.brainresbull.2006.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Growth hormone-releasing hormone (GHRH) and somatostatin are the two main hypothalamic neurohormones, which stimulate or inhibit directly hypophysial growth hormone (GH) release. Majority of the GHRH neurons projecting to the median eminence is situated in the arcuate nucleus and the somatostatin neurons in the anterior periventricular nucleus. Data suggest that the excitatory amino acid glutamate may play an important role in the control of hypothalamic neuroendocrine neurons and processes including the control of GH. There is a dense plexus of glutamatergic fibres in the hypothalamic arcuate and anterior periventricular nucleus. The aim of the present studies was to examine the relationship of these fibres to the GHRH neurons in the arcuate nucleus and to somatostatin neurons in the anterior periventricular nucleus. Double-labelling immuno-electron microscopy was used. Glutamatergic structures were identified by the presence of vesicular glutamate transporter 2 (VGluT2) (a selective marker of glutamatergic elements) immunoreactivity. A significant number of VGluT2-immunoreactive boutons was observed to make asymmetric type of synapses with GHRH-immunostained nerve cells in the arcuate and with somatostatin neurons in the anterior periventricular nucleus. A subpopulation of somatostatin-immunoreactive neurons displayed also VGluT2 immunoreactivity. Our findings provide direct neuromorphological evidence for the view that the action of glutamate on GH release is exerted, at least partly, directly on GHRH and somatostatin neurons releasing these neurohormones into the hypophysial portal blood.
Collapse
Affiliation(s)
- József Kiss
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Tuzoltó u. 58, H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
7
|
Zelena D, Mergl Z, Makara GB. Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons. Brain Res 2005; 1031:185-93. [PMID: 15649443 DOI: 10.1016/j.brainres.2004.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 11/25/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role in the stress processes. The nucleus paraventricularis hypothalami (PVN) with corticotropin-releasing hormone (CRH)-containing and arginine vasopressin (AVP)-containing neurons is the main hypothalamic component of the HPA. The glutamate, a well-known excitatory neurotransmitter, can activate the HPA inducing adrenocorticotropin hormone (ACTH) elevation. The aim of our study was to examine the involvement of PVN and especially AVP in glutamate-induced HPA activation using agonists of the N-methyl-d-aspartate (NMDA) and kainate receptors. Two approaches were used: in male Wistar rats the PVN was lesioned, and AVP-deficient homozygous Brattleboro rats were also studied. Blood samples were taken through indwelling cannula and ACTH, and corticosterone (CS) levels were measured by radioimmunoassay. The i.v. administered NMDA (5 mg/kg) or kainate (2.5 mg/kg) elevated the ACTH and CS levels already at 5 min in control (sham-operated Wistar or heterozygous Brattleboro) rats. The PVN lesion had no influence on basal ACTH and CS secretion but blocked the NMDA- or kainate-induced ACTH and CS elevations. The lack of AVP in the Brattleboro animals had no significant influence on the basal or glutamate-agonists-induced ACTH and CS elevations. Our results suggest that NMDA and kainate may activate the HPA axis at central (PVN) level and not at the level of pituitary or adrenal gland and that AVP has minor role in glutamate-HPA axis interaction. The time course of the ACTH secretion was different with NMDA or kainate. If we compared the two curves, the results were not coherent with the general view that NMDA activation requires previous kainate activation. Although it has to be mentioned that the conclusion which can be drawn is limited, the bioavailability of the compounds could be different as well.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, PO Box 67, Hungary.
