1
|
Shamay Y, Raviv L, Golan M, Voronov E, Apte RN, David A. Inhibition of primary and metastatic tumors in mice by E-selectin-targeted polymer-drug conjugates. J Control Release 2015; 217:102-12. [PMID: 26297207 DOI: 10.1016/j.jconrel.2015.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
There is currently no effective means to prevent or control metastatic dissemination of cancer cells. E-selectin, an adhesion molecule expressed exclusively on inflamed and angiogenic blood vessels, plays an important role in several rate-limiting steps of cancer metastasis. In this study, we assessed the in vivo antitumor efficacy of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers conjugated to an E-selectin binding peptide (Esbp, DITWDQLWDLMK) and equipped with the chemotherapeutic drug doxorubicin (P-(Esbp)-DOX) or with the proapoptotic peptide D(KLAKLAK)2 (P-(Esbp)-KLAK). Following a single intravenous injection, P-(Esbp)-DOX reduced tumor growth rate and prolonged the survival of mice bearing primary Lewis lung carcinoma (3LL) tumors significantly more than treatment with a non-targeted copolymer (P-DOX) or with free DOX. In an experimental B16-F10 lung metastasis model, a single intravenous dose of P-(Esbp)-DOX or P-(Esbp)-KLAK prolonged mice survival time significantly more than the non-targeted copolymers or the free drugs, and the percentage of complete tumor regression increased with increasing doses and with dosing frequency. In addition, mice pretreated with an E-selectin-targeted "drug-free" copolymer (P-(Esbp)-FITC) exhibited significantly fewer B16-F10 tumor foci in the lungs as compared with non-treated mice, demonstrating the anti-metastatic properties of the copolymer and its ability to control cancer spread through E-selectin-mediated interactions. Biodistribution analysis further confirmed the preferential accumulation of the E-selectin-targeted near-infrared fluorescently-labeled copolymer P-(Esbp)-IR783 in B16-F10 lung metastases. Taken together, this study demonstrates, for the first time, that the E-selectin targeted copolymer-drug conjugates can inhibit primary tumor growth and prevent metastases in vivo.
Collapse
Affiliation(s)
- Yosi Shamay
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Raviv
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Ara MN, Matsuda T, Hyodo M, Sakurai Y, Ohga N, Hida K, Harashima H. Construction of an aptamer modified liposomal system targeted to tumor endothelial cells. Biol Pharm Bull 2015; 37:1742-9. [PMID: 25366480 DOI: 10.1248/bpb.b14-00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe herein the development of a high affinity and specific DNA aptamer as a new ligand for use in liposomal nanoparticles to target cultured mouse tumor endothelial cells (mTECs). Active targeted nanotechnology based drug delivery systems are currently of great interest, due to their potential for reducing side effects and facilitating the delivery of cytotoxic drugs or genes in a site specific manner. In this study, we report on a promising aptamer candidate AraHH036 that shows selective binding towards mTECs. The aptamer does not bind to normal cells, normal endothelial cells or tumor cells. Therefore, we synthesized an aptamer-polyethylene glycol (PEG) lipid conjugate and prepared aptamer based liposomes (ALPs) by the standard lipid hydration method. First, we quantified the higher capacity of ALPs to internalize into mTECs by incubating ALPs containing 1 mol%, 5 mol% and 10 mol% aptamer of total lipids and compared the results to those for unmodified PEGylated liposomes (PLPs). A confocal laser scanning microscope (CLSM) uptake study indicated that the ALPs were taken up more efficiently than PLPs. The measured Kd value of the ALPs was 142 nM. An intracellular trafficking study confirmed that most of the rhodamine labeled ALPs were taken up and co-localized with the green lysotracker, thus confirming that they were located in lysosomes. Finally, using an aptamer based proteomics approach, the molecular target protein of the aptamer was identified as heat shock protein 70 (HSP70). The results suggest that these ALPs offer promise as a new carrier molecule for delivering anti-angiogenesis drugs to tumor vasculature.
