1
|
Wang Q, Li M, Zeng N, Zhou Y, Yan J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Exp Biol Med (Maywood) 2023; 248:263-270. [PMID: 36691338 PMCID: PMC10107392 DOI: 10.1177/15353702221147567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Succinate dehydrogenase complex subunit C (SDHC) is a subunit of mitochondrial complex II (MCII), which is also known as succinate dehydrogenase (SDH) or succinate: ubiquinone oxidoreductase. Mitochondrial complex II is the smallest respiratory complex in the respiratory chain and contains four subunits. SDHC is a membrane-anchored subunit of SDH, which connects the tricarboxylic acid cycle and the electron transport chain. SDH regulates several physiological processes within cells, plays an important role in generating energy to maintain normal cell growth, and is involved in apoptosis. Currently, SDHC is generally recognized as a tumor-suppressor gene. SDHC mutations can cause oxidative damage in the body. It is closely related to the occurrence and development of cancer, neurodegenerative diseases, and aging-related diseases. Here, we review studies on the structure, biological function, related diseases of SDHC, and the mev-1 Animal Model of SDHC Mutation and its potential use as a therapeutic target of certain human diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
2
|
Chupin AV, Verdikhanov NI, Golovyuk AL. [Modern conceptions on neck paragangliomas]. Khirurgiia (Mosk) 2022:64-70. [PMID: 35775846 DOI: 10.17116/hirurgia202207164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neck paragangliomas are orphan diseases with incidence 1:30 000-1:100 000. Life expectancy is poor in patients with distant metastasis (5-year overall survival 11.8%), whereas 5-year overall survival in patients with regional metastasis is 76.8-82.4%. Meanwhile, there is still no any reliable tool for prediction of malignant potential of paraganglioma. Above-mentioned data indicate an importance of early diagnosis and timely treatment of neck paragangliomas. Total resection of tumor in ablastic conditions is a gold standard of treatment. However, surgery is associated with a high risk of neurovascular complications and requires multidisciplinary approach. Nevertheless, new knowledge dedicated to different aspects of pathogenesis of neck paraganglioma, diagnosis and treatment arise every year. This review is devoted to modern data on neck paragangliomas.
Collapse
Affiliation(s)
- A V Chupin
- Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - N I Verdikhanov
- Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - A L Golovyuk
- Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Satoh N, Yokoyama C, Itamura N, Miyajima-Nakano Y, Hisatomi H. Alternative splicing isoform in succinate dehydrogenase complex, subunit C causes downregulation of succinate-coenzyme Q oxidoreductase activity in mitochondria. Oncol Lett 2014; 9:330-334. [PMID: 25435987 PMCID: PMC4246615 DOI: 10.3892/ol.2014.2699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/11/2014] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial succinate dehydrogenase (SDH) is localized to the inner mitochondrial membrane and is responsible for the redox of succinic acid. SDH is a tetrameric iron-sulfur flavoprotein of the tricarboxylic acid cycle and respiratory chain. The SDH complex, subunit C (SDHC) transcript has deletion-type alternative splicing sites. Generally, alternative splicing produces variant proteins and expression patterns, as products of different genes. In certain cases, specific alternative splicing variants (ASVs) have been associated with human disease. Due to a frameshift mutation causing loss of the heme binding region, the SDHC Δ5 isoform (lacking exon 5) exhibits no SDHC activity. To investigate whether the SDHC splicing variants can function as dominant-negative inhibitors, SDHC ASVs were overexpressed in HCT-15 human colorectal cancer cells. Using real-time reverse transcription-polymerase chain reaction, a dominant-negative effect of the Δ5 isoform on SDHC mRNA was shown. In addition, Δ5 overexpression increased the levels of reactive oxygen species. Furthermore, in the Δ5 isoform-overexpressing cells, SDH activity was reduced. SDHC activation is a significant event during the electron transport chain, and the function of the SDHC Δ5 variant may be significant for the differentiation of tumor cells.
Collapse
Affiliation(s)
- Nana Satoh
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Science, Seikei Universty, Musashino, Tokyo 180-8633, Japan
| | - Chikako Yokoyama
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Science, Seikei Universty, Musashino, Tokyo 180-8633, Japan
| | - Noriaki Itamura
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Science, Seikei Universty, Musashino, Tokyo 180-8633, Japan
| | - Yoshiharu Miyajima-Nakano
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Science, Seikei Universty, Musashino, Tokyo 180-8633, Japan
| | - Hisashi Hisatomi
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Science, Seikei Universty, Musashino, Tokyo 180-8633, Japan
| |
Collapse
|
4
|
Bremer K, Kocha K, Snider T, Moyes C. Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modification of mitochondrial content demands the synthesis of hundreds of proteins encoded by nuclear and mitochondrial genomes. The responsibility for coordination of this process falls to nuclear-encoded master regulators of transcription. DNA-binding proteins and coactivators integrate information from energy-sensing pathways and hormones to alter mitochondrial gene expression. In mammals, the signaling cascade for mitochondrial biogenesis can be described as follows: hormonal signals and energetic information are sensed by protein-modifying enzymes that in turn regulate the post-translational modification of transcription factors. Once activated, transcription-factor complexes form on promoter elements of many of the nuclear-encoded mitochondrial genes, recruiting proteins that remodel chromatin and initiate transcription. One master regulator in mammals, PGC-1α, is well studied because of its role in determining the metabolic phenotype of muscles, but also due to its importance in mitochondria-related metabolic diseases. However, relatively little is known about the role of this pathway in other vertebrates. These uncertainties raise broader questions about the evolutionary origins of the pathway and its role in generating the diversity in muscle metabolic phenotypes seen in nature.