| | | | | |
Collapse
|
8
|
Hrabovszky E, Turi GF, Liposits Z. Presence of vesicular glutamate transporter-2 in hypophysiotropic somatostatin but not growth hormone-releasing hormone neurons of the male rat. Eur J Neurosci 2005; 21:2120-6. [PMID: 15869508 DOI: 10.1111/j.1460-9568.2005.04076.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that hypophysiotropic gonadotropin-releasing hormone (GnRH), corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH) neurons of the adult male rat express mRNA and immunoreactivity for type-2 vesicular glutamate transporter (VGLUT2), a marker for glutamatergic neuronal phenotype. In the present study, we investigated the issue of whether these glutamatergic features are shared by growth hormone-releasing hormone (GHRH) neurons of the hypothalamic arcuate nucleus (ARH) and somatostatin (SS) neurons of the anterior periventricular nucleus (PVa), the two parvicellular neurosecretory systems that regulate anterior pituitary somatotrophs. Dual-label in situ hybridization studies revealed relatively few cells that expressed VGLUT2 mRNA in the ARH; the GHRH neurons were devoid of VGLUT2 hybridization signal. In contrast, VGLUT2 mRNA was expressed abundantly in the PVa; virtually all (97.5 +/- 0.4%) SS neurons showed labelling for VGLUT2 mRNA. In accordance with these hybridization results, dual-label immunofluorescent studies followed by confocal laser microscopic analysis of the median eminence established the absence of VGLUT2 immunoreactivity in GHRH terminals and its presence in many neurosecretory SS terminals. The GHRH terminals, in turn, were immunoreactive for the vesicular gamma-aminobutyric acid (GABA) transporter, used in these studies as a marker for GABA-ergic neuronal phenotype. Together, these results suggest the paradoxic cosecretion of the excitatory amino acid neurotransmitter glutamate with the inhibitory peptide SS and the cosecretion of the inhibitory amino acid neurotransmitter GABA with the stimulatory peptide GHRH. The mechanisms of action of intrinsic amino acids in hypophysiotropic neurosecretory systems require clarification.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083 Hungary.
| | | | | |
Collapse
|
9
|
Scanes CG, Jeftinija S, Glavaski-Joksimovic A, Proudman J, Arámburo C, Anderson LL. The anterior pituitary gland: lessons from livestock. Domest Anim Endocrinol 2005; 29:23-33. [PMID: 15905067 DOI: 10.1016/j.domaniend.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 03/31/2005] [Accepted: 04/03/2005] [Indexed: 11/28/2022]
Abstract
There has been extensive research of the anterior pituitary gland of livestock and poultry due to the economic (agricultural) importance of physiological processes controlled by it including reproduction, growth, lactation and stress. Moreover, farm animals can be biomedical models or useful in evolutionary/ecological research. There are for multiple sites of control of the secretion of anterior pituitary hormones. These include the potential for independent control of proliferation, differentiation, de-differentiation and/or inter-conversion cell death, expression and translation, post-translational modification (potentially generating multiple isoforms with potentially different biological activities), release with or without a specific binding protein and intra-cellular catabolism (proteolysis) of pituitary hormones. Multiple hypothalamic hypophysiotropic peptides (which may also be produced peripherally, e.g. ghrelin) influence the secretion of the anterior pituitary hormones. There is also feedback for hormones from the target endocrine glands. These control mechanisms show broadly a consistency across species and life stages; however, there are some marked differences. Examples from growth hormone, prolactin, follicle stimulating hormone and luteinizing hormone will be considered. In addition, attention will be focused on areas that have been neglected including the role of stellate cells, multiple sub-types of the major adenohypophyseal cells, functional zonation within the anterior pituitary and the role of multiple secretagogues for single hormones.