Collapse
Affiliation(s)
- Mst Naznin Ara
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | | | | | | | |
Collapse
|
3
|
Siegel G, Malmsten M, Ermilov E. Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance. Adv Colloid Interface Sci 2014; 205:275-318. [PMID: 24534475 DOI: 10.1016/j.cis.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
Abstract
In the review article presented here, we demonstrate that the connective tissue is more than just a matrix for cells and a passive scaffold to provide physical support. The extracellular matrix can be subdivided into proteins (collagen, elastin), glycoconjugates (structural glycoproteins, proteoglycans) and glycosaminoglycans (hyaluronan). Our main focus rests on the anionic biopolyelectrolytes of the perlecan/syndecan superfamily which belongs to extracellular matrix and cell membrane integral proteoglycans. Though the extracellular domain of the syndecans may well be performing a structural role within the extracellular matrix, a key function of this class of membrane intercalated proteoglycans may be to act as signal transducers across the plasma membrane and thus be more appropriately included in the group of cell surface receptors. Nevertheless, there is a continuum in functions of syndecans and perlecans, especially with respect to their structural role and biomedical significance. HS/CS proteoglycans are receptor sites for lipoprotein binding thus intervening directly in lipid metabolism. We could show that among all lipoproteins, HDL has the highest affinity to these proteoglycans and thus instals a feedforward forechecking loop against atherogenic apoB100 lipoprotein deposition on surface membranes and in subendothelial spaces. Therefore, HDL is not only responsible for VLDL/IDL/LDL cholesterol exit but also controls thoroughly the entry. This way, it inhibits arteriosclerotic nanoplaque formation. The ternary complex 'lipoprotein receptor (HS/CS-PG) - lipoprotein (LDL, oxLDL, Lp(a)) - calcium' may be interpreted as arteriosclerotic nanoplaque build-up on the molecular level before any cellular reactivity, possibly representing the arteriosclerotic primary lesion combined with endothelial dysfunction. With laser-based ellipsometry we could demonstrate that nanoplaque formation is a Ca(2+)-driven process. In an in vitro biosensor application of HS-PG coated silica surfaces we tested nanoplaque formation and size in clinical trials with cardiovascular high-risk patients who underwent treatment with ginkgo or fluvastatin. While ginkgo reduced nanoplaque formation (size) by 14.3% (23.4%) in the isolated apoB100 lipid fraction at a normal blood Ca(2+) concentration, the effect of the statin with a reduction of 44.1% (25.4%) was more pronounced. In addition, ginkgo showed beneficial effects on several biomarkers of oxidative stress and inflammation. Besides acting as peripheral lipoprotein binding receptor, HS/CS-PG is crucially implicated in blood flow sensing. A sensor molecule has to fulfil certain mechanochemical and mechanoelectrical requirements. It should possess viscoelastic and cation binding properties capable of undergoing conformational changes caused both mechanically and electrostatically. Moreover, the latter should be ion-specific. Under no-flow conditions, the viscoelastic polyelectrolyte at the endothelium - blood interface assumes a random coil form. Blood flow causes a conformational change from the random coil state to the directed filament structure state. This conformational transition effects a protein unfurling and molecular elongation of the GAG side chains like in a 'stretched' spring. This configuration is therefore combined with an increase in binding sites for Na(+) ions. Counterion migration of Na(+) along the polysaccharide chain is followed by transmembrane Na(+) influx into the endothelial cell and by endothelial cell membrane depolarization. The simultaneous Ca(2+) influx releases NO and PGI2, vasodilatation is the consequence. Decrease in flow reverses the process. Binding of Ca(2+) and/or apoB100 lipoproteins (nanoplaque formation) impairs the flow sensor function. The physicochemical and functional properties of proteoglycans are due to their amphiphilicity and anionic polyelectrolyte character. Thus, they potently interact with cations, albeit in a rather complex manner. Utilizing (23)Na(+) and (39)K(+) NMR techniques, we could show that, both in HS-PG solutions and in native vascular connective tissue, the mode of interaction for monovalent cations is competition. Mg(2+) and Ca(2+) ions, however, induced a conformational change leading to an increased allosteric, cooperative K(+) and Na(+) binding, respectively. Since extracellular matrices and basement membranes form a tight-fitting sheath around the cell membrane of muscle and Schwann cells, in particular around sinus node cells of the heart, and underlie all epithelial and endothelial cell sheets and tubes, a release of cations from or an adsorption to these polyanionic macromolecules can transiently lead to fast and drastic activity changes in these tiny extracellular tissue compartments. The ionic currents underlying pacemaker and action potential of sinus node cells are fundamentally modulated. Therefore, these polyelectrolytic ion binding characteristics directly contribute to and intervene into heart rhythm.