Collapse
Affiliation(s)
- K. Bremer
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - K.M. Kocha
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - T. Snider
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - C.D. Moyes
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Glomus jugulare tumours: A 15year radiotherapy experience in South Australia. J Clin Neurosci 2014; 21:456-61. [DOI: 10.1016/j.jocn.2013.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022]
|
6
|
Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:598-611. [PMID: 23291191 DOI: 10.1016/j.bbabio.2012.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022]
Abstract
In recent years, it has become apparent that there exist several roles for respiratory complex II beyond metabolism. These include: (i) succinate signaling, (ii) reactive oxygen species (ROS) generation, (iii) ischemic preconditioning, (iv) various disease states and aging, and (v) a role in the function of the mitochondrial ATP-sensitive K(+) (mKATP) channel. This review will address the involvement of complex II in each of these areas, with a focus on how complex II regulates or may be involved in the assembly of the mKATP. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
7
|
LSHGD: a database for human leprosy susceptible genes. Genomics 2012; 100:162-6. [PMID: 22750101 DOI: 10.1016/j.ygeno.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/23/2012] [Accepted: 06/23/2012] [Indexed: 01/25/2023]
Abstract
Studies aiming to explore the involvement of host genetic factors to determine susceptibility to develop disease and individual's response to the infection with Mycobacterium leprae have increased in recent years. To address this issue, we have developed a Leprosy Susceptible Human Gene Database (LSHGD) to integrate leprosy and human associated 45 genes by profound literature search. This will serve as a user-friendly and interactive platform to understand the involvement of human polymorphisms (SNPs) in leprosy, independent genetic control over both susceptibility to leprosy and its association with multi-drug resistance of M. leprae. As the first human genetic database in leprosy it aims to provide information about the associated genes, corresponding protein sequences, available three dimensional structures and polymorphism related to leprosy. In conclusion, this will serve as a multifunctional valuable tool and convenient information platform which is freely available at http://www.vit.ac.in/leprosy/leprosy.htm and enables the user to retrieve information of their interest.
Collapse
|
8
|
Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet 2012; 205:1-11. [PMID: 22429592 DOI: 10.1016/j.cancergen.2012.01.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/29/2022]
Abstract
Pheochromocytomas and paragangliomas (PCC/PGL) are tumors derived from the adrenal medulla or extra-adrenal ganglia, respectively. They are rare and often benign tumors that are associated with high morbidity and mortality due to mass effect and high circulating catecholamines. Although most PCCs and PGLs are thought to be sporadic, over one third are associated with 10 known susceptibility genes. Mutations in three genes causing well characterized tumor syndromes are associated with an increased risk of developing PCCs and PGLs, including VHL (von Hippel-Lindau disease), NF1 (Neurofibromatosis Type 1), and RET (Multiple Endocrine Neoplasia Type 2). Mutations in any of the succinate dehydrogenase (SDH) complex subunit genes (SDHA, SDHB, SDHC, SDHD) can lead to PCCs and PGLs with variable penetrance, as can mutations in the subunit cofactor, SDHAF2. Recently, two additional genes have been identified, TMEM127 and MAX. Although these tumors are rare in the general population, occurring in two to eight per million people, they are more commonly associated with an inherited mutation than any other cancer type. This review summarizes the known germline and somatic mutations leading to the development of PCC and PGL, as well as biochemical profiling for PCCs/PGLs and screening of mutation carriers.
Collapse
Affiliation(s)
- Lauren Fishbein
- Division of Endocrinology, Department of Medicine, Diabetes and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
9
|
Mazumder Indra D, Mitra S, Roy A, Mondal RK, Basu PS, Roychoudhury S, Chakravarty R, Panda CK. Alterations of ATM and CADM1 in chromosomal 11q22.3-23.2 region are associated with the development of invasive cervical carcinoma. Hum Genet 2011; 130:735-48. [PMID: 21643982 DOI: 10.1007/s00439-011-1015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/22/2011] [Indexed: 12/29/2022]
Abstract
To understand the importance of chr11q22.3-23.2 region in the development of cervical cancer, we have studied the genetic and epigenetic alterations of the candidate genes ATM, PPP2R1B, SDHD and CADM1 in cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CACX) samples. Our study revealed low expression and high alterations (methylation/deletion) (55-59%) of ATM and CADM1 genes along with poor patient outcome. The alterations of ATM and CADM1 are associated with the progression of tumor from CIN to Stage I/II, thus implying their role in early invasiveness. The two genes, PPP2R1B and SDHD, lying in between ATM and CADM1, have low frequency of alterations, and majority of the alterations are in CACX samples, indicating that their alterations might be associated with disease progression. Expressions (mRNA/protein) of the genes showed concordance with their molecular alterations. Significant co-alteration of ATM and CADM1 points to their synergic action for the development of CACX. Mutation is, however, a rare phenomenon for inactivation of ATM. Association between the alteration of ATM and CHEK1 and poor survival of the patients having co-alterations of ATM and CHEK1 points to the DNA damage response pathway disruption in development of CACX. Thus, our data suggest that inactivation of ATM-CHEK1-associated DNA damage response pathway and CADM1-associated signaling network might have an important role in the development of CACX.
Collapse
Affiliation(s)
- Dipanjana Mazumder Indra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Pheochromocytoma and paraganglioma are tumors of the sympathetic or parasympathetic paraganglia. Pheochromocytoma is the tumor of the main sympathetic paraganglia, which is the adrenal medulla. The sympathetic paraganglioma secretes catecholamine while the parasympathetic do not. Both of them originate from neural crest cells and share similar mechanisms of tumor development. The same genetic alteration may predispose to the development of sympathetic and parasympathetic paraganglioma. The best known hereditary forms of pheochromocytoma and paraganglioma are the von Hippel-Lindau disease, in which pheochromocytoma may be associated with CNS hemangioblastoma, retinal angioma, pancreatic endocrine tumor/cysts and renal clear cell carcinoma/cysts; the multiple endocrine neoplasia type 2, in which pheochromocytoma is associated with medullary thyroid carcinoma and primary hyperparathyroidism, Type 1 neurofibromatosis, the most frequent hereditary cancer syndrome. Finally, it has been characterized the paraganglioma syndrome in which sympathetic and parasympathetic paraganglioma are variously associated. The list of predisposing gene is quite long and comprises VHL, RET, NF1, SDHB, SDHC, SDHD, SDHAF2. More rarely, two other genes may predispose to pheochromocytoma/paraganglioma development: KIF1Bbeta and PHD2. A mechanism conducing to a defective apoptosis is the common pathways of those genes. Finally, there is also good evidence of the role of other genes, not yet completely identified.
