1
|
Arostegui MC. Cranial endothermy in mobulid rays: Evolutionary and ecological implications of a thermogenic brain. J Anim Ecol 2024. [PMID: 39434239 DOI: 10.1111/1365-2656.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
The large, metabolically expensive brains of manta and devil rays (Mobula spp.) may act as a thermogenic organ representing a unique mechanistic basis for cranial endothermy among fishes that improves central nervous system function in cold waters. Whereas early hominids in hot terrestrial environments may have experienced a thermal constraint to evolving larger brain size, cetaceans and mobulids in cold marine waters may have experienced a thermal driver for enlargement of a thermogenic brain. The potential for brain enlargement to yield the dual outcomes of cranial endothermy and enhanced cognition in mobulids suggests one may be an evolutionary by-product of selection for the mechanisms underlying the other, and highlights the need to account for non-cognitive functions when translating brain size into cognitive capacity. Computational scientific imaging offers promising avenues for addressing the pressing mechanistic and phylogenetic questions needed to assess the theory that cranial endothermy in mobulids is the result of temperature-driven selection for a brain with augmented thermogenic potential.
Collapse
Affiliation(s)
- M C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Verkhratsky A, Arranz AM, Ciuba K, Pękowska A. Evolution of neuroglia. Ann N Y Acad Sci 2022; 1518:120-130. [PMID: 36285711 DOI: 10.1111/nyas.14917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed of electrically excitable neuronal networks connected by chemical synapses and nonexcitable glial cells that provide for homeostasis and defense. The evolution of neuroglia began with the emergence of the centralized nervous system and proceeded through a continuous increase in their complexity. In the primate brain, especially in the brain of humans, the astrocyte lineage is exceedingly complex, with the emergence of new types of astroglial cells possibly involved in interlayer communication and integration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Amaia M Arranz
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Katarzyna Ciuba
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Docampo-Seara A, Candal E, Rodríguez MA. Study of the glial cytoarchitecture of the developing olfactory bulb of a shark using immunochemical markers of radial glia. Brain Struct Funct 2022; 227:1067-1082. [PMID: 34997380 PMCID: PMC8930965 DOI: 10.1007/s00429-021-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
During development of the olfactory bulb (OB), glial cells play key roles in axonal guiding/targeting, glomerular formation and synaptic plasticity. Studies in mammals have shown that radial glial cells and peripheral olfactory glia (olfactory ensheathing cells, OECs) are involved in the development of the OB. Most studies about the OB glia were carried out in mammals, but data are lacking in most non-mammalian vertebrates. In the present work, we studied the development of the OB glial system in the cartilaginous fish Scyliorhinus canicula (catshark) using antibodies against glial markers, such as glial fibrillary acidic protein (GFAP), brain lipid-binding protein (BLBP), and glutamine synthase (GS). These glial markers were expressed in cells with radial morphology lining the OB ventricle of embryos and this expression continues in ependymal cells (tanycytes) in early juveniles. Astrocyte-like cells were also observed in the granular layer and surrounding glomeruli. Numerous GS-positive cells were present in the primary olfactory pathway of embryos. In the developmental stages analysed, the olfactory nerve layer and the glomerular layer were the regions with higher GFAP, BLBP and GS immuno-reactivity. In addition, numerous BLBP-expressing cells (a marker of mammalian OECs) showing proliferative activity were present in the olfactory nerve layer. Our findings suggest that glial cells of peripheral and central origin coexist in the OB of catshark embryos and early juveniles. These results open the path for future studies about the differential roles of glial cells in the catshark OB during embryonic development and in adulthood.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,UCL Institute of Ophthalmology, University College London, London, UK
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M A Rodríguez
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Kálmán M, Matuz V, Sebők OM, Lőrincz D. Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry. Front Neuroanat 2021; 15:698459. [PMID: 34267629 PMCID: PMC8276248 DOI: 10.3389/fnana.2021.698459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called ‘eversive’ development in contrast to the ‘evagination’ found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a ‘fan-shape’ re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the ‘fan-shape’ re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Vanessza Matuz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Olivér M Sebők
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid Lőrincz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Kálmán M, Lőrincz DL, Sebők OM, Ari C, Oszwald E, Somiya H, Jancsik V. Cerebrovascular β-dystroglycan immunoreactivity in vertebrates: not detected in anurans and in the teleosts Ostariophysi and Euteleostei. Integr Zool 2019; 15:16-31. [PMID: 30811839 DOI: 10.1111/1749-4877.