Collapse
Affiliation(s)
- G Siegel
- Charité - University Clinic Berlin, 10117 Berlin, Germany; University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden.
| | - M Malmsten
- University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - E Ermilov
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
González C. Deepening on breast cancer metastasis: the ERα-mediated modulation of KISS/KISS1R system. Endocrinology 2013; 154:1959-61. [PMID: 23687110 DOI: 10.1210/en.2013-1285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Celestino González
- Department of Functional Biology, Physiology Area, University of Oviedo, Calle Julián Clavería Sin Número, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
|
6
|
Mann AP, Bhavane RC, Somasunderam A, Liz Montalvo-Ortiz B, Ghaghada KB, Volk D, Nieves-Alicea R, Suh KS, Ferrari M, Annapragada A, Gorenstein DG, Tanaka T. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2011; 2:298-304. [PMID: 21666286 PMCID: PMC3248173 DOI: 10.18632/oncotarget.261] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent developments in multi-functional nanoparticles offer a great potential for targeted delivery of therapeutic compounds and imaging contrast agents to specific cell types, in turn, enhancing therapeutic effect and minimizing side effects. Despite the promise, site specific delivery carriers have not been translated into clinical reality. In this study, we have developed long circulating liposomes with the outer surface decorated with thioated oligonucleotide aptamer (thioaptamer) against E-selectin (ESTA) and evaluated the targeting efficacy and PK parameters. In vitro targeting studies using Human Umbilical Cord Vein Endothelial Cell (HUVEC) demonstrated efficient and rapid uptake of the ESTA conjugated liposomes (ESTA-lip). In vivo, the intravenous administration of ESTA-lip resulted in their accumulation at the tumor vasculature of breast tumor xenografts without shortening the circulation half-life. The study presented here represents an exemplary use of thioaptamer for targeting and opens the door to testing various combinations of thioaptamer and nanocarriers that can be constructed to target multiple cancer types and tumor components for delivery of both therapeutics and imaging agents.
Collapse
Affiliation(s)
- Aman P Mann
- Department of Nanomedicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gunawan RC, Almeda D, Auguste DT. Complementary targeting of liposomes to IL-1α and TNF-α activated endothelial cells via the transient expression of VCAM1 and E-selectin. Biomaterials 2011; 32:9848-53. [PMID: 21944721 DOI: 10.1016/j.biomaterials.2011.08.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022]
Abstract
Inflammation is in part defined by the transient upregulation of cell adhesion molecules on the surface of endothelial cells (ECs) in response to cytokines. We hypothesized that liposomes with a complementary surface presentation of antibodies to the pattern of molecules on the EC surface may enhance targeting. We quantified the expression of vascular cell adhesion molecule-1 (VCAM1) and endothelial leukocyte cell adhesion molecule-1 (E-selectin) on ECs upon exposure to either tumor necrosis factor-α (TNF-α) or interleukin-1α (IL-1α) as a function of time. Liposomes, composed of 95 mol% dioleoyl phosphatidylcholine (DOPC) and 5 mol% dodecanyl phosphatidylethanolamine (N-dod-PE), were prepared by conjugating different molar ratios of antibodies against VCAM1 (aVCAM1) and E-selectin (aE-selectin). Increased binding was observed when immunoliposomes complemented the presentation of VCAM1:E-selectin expressed on TNF-α activated ECs. The 1:1 aVCAM1:aE-selectin liposomes had maximal binding at both 6 and 24 h on IL-1α activated ECs due to differences in molecular organization. The results demonstrate that liposomes targeting to inflamed endothelium may be optimized by exploiting the dynamic expression of VCAM1 and E-selectin on the EC surface.