Collapse
|
11
|
Shabbiri K, Ahmad W, Syed Q, Adnan A. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245. Braz J Microbiol 2010; 41:796-804. [PMID: 24031557 PMCID: PMC3768646 DOI: 10.1590/s1517-83822010005000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism.
Collapse
|
12
|
Ogawa K, Shiga K, Saijo S, Ogawa T, Kimura N, Horii A. A novel G106D alteration of theSDHDgene in a pedigree with familial paraganglioma. Am J Med Genet A 2006; 140:2441-6. [PMID: 17041923 DOI: 10.1002/ajmg.a.31444] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Head and neck paragangliomas are tumors derived from parasympathetic paraganglia. Familial cases account for 10% or more of these tumors, and mutations of the genes encoding subunits for the mitochondrial respiratory chain complex II, SDHD, SDHB, and SDHC, have been reported. We analyzed mutations in the all four SDH genes, SDHA through SDHD, in a Japanese family with cervical paraganglioma that include a father with bilateral tumors and his daughter with a malignant left carotid body tumor with nodal metastasis. This pedigree harbored a germline G106D alteration in exon 4 of the SDHD gene that has not previously been reported to date. The tumors of the father expressed biallelic SDHD, but the SDHD expression was highly suppressed by an unknown mechanism(s) in tumors of his daughter, and the wild-type allele was predominantly suppressed in the metastatic node. These results suggest that the missense dysfunction of SDHD prepares neoplastic condition and that expressional silencing, particularly of the wild-type allele, plays an important role in the malignant transformation of the paragangliomas. Our results may lead to a better understanding of this disease and to the development of methods for prevention of this disease.
Collapse
Affiliation(s)
- Kazumi Ogawa
- Department of Molecular Pathology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 2006; 104:2292-309. [PMID: 16258976 DOI: 10.1002/cncr.21451] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathobiology of neuroendocrine tumors (NETs) is hampered by the lack of scientific tools that define their mechanisms of secretion, proliferation, and metastasis; and, currently, there are no accurate means to assess tumor behavior and disease prognosis. Molecular biologic techniques and genetic analysis may facilitate the delineation of the molecular pathology of NETs and provide novel insights into their cellular mechanisms. The current status and recent advances in assessment of the molecular basis of tumorigenesis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) were reviewed (1981-2004). The objectives of this retrospective study were to provide a cohesive overview of the current state of knowledge and to develop a molecular understanding of these rare tumor entities to facilitate the establishment of therapeutic targets and rational management strategies. Multiple differences in chromosomal aberration patterns were noted between gastrointestinal (GI) neuroendocrine and pancreatic endocrine tumors (PETs). Divergence in gene expression patterns in the development of GI carcinoids and PETs was identified, whereas examination of the PET and GI carcinoid data demonstrated only few areas of overlap in the accumulation of genetic aberrations. These data suggest that the recent World Health Organization classification of GEP-NETs may require updating. In addition, previous assumptions of tumor similarity (pancreatic vs. GI) may be unfounded when they are examined at a molecular level. On the basis of the evolution of genetic information, enteric neuroendocrine lesions (carcinoids) and PETs may need to be classified as two distinct entities rather than grouped together as the single entity "GEP-NETs."
Collapse
Affiliation(s)
- Michelle N Zikusoka
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520-8062, USA
| | | | | | | | | |
Collapse
|
14
|
Velasco A, Palomar-Asenjo V, Gañan L, Catasus L, Llecha N, Panizo A, Palomar-Garcia V, Quer M, Matias-Guiu X. Mutation analysis of the SDHD gene in four kindreds with familial paraganglioma: description of one novel germline mutation. ACTA ACUST UNITED AC 2005; 14:109-14. [PMID: 15905695 DOI: 10.1097/01.pas.0000158987.07907.7e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The familial paraganglioma syndrome is an autosomal dominant disorder characterized by the presence of carotid body paragangliomas and, less frequently, paragangliomas of the glomus jugulare, glomus vagale, and adrenal pheochromocytomas. Germline mutations of the genes for succinate dehydrogenase subunits D, B, or C (SDHD, SDHB, SDHC) have been identified in some kindreds with familial paraganglioma. In this study, we report the clinicopathologic features of four different kindreds with familial paraganglioma, which were screened for germline mutations in the SDHD gene. DNA was obtained from tumor and normal tissue, as well as from peripheral blood. Mutation analysis was performed by single-strand conformation polymorphism analysis and DNA sequencing. SDHD germline mutations were detected in the affected family members of the four families, as well as in several asymptomatic carriers. An identical mutation in exon 4 of SDHD (334-337delACTG) was identified in two apparently unrelated kindreds. The third family showed a germline mutation in exon 2 (W43X). The mutations present in these three families had been previously described in Spanish families, suggesting a founder effect. The fourth family exhibited a mutation in exon 2 of SDHD (170-171delTT), which had not been previously identified. The affected family members of the four kindreds showed paragangliomas, located in the head and neck region, and all of them were benign. These results confirm that genetic testing of SDHD may be a powerful tool for the identification of the syndrome in patients with multiple or bilateral paragangliomas.