Collapse
Affiliation(s)
- C G Scanes
- Department of Poultry Science, Mississippi State University, 617 Allen Hall, P.O. Box 6343, MS 39762, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. ACTA ACUST UNITED AC 2004; 271:1-13. [PMID: 14686914 DOI: 10.1046/j.1432-1033.2003.03907.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hypothesis that l-glutamate (Glu) is an excitatory amino acid neurotransmitter in the mammalian central nervous system is now gaining more support after the successful cloning of a number of genes coding for the signaling machinery required for this neurocrine at synapses in the brain. These include Glu receptors (signal detection), Glu transporters (signal termination) and vesicular Glu transporters (signal output through exocytotic release). Relatively little attention has been paid to the functional expression of these molecules required for Glu signaling in peripheral neuronal and non-neuronal tissues; however, recent molecular biological analyses show a novel function for Glu as an extracellular signal mediator in the autocrine and/or paracrine system. Emerging evidence suggests that Glu could play a dual role in mechanisms underlying the maintenance of cellular homeostasis - as an excitatory neurotransmitter in the central neurocrine system and an extracellular signal mediator in peripheral autocrine and/or paracrine tissues. In this review, the possible Glu signaling methods are outlined in specific peripheral tissues including bone, testis, pancreas, and the adrenal, pituitary and pineal glands.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
11
|
Abstract
We have previously demonstrated the presence of unidentified [3H]glutamate (Glu) binding sites with stereo-selectivity, high affinity and saturability in rat peripheral excitable tissues such as the pituitary (Yoneda, Y., Ogita, K., 1986a. [3H]Glutamate binding sites in the rat pituitary. Neurosci. Res. 3, 430--435) and adrenal (Yoneda, Y., Ogita, K., 1986b. Localization of [3H]glutamate binding sites in rat adrenal medulla. Brain Res. 383, 387--391, 1986). In this study, peripheral binding sites were further evaluated for the ionotropic Glu receptor subtype insensitive to N-methyl-D-aspartate by using reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, in addition to receptor binding using radiolabeled ligands other than [3H]Glu. Binding of [3H]kainate (KA) and [3H]DL-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate was detected in membrane preparations obtained from the rat pituitary and adrenal irrespective of prior treatment with Triton X-100. An RT-PCR analysis revealed constitutive expression of mRNA for GluR1, GluR3, GluR5, KA1 and KA2 subunits in the rat adrenal and pituitary, as well as the brain and retina. The pituitary also expressed mRNA for GluR2, GluR4, GluR6 and GluR7 subunits in contrast to the adrenal. Under our experimental conditions employed, however, Western blotting assays failed to confirm the expression of receptor proteins for GluR1, GluR2/3 and GluR4 subunits in the adrenal cortex, adrenal medulla, adenohypophysis and neurohypophysis. Immunoreactive GluR6/7 subunits were only detectable in the adenohypophysis, but not in the adrenal cortex, adrenal medulla and neurohypophysis. An intraperitoneal injection of KA doubled DNA binding activity of the nuclear transcription factor activator protein-1 in the rat pituitary, with concomitant more potent potentiation of that in the hippocampus. These results suggest that GluR6/7 subunits of KA receptors may be constitutively expressed with responsiveness to the systemic administration of an agonist at least in the rat adenohypophysis.
Collapse
Affiliation(s)
- E Hinoi
- Department of Molecular Pharmacology, Kanazawa University Faculty of Pharmaceutical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | | |
Collapse
|
12
|
Long Z, Lee JA, Okamoto T, Nimura N, Imai K, Homma H. d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 2000; 276:1143-7. [PMID: 11027602 DOI: 10.1006/bbrc.2000.3573] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
d-Aspartate (d-Asp) is found in prolactin (PRL)-containing cells of the rat anterior pituitary gland [Lee et al., Brain Res. 838, 193-199, 1999]. In order to determine whether d-Asp is actually produced by the anterior pituitary gland and whether it plays a physiological role in PRL function, a PRL-secreting clonal strain of rat pituitary tumor cells (GH(3)) was employed in this study. HPLC analysis and immunocytochemical staining detected the presence and synthesis of d-Asp in the cytoplasm of these cells. In addition, thyrotropin-releasing hormone-stimulated PRL secretion was increased in a dose-dependent fashion by d-Asp from these cells. These results suggest that the anterior pituitary gland synthesizes d-Asp and that d-Asp acts as a messenger in this gland.