Collapse
Affiliation(s)
- Rico C Gunawan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
8
|
Kaji H, Yokoi T, Kawashima T, Nishizawa M. Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device. LAB ON A CHIP 2010; 10:2374-9. [PMID: 20563348 DOI: 10.1039/c004583g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A microfluidic device was integrated with a controlled coculture system of HeLa cells and human umbilical vein endothelial cells (HUVECs). This integrated assembly allowed control of the direction of flow of medium (along with signaling factors secreted from cells) across the cultured cells. We grew HeLa cells and HUVECs to confluency on separate substrates and then joined the two substrates. A microfluidic device was then assembled onto the substrates and a cell coculture was initiated with controlled perfusion of the medium. When the medium flow was directed from the HeLa side to the HUVEC side, the HUVECs retreated and the HeLa cells migrated into the newly vacated areas. By contrast, when the medium flow was in the opposite direction, there was essentially no net movement of either cell type. Our results suggest that the migration of HeLa cells and HUVECs in coculture was likely mediated by soluble factors produced by HeLa cells.
Collapse
Affiliation(s)
- Hirokazu Kaji
- Department of Bioengineering and Robotics, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
9
|
ICS Medal Winners and Research Abstract Presentations. J Intensive Care Soc 2010. [DOI: 10.1177/175114371001100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Kaji H, Yokoi T, Kawashima T, Nishizawa M. Controlled cocultures of HeLa cells and human umbilical vein endothelial cells on detachable substrates. LAB ON A CHIP 2009; 9:427-32. [PMID: 19156292 DOI: 10.1039/b812510d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigated the interactions between HeLa cells and human umbilical vein endothelial cells (HUVECs) by monitoring their movements in a controllable coculture system. Two complementary, detachable, cell-substrates, one of polystyrene (PS) and the other of poly(dimethylsiloxane) (PDMS), were fabricated by replica molding. Coculturing was started by mechanically assembling two complementary substrates. One substrate was covered with a confluent layer of HeLa cells and its complement covered with confluent HUVECs. Using this coculture system as a tumor/endothelium model, we found that the HeLa cells migrated towards the HUVECs, while, simultaneously, the HUVECs retreated and that both types of cells migrated approximately twice as rapidly (two hundred microns per twenty-four hours) as they did alone. Additionally, when direct contact between the two cell types was prevented, the HUVECs initially migrated towards the HeLa cells and then retreated. The characteristics of the cell movements, i.e. direction and speed, probably are consequences of cell-cell signaling, with such signals possibly important during tumor cell intra- and extravasation.
Collapse
Affiliation(s)
- Hirokazu Kaji
- Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | | | | | |
Collapse
|
11
|
Gaillard T, Martin E, San Sebastian E, Cossío FP, Lopez X, Dejaegere A, Stote RH. Comparative normal mode analysis of LFA-1 integrin I-domains. J Mol Biol 2007; 374:231-49. [PMID: 17919656 DOI: 10.1016/j.jmb.2007.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 11/29/2022]
Abstract
The conformational dynamics of the Inserted domain (I-domain) from the lymphocyte function-associated antigen-1 (LFA-1) was investigated by normal mode analysis of multiple structures of the low, intermediate, and high affinity states. LFA-1 is an integrin expressed on leukocytes and is of critical importance in adhesion reactions, like antigen-specific responses, homing, and diapedesis. The main ligand binding site of LFA-1 is the I-domain, which recognizes intercellular adhesion molecules (ICAMs), members of the immunoglobulin superfamily. From experimental crystal structures, a large-scale conformational change of, among others, the alpha7 helix of the I-domain has been observed leading to the proposal that these structural changes are linked to the conformational regulation of LFA-1. The results from the present calculations show that structural changes of the alpha7 helix consistent with those observed in the crystal structures are significantly sampled by the low frequency modes. This was found to be particularly true for the low affinity state of the I-domain, indicating that low frequency motions favor the conformational transition implicated in activation. However, beyond the simple downward shift of the helix implied by the crystal structures, the calculations further show that there is a noticeable swinging-out motion of the helix. The consequences of this motion are discussed in the context of integrin activation and inhibition. Moreover, significant changes in the atomic-level dynamics and in long-range correlated motions of the I-domain were found to occur upon binding of the natural ligand ICAM. These changes were more local upon binding of an allosteric inhibitor. The present study opens the question of how changes in dynamics may contribute to the long-range transmission of signal upon ICAM binding by the LFA-1 I-domain.