Collapse
Affiliation(s)
- Ana Velasco
- Department of Otorhinolaryngology, Hospital Universitari Arnau de Vilanova, University of Lleida, Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu ZM, Zhang JB, Li K, Zhao SH. Cloning, mapping and association study with carcass traits of the porcine SDHD gene. Anim Genet 2005; 36:191-5. [PMID: 15932396 DOI: 10.1111/j.1365-2052.2005.01270.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A 1320-bp cDNA containing the full coding region of the porcine succinate dehydrogenase complex, subunit D (SDHD) gene was obtained by random sequencing of clones from a Chinese Tongcheng pig 55-day fetal longissimus dorsi muscle cDNA library. Analysis of the SDHD gene across the INRA-University of Minnesota porcine radiation hybrid panel indicated close linkage with microsatellite marker SW2401, located on SSC9p21. The open reading frame of this cDNA covers 480 bp and encodes 159 amino acids. The deduced porcine amino acid sequence showed greater similarity with human and bovine protein sequences than with those from mouse and rat. The BLAST analysis of the porcine SDHD to NCBI identified Unigene Cluster Ssc.2586. Possible single nucleotide polymorphisms (SNP) were identified by alignment of expressed sequence tags in the cluster. The polymerase chain reaction (PCR) single strand conformation polymorphism, sequencing, and PCR restriction fragment length polymorphism were used to confirm and detect a synonymous polymorphic MboI site within the open-reading frame. Allele frequencies of this SNP were investigated in two commercial and five Chinese local pig breeds. These five Chinese breeds had very high frequencies for one allele, whereas frequencies of both alleles were intermediate in Large White and Duroc. An association analysis suggested that different SDHD genotypes have significant differences in loin-muscle area (P < 0.01).
Collapse
Affiliation(s)
- Z M Zhu
- Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China
| | | | | | | |
Collapse
|
16
|
Favier J, Brière JJ, Strompf L, Amar L, Filali M, Jeunemaitre X, Rustin P, Gimenez-Roqueplo AP. Hereditary Paraganglioma/Pheochromocytoma and Inherited Succinate Dehydrogenase Deficiency. Horm Res Paediatr 2005; 63:171-9. [PMID: 15795514 DOI: 10.1159/000084685] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial complex II, or succinate dehydrogenase, is a key enzymatic complex involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation as part of the mitochondrial respiratory chain. Germline succinate dehydrogenase subunit A (SDHA) mutations have been reported in a few patients with a classical mitochondrial neurodegenerative disease. Mutations in the genes encoding the three other succinate dehydrogenase subunits (SDHB, SDHC and SDHD) have been identified in patients affected by familial or 'apparently sporadic' paraganglioma and/or pheochromocytoma, an autosomal inherited cancer-susceptibility syndrome. These discoveries have dramatically changed the work-up and genetic counseling of patients and families with paragangliomas and/or pheochromocytomas. The subsequent identification of germline mutations in the gene encoding fumarase--another TCA cycle enzyme--in a new hereditary form of susceptibility to renal, uterine and cutaneous tumors has highlighted the potential role of the TCA cycle and, more generally, of the mitochondria in cancer.
Collapse
Affiliation(s)
- Judith Favier
- Département de Génétique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université Paris V and INSERM U36, Collège de France, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
De Preter K, Vandesompele J, Hoebeeck J, Vandenbroecke C, Smet J, Nuyts A, Laureys G, Combaret V, Van Roy N, Roels F, Van Coster R, Praet M, De Paepe A, Speleman F. No evidence for involvement of SDHD in neuroblastoma pathogenesis. BMC Cancer 2004; 4:55. [PMID: 15331017 PMCID: PMC517501 DOI: 10.1186/1471-2407-4-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 08/24/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions in the long arm of chromosome 11 are observed in a subgroup of advanced stage neuroblastomas with poor outcome. The deleted region harbours the tumour suppressor gene SDHD that is frequently mutated in paraganglioma and pheochromocytoma, which are, like neuroblastoma, tumours originating from the neural crest. In this study, we sought for evidence for involvement of SDHD in neuroblastoma. METHODS SDHD was investigated on the genome, transcriptome and proteome level using mutation screening, methylation specific PCR, real-time quantitative PCR based homozygous deletion screening and mRNA expression profiling, immunoblotting, functional protein analysis and ultrastructural imaging of the mitochondria. RESULTS Analysis at the genomic level of 67 tumour samples and 37 cell lines revealed at least 2 bona-fide mutations in cell lines without allelic loss at 11q23: a 4bp-deletion causing skip of exon 3 resulting in a premature stop codon in cell line N206, and a Y93C mutation in cell line NMB located in a region affected by germline SDHD mutations causing hereditary paraganglioma. No evidence for hypermethylation of the SDHD promotor region was observed, nor could we detect homozygous deletions. Interestingly, SDHD mRNA expression was significantly reduced in SDHD mutated cell lines and cell lines with 11q allelic loss as compared to both cell lines without 11q allelic loss and normal foetal neuroblast cells. However, protein analyses and assessment of mitochondrial morphology presently do not provide clues as to the possible effect of reduced SDHD expression on the neuroblastoma tumour phenotype. CONCLUSIONS Our study provides no indications for 2-hit involvement of SDHD in the pathogenesis of neuroblastoma. Also, although a haplo-insufficient mechanism for SDHD involvement in advanced stage neuroblastoma could be considered, the present data do not provide consistent evidence for this hypothesis.