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present paper was to check for the presence of cerebrovascular dystroglycan in vertebrates, because dystroglycan, which is localized in the vascular astroglial end-feet, has a pivotal function in glio-vascular connections. In mammalian brains, the immunoreactivity of β-dystroglycan subunit delineates the vessels. The results of the present study demonstrate similar patterns in other vertebrates, except for anurans and the teleost groups Ostariophysi and Euteleostei. In this study, we investigated 1 or 2 representative species of the main groups of Chondrichthyes, teleost and non-teleost ray-finned fishes, urodeles, anurans, and reptiles. We also investigated 5 mammalian and 3 bird species. Animals were obtained from breeders or fishermen. The presence of β-dystroglycan was investigated immunohistochemically in free-floating sections. Pre-embedding electron microscopical immunohistochemistry on Heterodontus japonicus shark brains demonstrated that in Elasmobranchii, β-dystroglycan is also localized in the perivascular glial end-feet despite the different construction of their blood-brain barrier. The results indicated that the cerebrovascular β-dystroglycan immunoreactivity disappeared separately in anurans, and in teleosts, in the latter group before its division to Ostariophysi and Euteleostei. Immunohistochemistry in muscles and western blots from brain homogenates, however, detected the presence of β-dystroglycan, even in anurans and all teleosts. A possible explanation is that in the glial end-feet, β-dystroglycan is masked in these animals, or disappeared during adaptation to the freshwater habitat.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - David L Lőrincz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,University of Leicester, Dept. of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csilla Ari
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,Hyperbaric Neuroscience Research Lab., Dept of Psychology, University of South Florida, Tampa, Florida, USA
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Hiroaki Somiya
- Department of Environmental Biology, Chubu University, Chubu, Japan
| | | |
Collapse
|
6
|
Abstract
As the nervous system evolved from the diffused to centralised form, the neurones were joined by the appearance of the supportive cells, the neuroglia. Arguably, these non-neuronal cells evolve into a more diversified cell family than the neurones are. The first ancestral neuroglia appeared in flatworms being mesenchymal in origin. In the nematode C. elegans proto-astrocytes/supportive glia of ectodermal origin emerged, albeit the ensheathment of axons by glial cells occurred later in prawns. The multilayered myelin occurred by convergent evolution of oligodendrocytes and Schwann cells in vertebrates above the jawless fishes. Nutritive partitioning of the brain from the rest of the body appeared in insects when the hemolymph-brain barrier, a predecessor of the blood-brain barrier was formed. The defensive cellular mechanism required specialisation of bona fide immune cells, microglia, a process that occurred in the nervous system of leeches, bivalves, snails, insects and above. In ascending phylogeny, new type of glial cells, such as scaffolding radial glia, appeared and as the bran sizes enlarged, the glia to neurone ratio increased. Humans possess some unique glial cells not seen in other animals.
Collapse
|
7
|
Docampo-Seara A, Santos-Durán GN, Candal E, Rodríguez Díaz MÁ. Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct 2018; 224:33-56. [PMID: 30242506 PMCID: PMC6373381 DOI: 10.1007/s00429-018-1758-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to specific ventricular areas in the adult brain, RGCs are the predominant glial element in fishes. However, developmental studies on the RGCs of cartilaginous fishes are scant. We have studied the expression patterns of RGCs markers including glial fibrillary acidic protein (GFAP), brain lipid binding protein (BLBP), and glutamine synthase (GS) in the telencephalic hemispheres of catshark (Scyliorhinus canicula) from early embryos to post-hatch juveniles. GFAP, BLBP and GS are first detected, respectively, in early, intermediate and late embryos. Expression of these glial markers was observed in cells with radial glia morphology lining the telencephalic ventricles, as well as in their radial processes and endfeet at the pial surface and their expression continue in ependymal cells (or tanycytes) in early juveniles. In addition, BLBP- and GS-immunoreactive cells morphologically resembling oligodendrocytes were observed. In late embryos, most of the GFAP- and BLBP-positive RGCs also coexpress GS and show proliferative activity. Our results indicate the existence of different proliferating subpopulations of RGCs in the embryonic ventricular zone of catshark. Further investigations are needed to determine whether these proliferative RGCs could act as neurogenic and/or gliogenic precursors.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G N Santos-Durán
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Rodríguez Díaz
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
9
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 961] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
10
|
Janušonis S. Some Galeomorph Sharks Express a Mammalian Microglia-Specific Protein in Radial Ependymoglia of the Telencephalon. BRAIN, BEHAVIOR AND EVOLUTION 2017; 91:17-30. [PMID: 29232670 DOI: 10.1159/000484196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/12/2017] [Indexed: 01/26/2023]
Abstract
Ionized calcium-binding adapter molecule 1 (Iba1), also known as allograft inflammatory factor 1 (AIF-1), is a highly conserved cytoplasmic scaffold protein. Studies strongly suggest that Iba1 is associated with immune-like reactions in all Metazoa. In the mammalian brain, it is abundantly expressed in microglial cells and is used as a reliable marker for this cell type. The present study used multiple-label microscopy and Western blotting to examine Iba1 expression in the telencephalon of 2 galeomorph shark species, the swellshark (Cephaloscyllium ventriosum) and the horn shark (Heterodontus francisci), a member of an ancient extant order. In the swellshark, high Iba1 expression was found in radial ependymoglial cells, many of which also expressed glial fibrillary acidic protein. Iba1 expression was absent from most cells in the horn shark (with the possible exception of perivascular cells). The difference in Iba1 expression between the species was supported by protein analysis. These results suggest that radial ependymoglia of the elasmobranchs may be functionally related to mammalian microglia and that Iba1 expression has undergone evolutionary changes in this cartilaginous group.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| |
Collapse
|
11
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
12