Collapse
Affiliation(s)
- Z Long
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Fernstrom JD. Pituitary hormone secretion in normal male humans: acute responses to a large, oral dose of monosodium glutamate. J Nutr 2000; 130:1053S-7S. [PMID: 10736381 DOI: 10.1093/jn/130.4.1053s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have shown that the administration of a glutamate receptor agonist or a high dose of glutamate stimulates pituitary hormone secretion in animals. However, only a single human study has reported that an oral load of glutamic acid induced the secretion of prolactin and probably adrenocorticotropic hormone (ACTH) (but not other pituitary hormones). Because of glutamate's use in foods as monosodium glutamate (MSG), a flavoring agent, and the limited amount of human data, we studied the effect of a large oral dose of MSG in humans on the secretion of prolactin and other pituitary hormones. Fasting male subjects bearing venous catheters received on separate days each of the following four treatments: a vehicle, MSG (12.7 g), a high protein meal (a physiologic stimulus of prolactin secretion) by mouth, or an intravenous infusion of thyrotropin-releasing hormone (TRH, a pharmacologic stimulus of prolactin secretion). Plasma hormone responses were quantitated by RIA at 20-min intervals for 4 h. The protein meal induced a modest increase and TRH infusion a substantial increase in plasma prolactin, whereas MSG ingestion did not. MSG ingestion also did not raise the plasma concentrations of any of the other pituitary hormones measured (luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, growth hormone) or of cortisol. Ingestion of MSG raised plasma glutamate concentrations 11-fold; the protein meal did not raise plasma glutamate. The results demonstrate that MSG ingestion in humans does not modify anterior pituitary hormone secretion. One implication is that diet-derived glutamate may not penetrate into hypothalamic regions controlling anterior pituitary function.
Collapse
Affiliation(s)
- J D Fernstrom
- Departments of Psychiatry, Pharmacology and Neuroscience and UPMC Center for Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Pszczolkowski MA, Lee WS, Liu HP, Chiang AS. Glutamate-induced rise in cytosolic calcium concentration stimulates in vitro rates of juvenile hormone biosynthesis in corpus allatum of Diploptera punctata. Mol Cell Endocrinol 1999; 158:163-71. [PMID: 10630416 DOI: 10.1016/s0303-7207(99)00167-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We show that in a cockroach, Diploptera punctata, endocrine function of the corpus allatum may be modulated by L-glutamate, a major fast excitatory neurotransmitter in the central nervous system of vertebrates and invertebrates. The widely accepted concept that synthesis of juvenile hormone (JH) depends upon intracellular calcium concentration, is extended by the finding that 60 and 100 microM L-glutamate induces both an increase in calcium concentration in the cytosol of corpus allatum cells, and stimulates JH synthesis in vitro. We show that L-glutamate stimulates JH synthesis by inducing calcium influx since in calcium-free medium the stimulatory effect is not observed. Furthermore, the non-specific glutamate-receptor antagonist, 100 microM kynurenate, and 1.8 mM magnesium, inhibit the stimulatory effect of L-glutamate on JH synthesis in vitro. These results suggest that functional ionotropic glutamate receptors are present on the surface of the cells in corpus allatum, and that rates of JH are at least in part regulated via these receptors.
Collapse
Affiliation(s)
- M A Pszczolkowski
- Department of Life Science, National Tsing-Hua University, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|
15
|
Abstract
The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system, especially by the functional interplay of two hypothalamic hypophysiotropic hormones, GH-releasing hormone (GHRH) and somatostatin (SS), exerting stimulatory and inhibitory influences, respectively, on the somatotrope. The two hypothalamic neurohormones are subject to modulation by a host of neurotransmitters, especially the noradrenergic and cholinergic ones and other hypothalamic neuropeptides, and are the final mediators of metabolic, endocrine, neural, and immune influences for the secretion of GH. Since the identification of the GHRH peptide, recombinant DNA procedures have been used to characterize the corresponding cDNA and to clone GHRH receptor isoforms in rodent and human pituitaries. Parallel to research into the effects of SS and its analogs on endocrine and exocrine secretions, investigations into their mechanism of action have led to the discovery of five separate SS receptor genes encoding a family of G protein-coupled SS receptors, which are widely expressed in the pituitary, brain, and the periphery, and to the synthesis of analogs with subtype specificity. Better understanding of the function of GHRH, SS, and their receptors and, hence, of neural regulation of GH secretion in health and disease has been achieved with the discovery of a new class of fairly specific, orally active, small peptides and their congeners, the GH-releasing peptides, acting on specific, ubiquitous seven-transmembrane domain receptors, whose natural ligands are not yet known.