Collapse
Affiliation(s)
- Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jasmien Hoebeeck
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Caroline Vandenbroecke
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Jöel Smet
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Annick Nuyts
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Geneviève Laureys
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Valérie Combaret
- Molecular Oncology Unit, Centre Léon Bérard, 28 rue Laennec, F-69373 Lyon, France
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Frank Roels
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Rudy Van Coster
- Department of Paediatrics, Ghent University Hospital, K6, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Marleen Praet
- Department of Pathological Anatomy, Ghent University Hospital, BLOK A, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, K5, De Pintelaan 185, B-9000 Ghent, Belgium
| |
Collapse
|
18
|
Abstract
Complex II is the only membrane-bound component of the Krebs cycle and in addition functions as a member of the electron transport chain in mitochondria and in many bacteria. A recent X-ray structural solution of members of the complex II family of proteins has provided important insights into their function. One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain. Exciting recent developments in relation to disease in humans and the formation of reactive oxygen species by complex II point to its overall importance in cellular physiology.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
19
|
Van Coster R, Seneca S, Smet J, Van Hecke R, Gerlo E, Devreese B, Van Beeumen J, Leroy JG, De Meirleir L, Lissens W. Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am J Med Genet A 2003; 120A:13-8. [PMID: 12794685 DOI: 10.1002/ajmg.a.10202] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A homozygous mutation in the flavoprotein (Fp) gene associated with complex II deficiency was demonstrated in a patient with consanguineous parents. She succumbed at 5(1/2) months of age following a respiratory infection. The c1664G-->A transition detected, predicted the substitution of the small uncharged glycine at position 555 by glutamic acid. Her clinical course was at variance with the Leigh syndrome in three previously reported patients due to Fp gene mutations. In this proband, CRM for flavoprotein as well as iron-containing protein (Ip) was decreased, CRM for the entire complex II (130 kDa) being reduced even more. This observation prompts speculation of a labile interaction between Ip and Fp polypeptides and of a key role of the amino acid at position 555 in the interacting domain.
Collapse
Affiliation(s)
- Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Amino H, Osanai A, Miyadera H, Shinjyo N, Tomitsuka E, Taka H, Mineki R, Murayama K, Takamiya S, Aoki T, Miyoshi H, Sakamoto K, Kojima S, Kita K. Isolation and characterization of the stage-specific cytochrome b small subunit (CybS) of Ascaris suum complex II from the aerobic respiratory chain of larval mitochondria. Mol Biochem Parasitol 2003; 128:175-86. [PMID: 12742584 DOI: 10.1016/s0166-6851(03)00074-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.
Collapse
Affiliation(s)
- Hisako Amino
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miyadera H, Hiraishi A, Miyoshi H, Sakamoto K, Mineki R, Murayama K, Nagashima KVP, Matsuura K, Kojima S, Kita K. Complex II from phototrophic purple bacterium Rhodoferax fermentans displays rhodoquinol-fumarate reductase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1863-74. [PMID: 12694200 DOI: 10.1046/j.1432-1033.2003.03553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has long been accepted that bacterial quinol-fumarate reductase (QFR) generally uses a low-redox-potential naphthoquinone, menaquinone (MK), as the electron donor, whereas mitochondrial QFR from facultative and anaerobic eukaryotes uses a low-redox-potential benzoquinone, rhodoquinone (RQ), as the substrate. In the present study, we purified novel complex II from the RQ-containing phototrophic purple bacterium, Rhodoferax fermentans that exhibited high rhodoquinol-fumarate reductase activity in addition to succinate-ubiquinone reductase activity. SDS/PAGE indicated that the purified R. fermentans complex II comprises four subunits of 64.0, 28.6, 18.7 and 17.5 kDa and contains 1.3 nmol heme per mg protein. Phylogenetic analysis and comparison of the deduced amino acid sequences of R. fermentans complex II with pro/eukaryotic complex II indicate that the structure and the evolutional origins of R. fermentans complex II are closer to bacterial SQR than to mitochondrial rhodoquinol-fumarate reductase. The results strongly indicate that R. fermentans complex II and mitochondrial QFR might have evolved independently, although they both utilize RQ for fumarate reduction.
Collapse
Affiliation(s)
- Hiroko Miyadera
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Complex II (succinate-ubiquinone oxidoreductase) is the smallest complex in the respiratory chain and contains four nuclear-encoded subunits SdhA, SdhB, SdhC, and SdhD. It functions both as a respiratory chain component and an essential enzyme of the TCA cycle. Electrons derived from succinate can thus be directly transferred to the ubiquinone pool. Major insights into the workings of complex II have been provided by crystal structures of closely related bacterial enzymes, which have also been genetically manipulated to answer questions of structure-function not approachable using the mammalian system. This information, together with that accrued over the years on bovine complex II and by recent advances in understanding in vivo synthesis of the non-heme iron co-factors of the enzyme, is allowing better recognition of improper functioning of human complex II in diseased states. The discussion in this review is thus limited to cytopathies arising because the enzyme itself is defective or depleted by lack of iron-sulfur clusters. There is a clear dichotomy of effects. Enzyme depletion and mutations in SDHA compromise TCA activity and energy production, whereas mutations in SDHB, SDHC, and SDHD induce paraganglioma. SDHC and SDHD are the first tumor suppressor genes of mitochondrial proteins.
Collapse
Affiliation(s)
- Brian A C Ackrell
- Department of Veterans Affairs Medical Center, Molecular Biology Division, San Francisco, CA 94121, USA.
| |
Collapse
|
23
|
Cascon A, Ruiz-Llorente S, Cebrian A, Telleria D, Rivero JC, Diez JJ, Lopez-Ibarra PJ, Jaunsolo MA, Benitez J, Robledo M. Identification of novel SDHD mutations in patients with phaeochromocytoma and/or paraganglioma. Eur J Hum Genet 2002; 10:457-61. [PMID: 12111639 DOI: 10.1038/sj.ejhg.5200829] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 04/23/2002] [Accepted: 04/25/2002] [Indexed: 11/09/2022] Open
Abstract
Familial paraganglioma is a dominantly inherited disorder characterised by the development of highly vascular tumours in the head and neck. Recently, a relationship between hereditary tumours derived from the autonomic nervous system and germline mutations in the gene encoding succinate dehydrogenase complex subunit D (SDHD) is increasingly a subject of study. Familial paraganglioma syndrome is embryologically related to phaeochromocytoma, another neuroendocrine tumour that shows great aetiological and genetic heterogeneity. Some hereditary phaeochromocytomas may be associated with germline mutations in VHL, RET and NF1 genes in genetic disorders such as von Hippel-Lindau disease (VHL), multiple endocrine neoplasia type 2 (MEN 2) and neurofibromatosis type 1 (NF 1), respectively. However, there are many cases that cannot be explained by mutations in these genes. In this report, we describe two previously unreported mutations in two patients from 25 unrelated kindreds with phaeochromocytoma and/or paraganglioma disorders and with or without familial antecedents: a mutation featuring the change of tryptophan to a termination codon in exon 2, and a 4-bp deletion in exon 4 that results in a truncated protein. We also describe one missense substitution of uncertain significance. The patients had previously tested negative for germline mutations in VHL and RET genes and had not been previously selected. The involvement of SDHD mutations in familial phaeochromocytoma and/or paraganglioma predisposition is of considerable interest since other studies have shown these alterations to be associated with highly expressed angiogenic factors.