Collapse
Affiliation(s)
- Thomas Gaillard
- Laboratoire de Biophysicochimie Moléculaire, Institut de Chimie de Strasbourg, Université Louis Pasteur, BP 1032, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Jacob M, Rehm M, Loetsch M, Paul JO, Bruegger D, Welsch U, Conzen P, Becker BF. The Endothelial Glycocalyx Prefers Albumin for Evoking Shear Stress-Induced, Nitric Oxide-Mediated Coronary Dilatation. J Vasc Res 2007; 44:435-43. [PMID: 17622736 DOI: 10.1159/000104871] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 04/04/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shear stress induces coronary dilatation via production of nitric oxide (NO). This should involve the endothelial glycocalyx (EG). A greater effect was expected of albumin versus hydroxyethyl starch (HES) perfusion, because albumin seals coronary leaks more effectively than HES in an EG-dependent way. METHODS Isolated hearts (guinea pigs) were perfused at constant pressure with Krebs-Henseleit buffer augmented with 1/3 volume 5% human albumin or 6% HES (200/0.5 or 450/0.7). Coronary flow was also determined after EG digestion (heparinase) and with nitro-L-arginine (NO-L-Ag). RESULTS Coronary flow (9.50 +/- 1.09, 5.10 +/- 0.49, 4.87 +/- 1.19 and 4.15 +/- 0.09 ml/min/g for 'albumin', 'HES 200', 'HES 450' and 'control', respectively, n = 5-6) did not correlate with perfusate viscosity (0.83, 1.02, 1.24 and 0.77 cP, respectively). NO-L-Ag and heparinase diminished dilatation by albumin, but not additively. Alone NO-L-Ag suppressed coronary flow during infusion of HES 450. Electron microscopy revealed a coronary EG of 300 nm, reduced to 20 nm after heparinase. Cultured endothelial cells possessed an EG of 20 nm to begin with. CONCLUSIONS Albumin induces greater endothelial shear stress than HES, despite lower viscosity, provided the EG contains negative groups. HES 450 causes some NO-mediated dilatation via even a rudimentary EG. Cultured endothelial cells express only a rudimentary glycocalyx, limiting their usefulness as a model system.
Collapse
Affiliation(s)
- Matthias Jacob
- Clinic of Anesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shi Q, Benderdour M, Lavigne P, Ranger P, Fernandes JC. Evidence for two distinct pathways in TNFalpha-induced membrane and soluble forms of ICAM-1 in human osteoblast-like cells isolated from osteoarthritic patients. Osteoarthritis Cartilage 2007; 15:300-8. [PMID: 17161959 DOI: 10.1016/j.joca.2006.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 08/19/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present study aimed to investigate the modulation of membrane-bound intercellular adhesion molecule-1 (mICAM-1) and soluble ICAM-1 (sICAM-1) expression by tumor necrosis factor-alpha (TNFalpha) in human osteoarthritic (OA) osteoblasts. METHODS Cultured human primary osteoblasts were stimulated with increasing concentrations of human recombinant TNFalpha. Expression of mICAM-1 and sICAM-1 was evaluated by immunocytochemistry, enzyme-linked immunosorbent assay and semi-quantitative reverse transcriptase-polymerase chain reaction. In addition, we investigated the molecular mechanisms underlying ICAM-1 induction by TNFalpha, focusing on the activation of the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways. RESULTS Our data showed that TNFalpha dose-dependently increased mICAM-1 and sICAM-1 expression at the protein and mRNA levels in OA osteoblasts. The inhibitor of de novo mRNA synthesis, actinomycin D, suppressed TNFalpha-induced mICAM-1 and sICAM-1 expression. Upon examination of the signaling components, we found that TNFalpha was a potent activator of p38, p44/42, p54/46 MAPK, and IkappaBalpha (IkappaBalpha). The chemical inhibitors of p38, p44/42 MAPK, and NF-kappaB blocked TNFalpha-induced mICAM-1 expression but not that of sICAM-1. Transfection experiments revealed that p38 MAPK or IkappaB kinase alpha (IKKalpha) overexpression enhanced TNFalpha-induced mICAM-1 production. Furthermore, osteoblasts treatment with a chemical inhibitor of metalloproteinase-9 (MMP-9) activity, a proteolytic enzyme involved in ICAM-1 cleavage, evoked a significant 25% decrease of TNFalpha-induced sICAM-1 release. CONCLUSION Taken together, these findings illustrate the central role played by TNFalpha in the regulation of ICAM-1. We suggest that TNFalpha differentially regulates sICAM-1 and mICAM-1 expression and that sICAM-1 release involves, in part, the proteolytic cleavage of mICAM-1 by MMP-9. The capacity of the MMP-9 inhibitor to prevent sICAM-1 production may be useful for the development of novel therapeutic approaches relevant to OA.