Collapse
Affiliation(s)
- E E Müller
- Department of Pharmacology, Chemotherapy, and Toxicology, University of Milan, Milan, Italy
| | | | | |
Collapse
|
16
|
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19:717-97. [PMID: 9861545 DOI: 10.1210/edrv.19.6.0353] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During the last decade, the GH axis has become the compelling focus of remarkably active and broad-ranging basic and clinical research. Molecular and genetic models, the discovery of human GHRH and its receptor, the cloning of the GHRP receptor, and the clinical availability of recombinant GH and IGF-I have allowed surprisingly rapid advances in our knowledge of the neuroregulation of the GH-IGF-I axis in many pathophysiological contexts. The complexity of the GHRH/somatostatin-GH-IGF-I axis thus commends itself to more formalized modeling (154, 155), since the multivalent feedback-control activities are difficult to assimilate fully on an intuitive scale. Understanding the dynamic neuroendocrine mechanisms that direct the pulsatile secretion of this fundamental growth-promoting and metabolic hormone remains a critical goal, the realization of which is challenged by the exponentially accumulating matrix of experimental and clinical data in this arena. To the above end, we review here the pathophysiology of the GHRH somatostatin-GH-IGF-I feedback axis consisting of corresponding key neurotransmitters, neuromodulators, and metabolic effectors, and their cloned receptors and signaling pathways. We propose that this system is best viewed as a multivalent feedback network that is exquisitely sensitive to an array of neuroregulators and environmental stressors and genetic restraints. Feedback and feedforward mechanisms acting within the intact somatotropic axis mediate homeostatic control throughout the human lifetime and are disrupted in disease. Novel effectors of the GH axis, such as GHRPs, also offer promise as investigative probes and possible therapeutic agents. Further understanding of the mechanisms of GH neuroregulation will likely allow development of progressively more specific molecular and clinical tools for the diagnosis and treatment of various conditions in which GH secretion is regulated abnormally. Thus, we predict that unexpected and enriching insights in the domain of the neuroendocrine pathophysiology of the GH axis are likely be achieved in the succeeding decades of basic and clinical research.
Collapse
Affiliation(s)
- A Giustina
- Department of Internal Medicine, University of Brescia, Italy
| | | |
Collapse
|
17
|
Holloway AC, Leatherland JF. Effects of N-methyl-D,L-aspartate (NMA) on growth hormone and thyroid hormone levels in steroid-primed immature rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971001)279:2<126::aid-jez3>3.0.co;2-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Brann DW, Mahesh VB. Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr Rev 1997; 18:678-700. [PMID: 9331548 DOI: 10.1210/edrv.18.5.0311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D W Brann
- Department of Physiology and Endocrinology, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
19
|
Holloway AC, Leatherland JF. The effects of N-methyl-D,L-aspartate and gonadotropin-releasing hormone on in vitro growth hormone release in steroid-primed immature rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 1997; 107:32-43. [PMID: 9208304 DOI: 10.1006/gcen.1997.6907] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study we investigated the effects of 17 beta-estradiol (E2) and 5 alpha-dihydrotestosterone (5 alpha DHT) on the ability of the glutamate agonist, N-methyl-D,L-aspartate (NMA), to stimulate growth hormone (GH) release from perifused pituitary glands of sexually immature rainbow trout (Oncorhynchus mykiss). Two weeks after steroid hormone implantation, pituitary glands were removed from the fish and challenged with NMA (10(-8) M) in a perifusion unit. NMA rapidly and significantly elevated GH release from perifused pituitary fragments taken from all treatment groups, and there was a main effect of in vivo steroid hormone treatment on the in vitro GH response to NMA. To examine the relationship between NMA and gonadotropin-releasing hormone on GH release, pituitaries from E2- and 5 alpha DHT-primed and control fish were exposed to a single pulse of salmon gonadotropin-releasing hormone (sGnRH) which also elicited a significant elevation in GH release from perifused pituitary fragments, although the response in the E2- and 5 alpha DHT-primed fish was significantly smaller (P < 0.05) than that for the NMA challenge. Administration of a specific GnRH antagonist, D-pGlu1,D-Phe2,D-Trp3,6-LHRH, did not affect the GH response to NMA, whereas administration of the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid blocked the GH response to NMA. These data suggest that NMA acts to stimulate GH release directly at the level of the somatotroph, likely through the NMDA receptor and not through increased release of GnRH.