Collapse
Affiliation(s)
- Alberto Cascon
- Department of Human Genetics, Spanish National Cancer Center (CNIO), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kytölä S, Nord B, Elder EE, Carling T, Kjellman M, Cedermark B, Juhlin C, Höög A, Isola J, Larsson C. Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas, and abdominal paragangliomas. Genes Chromosomes Cancer 2002; 34:325-32. [PMID: 12007193 DOI: 10.1002/gcc.10081] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several types of endocrine tumors show frequent somatic deletions of the distal part of chromosome arm 11q, where the tumor-suppressor gene SDHD (succinate-ubiquinone oxidoreductase subunit D), constitutionally mutated in paragangliomas of the head and neck, is located. In this study, we screened 18 midgut carcinoids, 7 Merkel cell carcinomas, 46 adrenal pheochromocytomas (37 sporadic and 9 familial), and 7 abdominal paragangliomas for loss of heterozygosity (LOH) and/or mutations at the SDHD gene locus. LOH was detected in 5 out of 8 (62%) informative midgut carcinoids, in 9 out of 30 (30%) sporadic pheochromocytomas, in none of the familial pheochromocytomas (0%), and in 1 out of 6 (17%) abdominal paragangliomas. No sequence variants were detected in the pheochromocytomas or paragangliomas. However, two constitutional putative missense mutations, H50R and G12S, were detected in two midgut carcinoids, which were both associated with LOH of the other allele. The same sequence variants were also detected in two Merkel cell carcinomas. In addition, the S68S polymorphism was found to coexist with the G12S sequence variant in both cases. In conclusion, we show that alterations of the SDHD gene seem to be involved in the tumorigenesis of both midgut carcinoids and Merkel cell carcinomas.
Collapse
Affiliation(s)
- Soili Kytölä
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hui ABY, Lo KW, Chan SYY, Kwong J, Chan ASC, Huang DP. Absence of SDHD mutations in primary nasopharyngeal carcinomas. Int J Cancer 2002; 97:875-7. [PMID: 11857371 DOI: 10.1002/ijc.10066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:123-39. [PMID: 11803022 DOI: 10.1016/s0005-2728(01)00237-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.
Collapse
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
Rustin P, Rötig A. Inborn errors of complex II--unusual human mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:117-22. [PMID: 11803021 DOI: 10.1016/s0005-2728(01)00228-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The succinate dehydrogenase consists of only four subunits, all nuclearly encoded, and is part of both the respiratory chain and the Krebs cycle. Mutations in the four genes encoding the subunits of the mitochondrial respiratory chain succinate dehydrogenase have been recently reported in human and shown to be associated with a wide spectrum of clinical presentations. Although a comparatively rare deficiency in human, molecularly defined succinate dehydrogenase deficiency has already been found to cause encephalomyopathy in childhood, optic atrophy or tumor in adulthood. Because none of the typical housekeeping genes encoding this respiratory chain complex is known to present tissue-specific isoforms, the tissue-specific involvement represents a quite intriguing question, which is mostly addressed in this review. A differential impairment of electron flow through the respiratory chain, handling of oxygen, and/or metabolic blockade possibly associated with defects in the different subunits that can be advocated to account for tissue-specific involvement is discussed.
Collapse
Affiliation(s)
- Pierre Rustin
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant (INSERM U-393), Tour Lavoisier, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, F-75743 Cedex 15, Paris, France.
| | | |
Collapse
|
28
|
Abstract
Feocromocitoma é um tumor raro originário de células neuroectodérmicas. Em aproximadamente 10% dos casos, estes tumores são herdados. Existem múltiplas formas familiares de feocromocitomas, entre as quais a neoplasia endócrina do tipo 2, a síndrome de von Hippel Lindau, a neurofibromatose tipo 1, formas familiares isoladas de feocromocitoma e possivelmente outros subtipos menos bem caracterizados. Ao mesmo tempo em que se tem observado nos últimos anos um importante avanço quanto à definição do defeito genético responsável pela maior parte das síndromes hereditárias associadas ao feocromocitoma, houve pouco progresso na caracterização da patogênese molecular das variantes esporádicas destes tumores, assim como em grande parte das formas familiares isoladas. Esta revisão apresenta um resumo dos aspectos moleculares das diversas formas de feocromocitomas familiares e esporádicos e finaliza com a proposição de estudos futuros que possam contribuir para elucidar alguns dos muitos aspectos da gênese deste tumor que ainda permanecem obscuros.
Collapse
|
29
|
Abstract
Genetic studies of hereditary paraganglioma tumors could increase the understanding of the biology of these fascinating tumors, with important clinical implications for diagnosis and treatment. This article focuses on the genetics of paraganglioma tumors, with limited reference to their general morphologic and clinical aspects. The paraganglioma tumor phenotype is defined. The genetic and physical mapping studies recently performed are summarized--studies that eventually led to the discovery of the gene for hereditary paraganglioma type 1 (PGL1). Finally, future directions stemming from the PGL gene discovery are described.