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
13
|
Abstract
Myelin is probably one of the most fascinating and innovative biological acquisition: a glia plasma membrane tightly wrapped around an axon and insulating it. Chondrichthyans (cartilaginous fishes) form a large group of vertebrates, and they are among oldest extant jawed vertebrate lineage. It has been known from studies 150 years ago, that they are positioned at the root of the successful appearance of compact myelin and main adhesive proteins in vertebrates. More importantly, the ultrastructure of their compact myelin is indistinguishable from the one observed in tetrapods and the first true myelin basic protein (MBP) and myelin protein zero (MPZ) seem to have originated on cartilaginous fish or their ancestors, the placoderms. Thus, the study of their myelin formation would bring new insights in vertebrate׳s myelin evolution. Chondrichthyans central nervous system (CNS) myelin composition is also very similar to peripheral nervous system (PNS) myelin composition. And while they lack true proteolipid protein (PLP) like tetrapods, they express a DM-like protein in their myelin. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Maria Elena de Bellard
- California State University Northridge, Biology Department, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
14
|
Stout RF, Verkhratsky A, Parpura V. Caenorhabditis elegans glia modulate neuronal activity and behavior. Front Cell Neurosci 2014; 8:67. [PMID: 24672428 PMCID: PMC3954127 DOI: 10.3389/fncel.2014.00067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022] Open
Abstract
Glial cells of Caenorhabditis elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived Glial-Like cells in the nerve Ring (GLRs) appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester Manchester, UK ; IKERBASQUE, Basque Foundation for Science Bilbao, Spain ; Department of Neurosciences, University of the Basque Country UPV/EHU Leioa, Spain
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama Birmingham, AL, USA ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| |
Collapse
|
15
|
Pose-Méndez S, Candal E, Adrio F, Rodríguez-Moldes I. Development of the cerebellar afferent system in the sharkScyliorhinus canicula: Insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol 2013; 522:131-68. [DOI: 10.1002/cne.23393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/09/2013] [Accepted: 06/19/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Sol Pose-Méndez
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Eva Candal
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| |
Collapse
|
16
|
Kálmán M, Somiya H, Lazarevic L, Milosevic I, Ari C, Majorossy K. Absence of post-lesion reactive gliosis in elasmobranchs and turtles and its bearing on the evolution of astroglia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:351-67. [DOI: 10.1002/jez.b.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Affiliation(s)
- M. Kálmán
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - Hiro Somiya
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya; Japan
| | | | | | - Csilla Ari
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - K. Majorossy
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| |
Collapse
|
17
|
Balmaceda-Aguilera C, Cortés-Campos C, Cifuentes M, Peruzzo B, Mack L, Tapia JC, Oyarce K, García MA, Nualart F. Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers. PLoS One 2012; 7:e32409. [PMID: 22389700 PMCID: PMC3289654 DOI: 10.1371/journal.pone.0032409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/29/2012] [Indexed: 12/22/2022] Open
Abstract
Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons.
Collapse
Affiliation(s)
- Carolina Balmaceda-Aguilera
- Laboratory of Neurobiology and Stem Cells, Department of Cellular Biology, University of Concepcion, Concepción, Chile
| | - Christian Cortés-Campos
- Laboratory of Cellular Biology, Department of Cellular Biology, University of Concepcion, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, Malaga University, Málaga, Spain
| | - Bruno Peruzzo
- Anatomy, Histology and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Lauren Mack
- Laboratory of Neurobiology and Stem Cells, Department of Cellular Biology, University of Concepcion, Concepción, Chile
| | - Juan Carlos Tapia
- Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, New York, United States of America
| | - Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Department of Cellular Biology, University of Concepcion, Concepción, Chile
| | - María Angeles García
- Laboratory of Cellular Biology, Department of Cellular Biology, University of Concepcion, Concepción, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Department of Cellular Biology, University of Concepcion, Concepción, Chile
- * E-mail:
| |
Collapse
|
18
|
Embryonic development of glial cells and myelin in the shark, Chiloscyllium punctatum. Gene Expr Patterns 2009; 9:572-85. [PMID: 19733690 DOI: 10.1016/j.gep.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022]
Abstract
Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment. This study examines the development of glial cells in the bamboo shark, Chiloscyllium punctatum, by identifying the expression pattern of several classic glial and myelin proteins. We show for the first time that glial development in the bamboo shark (C. punctamum) embryo follows closely the one observed in other vertebrates and that neural development seems to proceed at a faster rate in the PNS than in the CNS. In addition, we observed more myelinated tracts in the PNS than in the CNS, and as early as stage 32, suggesting that the ontogeny of myelin in sharks is closer to osteichthyans than agnathans.
Collapse
|
19
|
Zhang Y, Allodi S, Sandeman DC, Beltz BS. Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 2009; 69:415-36. [PMID: 19294644 DOI: 10.1002/dneu.20717] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche.
Collapse
Affiliation(s)
- Yi Zhang
- Neurobiology Program, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | |
Collapse
|
20
|
Ari C, Kálmán M. Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:504-19. [DOI: 10.1002/jez.b.21223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|