Collapse
Affiliation(s)
- A C Holloway
- Department of Zoology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Pinilla L, Tena-Sempere M, Gonzalez D, Aguilar E. Positive role of non-N-methyl-D-aspartate receptors in the control of growth hormone secretion in male rats. J Endocrinol Invest 1996; 19:353-8. [PMID: 8844454 DOI: 10.1007/bf03344969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of kainic acid (KA) (an agonist of non-NMDA receptors) in the control of GH secretion and the modulation of KA action by gonadal secretion were analysed in male rats. In the first experiment 4, 8, 12, 16, 20 and 30-day old males were sacrificed 15 min after injecting with vehicle or KA (2.5 mg/kg BW). In the second experiment, the effects of KA, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and MK-801 were analysed in monolayer cultures of dispersed adenohypophyseal cells. In the third experiment, adult males were sham-operated or orchiectomized and decapitated seven days later, 15 min after injecting with vehicle or KA (2.5 or 15 mg/kg BW). In the fourth experiment, males neonatally injected with estradiol benzoate or vehicle were sacrificed on days 45, 60 or 90, 15 min after administration of vehicle or KA (2.5 or 15 mg/kg BW). We found that: (i) KA is a powerful secretagogue for GH in neonatal and postpubertal males but its releasing effectiveness decreases in adulthood; (ii) GH secretion by cultured pituitary cells remains unaffected in the presence of KA (1,10 or 100 mumol/l); (iii) the KA-stimulated GH secretion is increased after orchiectomy and abolished in males neonatally estrogenized. These results indicate that in male rats activation of non-NMDA receptors, probably those located in hypothalamus, increases GH secretion. The releasing properties of KA increases in orchiectomized males and completely disappears in males neonatally estrogenized.
Collapse
Affiliation(s)
- L Pinilla
- Department of Physiology, Faculty of Medicine, University of Córdoba, Spain
| | | | | | | |
Collapse
|
21
|
Niimi M, Sato M, Wada Y, Tamaki M, Takahara J, Kawanishi K. Analysis of growth hormone release from rat anterior pituitary cells by reverse hemolytic plaque assay: influence of interleukin-1. Life Sci 1994; 55:1807-13. [PMID: 7968261 DOI: 10.1016/0024-3205(94)90091-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin-1 (IL-1) has been suggested to directly affect pituitary growth hormone (GH) release, although other investigators have failed to observe this effect. We examined the effects of IL-1 beta on GH secretion from single somatotrophs by means of reverse hemolytic plaque assay (RHPA). Anterior pituitary cells of adult male rats were enzymatically dispersed and subjected to RHPA. IL-1 beta at 100 pM and 1 nM, increased both the mean plaque area and the fraction of somatotrophs forming large plaques. IL-1 beta did not increase the mean plaque area in the presence of the IL-1 receptor antagonist (IL-1ra). IL-1 beta (1 nM) added together with GH-releasing hormone (GHRH; 10 nM), showed no additive effect on GHRH-induced GH release. The stimulatory action of IL-1 beta on the release of GH was suppressed by somatostatin. In conclusion, our data show that IL-1 beta stimulates GH-secretion through direct action on the pituitary.
Collapse
Affiliation(s)
- M Niimi
- Department of Clinical Laboratory, Kagawa Medical School, Japan
| | | | | | | | | | | |
Collapse
|