Collapse
Affiliation(s)
- B E Baysal
- Department of Psychiatry, Otolaryngology, and Human Genetics, University of Pittsburgh School of Medicine, and Western Psychiatric Institute and Clinics, Pittsburgh, Pennsylvania 15213-2593, USA.
| |
Collapse
|
30
|
Masuoka J, Brandner S, Paulus W, Soffer D, Vital A, Chimelli L, Jouvet A, Yonekawa Y, Kleihues P, Ohgaki H. Germline SDHD mutation in paraganglioma of the spinal cord. Oncogene 2001; 20:5084-6. [PMID: 11526495 DOI: 10.1038/sj.onc.1204579] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Revised: 04/18/2001] [Accepted: 04/30/2001] [Indexed: 11/09/2022]
Abstract
Hereditary paraganglioma of the head and neck is associated with germline mutations in the SDHD gene, which encodes a mitochondrial respiratory chain protein. Paragangliomas of the central nervous system are very rare, occur almost exclusively in the cauda equina of the spinal cord and are considered non-familial. In the present study, we screened 22 apparently sporadic paragangliomas of the cauda equina for SDHD mutations. One spinal paraganglioma and similar cerebellar tumours that developed 22 years later in the same patient contained a missense mutation at codon 12 (GGT-->AGT, Gly-->Ser) and a silent mutation at codon 68 (AGC-->AGT, Ser-->Ser). There was no family history of paragangliomas but DNA from white blood cells of this patient showed the same sequence alterations, indicating the presence of a germline mutation. All other cases of spinal paraganglioma had the wild-type SDHD sequence, except one case with a silent mutation at codon 68 (AGC-->AGT, Ser-->Ser). This is the first observation indicating that inherited SDHD mutations may occasionally cause the development of paragangliomas in the central nervous system.
Collapse
Affiliation(s)
- J Masuoka
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, Cedex 08, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
van den Heuvel L, Smeitink J. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases. Bioessays 2001; 23:518-25. [PMID: 11385631 DOI: 10.1002/bies.1071] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ubiquitous nature of mitochondria, the dual genetic foundation of the respiratory chain in mitochondrial and nuclear genome, and the peculiar rules of mitochondrial genetics all contribute to the extraordinary heterogeneity of clinical disorders associated with defects of oxidative phosphorylation (mitochondrial encephalomyopathies). Here, we review recent findings about nuclear gene defects in isolated OXPHOS enzyme complex deficiency. This information should help in identifying patients with mitochondrial disease and defining a biochemical and molecular basis of the disorder found in each patient. This knowledge is indispensable for accurate genetic counseling and prenatal diagnosis, and is a prerequisite for the development of rational therapies, which are still, at present, woefully inadequate.
Collapse
Affiliation(s)
- L van den Heuvel
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, University Medical Centre Nijmegen, The Netherlands
| | | |
Collapse
|
32
|
Milunsky JM, Maher TA, Michels VV, Milunsky A. Novel mutations and the emergence of a common mutation in the SDHD gene causing familial paraganglioma. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 100:311-4. [PMID: 11343322 DOI: 10.1002/ajmg.1270] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Familial paragangliomas (PGL) are slow-growing, highly vascular, generally benign neoplasms, usually of the head and neck, that arise from neural crest cells. This rare autosomal dominant disorder is highly penetrant and influenced by genomic imprinting through paternal transmission. Timely detection of these tumors may afford the affected individual the opportunity to avoid the potential serious morbidity associated with surgical removal and the mortality that may accompany local and distant metastases. Linkage to two distinct chromosomal loci, 11q13.1 and 11q23, has been previously reported. Recently, germline mutations in SDHD, a mitochondrial complex II gene on chromosome 11q23, have been demonstrated. We evaluated members of seven families with PGL, five previously studied and shown to have linkage to chromosome 11q23. The entire coding region of the SDHD gene was sequenced and yielded four novel mutations and one mutation shared in three of our unrelated families. Novel mutations found included a truncating mutation in exon 2, as well as a missense mutation, a deletion, and an insertion in exon 4. Three of our families had a common mutation in exon 3 (P81L) that has been reported and thought to be a founder mutation. A restriction enzyme assay was developed for initial screening of this mutation. Molecular analysis is now available and recommended for presymptomatic diagnosis in those at-risk individuals and for confirmatory diagnosis in those having PGL.
Collapse
Affiliation(s)
- J M Milunsky
- Center for Human Genetics and Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
33
|
Stratil A, Reiner G, Peelman LJ, Van Poucke M, Geldermann H. Linkage and radiation hybrid mapping of the porcine gene for subunit C of succinate dehydrogenase complex (SDHC ) to chromosome 4. Anim Genet 2001; 32:110-2. [PMID: 11421951 DOI: 10.1046/j.1365-2052.2001.0700d.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A Stratil
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Baysal BE, Willett-Brozick JE, Taschner PE, Dauwerse JG, Devilee P, Devlin B. A high-resolution integrated map spanning the SDHD gene at 11q23: a 1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. Eur J Hum Genet 2001; 9:121-9. [PMID: 11313745 DOI: 10.1038/sj.ejhg.5200585] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Revised: 09/21/2000] [Accepted: 09/26/2000] [Indexed: 11/09/2022] Open
Abstract
Chromosomal region 11q22-q23 is a frequent target for deletion during the development of many solid tumour types, including breast, ovary, cervix, stomach, bladder carcinomas and melanoma. One of the most commonly deleted subregions contains the SDHD gene, which encodes the small subunit of cytochrome b (cybS) in mitochondrial complex II (succinate-ubiquinone oxidoreductase). Germline mutations in SDHD cause hereditary paraganglioma type 1 (PGL1), and suggest a tumour suppressor role for cybS. We present a high-resolution physical map spanning SDHD, covered by 19 YACs and 20 BACs. An approximate 1.1-Mb gene-rich region around SDHD is spanned by a complete BAC contig. Twenty-six new STSs are developed from the BAC clone ends. In addition to the discovery and characterisation of 15 new simple tandem repeat polymorphisms, we provide integrated positional information for 33 ESTs and known genes, including KIAA1391, POU2AF1 (OBF1), PPP2R1B, CRYAB, HSPB2, DLAT, IL-18, PTPS, KIAA0781 and KAIA4591, which is mapped by NotI site cloning. We describe full-length transcript sequence for PPP2R1B, encoding the protein phosphatase 2A regulatory subunit A beta isoform. We also discover a processed pseudogene for USA-CYP, a cyclophilin associated with U4/U6 snRPNs, and a novel gene, DDP2, encoding a mitochondrial protein similar to the X-linked deafness-dystonia protein, which is juxtaposed 5'-to-5' to SDHD. This map will help assess this gene-rich region in PGL and in other common tumours.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Base Sequence
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- Cytochrome b Group/chemistry
- Cytochrome b Group/genetics
- Electron Transport Complex II
- Genes, Tumor Suppressor
- Humans
- In Situ Hybridization, Fluorescence
- Loss of Heterozygosity
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Neoplasms/genetics
- Oxidoreductases/genetics
- Phosphoprotein Phosphatases/genetics
- Polymorphism, Genetic
- Polymorphism, Single Nucleotide
- Protein Phosphatase 2
- Restriction Mapping
- Sequence Deletion
- Sequence Tagged Sites
- Succinate Dehydrogenase/genetics
Collapse
Affiliation(s)
- B E Baysal
- Department of Psychiatry, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nonchromaffin paragangliomas (PGLs) are usually benign, neural-crest-derived, slow-growing tumours of parasympathetic ganglia. Between 10% and 50% of cases are familial and are transmitted as autosomal dominant traits with incomplete and age-dependent penetrance.
Collapse
Affiliation(s)
- S Niemann
- Institut für Humangenetik, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
36
|
Amino H, Wang H, Hirawake H, Saruta F, Mizuchi D, Mineki R, Shindo N, Murayama K, Takamiya S, Aoki T, Kojima S, Kita K. Stage-specific isoforms of Ascaris suum complex. II: The fumarate reductase of the parasitic adult and the succinate dehydrogenase of free-living larvae share a common iron-sulfur subunit. Mol Biochem Parasitol 2000; 106:63-76. [PMID: 10743611 DOI: 10.1016/s0166-6851(99)00200-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complex II of adult Ascaris suum muscle exhibits high fumarate reductase (FRD) activity and plays a key role in anaerobic electron-transport during adaptation to their microaerobic habitat. In contrast, larval (L2) complex II shows a much lower FRD activity than the adult enzyme, and functions as succinate dehydrogenase (SDH) in aerobic respiration. We have reported the stage-specific isoforms of complex II in A. suum mitochondria, and showed that at least the flavoprotein subunit (Fp) and the small subunit of cytochrome b (cybS) of the larval complex II differ from those of adult. In the present study, complete cDNAs for the iron-sulfur subunit (Ip) of complex II, which with Fp forms the catalytic portion of complex II, have been cloned and sequenced from anaerobic adult A. suum, and the free-living nematode, Caenorhabditis elegans. The amino acid sequences of the Ip subunits of these two nematodes are similar, particularly around the three cysteine-rich regions that are thought to comprise the iron-sulfur clusters of the enzyme. The Ip from A. suum larvae was also characterized because Northern hybridization showed that the adult Ip is also expressed in L2. The Ip of larval complex II was recognized by the antibody against adult Ip, and was indistinguishable from the adult Ip by peptide mapping. The N-terminal 42 amino acid sequence of Ip in the larval complex II purified by DEAE-cellulofine column chromatography was identical to that of the mature form of the adult Ip. Furthermore, the amino acid composition of larval Ip determined by micro-analysis on a PVDF membrane is almost the same as that of adult Ip. These results, together with the fact, that homology probing by RT-PCR, using degenerated primers, failed to find a larval-specific Ip, suggest that the two different stage-specific forms of the A. suum complex II share a common Ip subunit, even though the adult enzyme functions as a FRD, while larval enzyme acts as an SDH.
Collapse
Affiliation(s)
- H Amino
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW, Cornelisse CJ, Devilee P, Devlin B. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287:848-51. [PMID: 10657297 DOI: 10.1126/science.287.5454.848] [Citation(s) in RCA: 1190] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hereditary paraganglioma (PGL) is characterized by the development of benign, vascularized tumors in the head and neck. The most common tumor site is the carotid body (CB), a chemoreceptive organ that senses oxygen levels in the blood. Analysis of families carrying the PGL1 gene, described here, revealed germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes a mitochondrial respiratory chain protein-the small subunit of cytochrome b in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations based on the inheritance pattern of PGL, the SDHD gene showed no evidence of imprinting. These findings indicate that mitochondria play an important role in the pathogenesis of certain tumors and that cybS plays a role in normal CB physiology.
Collapse
Affiliation(s)
- B E Baysal
- Department of Psychiatry, The University of Pittsburgh Medical Center, Pittsburgh, PA 15213-2593, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hirawake H, Taniwaki M, Tamura A, Amino H, Tomitsuka E, Kita K. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:295-300. [PMID: 10482792 DOI: 10.1016/s0005-2728(99)00071-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have mapped large (cybL) and small (cybS) subunits of cytochrome b in the succinate-ubiquinone oxidoreductase (complex II) of human mitochondria to chromosome 1q21 and 11q23, respectively (H. Hirawake et al., Cytogenet. Cell Genet. 79 (1997) 132-138). In the present study, the human SDHD gene encoding cybS was cloned and characterized. The gene comprises four exons and three introns extending over 19 kb. Sequence analysis of the 5' promoter region showed several motifs for the binding of transcription factors including nuclear respiratory factors NRF-1 and NRF-2 at positions -137 and -104, respectively. In addition to this gene, six pseudogenes of cybS were isolated and mapped on the chromosome.
Collapse
Affiliation(s)
- H Hirawake
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|