Collapse
Affiliation(s)
- Q Shi
- Orthopaedics Research Laboratory, Department of Orthopaedics, Sacre-Coeur Hospital, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Canalli AA, Costa FF, Saad STO, Conran N. Granulocytic adhesive interactions and their role in sickle cell vaso-occlusion. ACTA ACUST UNITED AC 2006; 10:419-25. [PMID: 16273736 DOI: 10.1080/10245330500141259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent research has high-lighted the importance of leukocytes in sickle cell disease (SCD). Here we summarize evidence to show that the granulocytes may play a role in SCD due to their increased numbers and adhesive properties, facilitating their participation in the vaso-occlusive process.
Collapse
|
15
|
Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K. Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287:H2287-94. [PMID: 15256377 DOI: 10.1152/ajpheart.00808.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycocalyx layer on the surface of an endothelial cell is an interface barrier for uptake of macromolecules, such as low-density lipoprotein and albumin, in the cell. The shear-dependent uptake of macromolecules thus might govern the function of the glycocalyx layer. We therefore studied the effect of glycocalyx on the shear-dependent uptake of macromolecules into endothelial cells. Bovine aorta endothelial cells were exposed to shear stress stimulus ranging from 0.5 to 3.0 Pa for 48 h. The albumin uptake into the cells was then measured using confocal laser scanning microscopy, and the microstructure of glycocalyx was observed using electron microscopy. Compared with the uptake into endothelial cells under static conditions (no shear stress stimulus), the albumin uptake at a shear stress of 1.0 Pa increased by 16% and at 3.0 Pa decreased by 27%. Compared with static conditions, the thickness of the glycocalyx layer increased by 70% and the glycocalyx charge increased by 80% at a shear stress of 3.0 Pa. The albumin uptake at a shear stress of 3.0 Pa for cells with a neutralized (no charge) glycocalyx layer was almost twice that of cells with charged layer. These findings indicate that glycocalyx influences the albumin uptake at higher shear stress and that glycocalyx properties (thickness and charge level) are involved with the shear-dependent albumin uptake process.
Collapse
Affiliation(s)
- Akinori Ueda
- School of Fundamental Science and Technology, Keio Univ., 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | |
Collapse
|
16
|
Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 2002; 22:146-67. [PMID: 11857637 DOI: 10.1002/med.10001] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on providing insights into the structural basis and clinical relevance of LFA-1 and VLA-4 inhibition by peptides and small molecules as adhesion-based therapeutic strategies for inflammation and autoimmune diseases. Interactions of cell adhesion molecules (CAM) play central roles in mediating immune and inflammatory responses. Leukocyte function-associated antigen (LFA-1, alpha(L)beta(2), and CD11a/CD18) and very late antigen (VLA-4, alpha(4)beta(1), and CD49d/CD29) are members of integrin-type CAM that are predominantly involved in leukocyte trafficking and extravasation. LFA-1 is exclusively expressed on leukocytes and interacts with its ligands ICAM-1, -2, and -3 to promote a variety of homotypic and heterotypic cell adhesion events required for normal and pathologic functions of the immune systems. VLA-4 is expressed mainly on lymphocyte, monocytes, and eosinophils, but is not found on neutrophils. VLA-4 interacts with its ligands VCAM-1 and fibronectin (FN) CS1 during chronic inflammatory diseases, such as rheumatoid arthritis, asthma, psoriasis, transplant-rejection, and allergy. Blockade of LFA-1 and VLA-4 interactions with their ligands is a potential target for immunosuppression. LFA-1 and VLA-4 antagonists (antibodies, peptides, and small molecules) are being developed for controlling inflammation and autoimmune diseases. The therapeutic intervention of mostly mAb-based has been extensively studied. However, due to the challenging relative efficacy/safety ratio of mAb-based therapy application, especially in terms of systemic administration and immunogenic potential, strategic alternatives in the forms of peptide, peptide mimetic inhibitors, and small molecule non-peptide antagonists are being sought. Linear and cyclic peptides derived from the sequences of LFA-1, ICAM-1, ICAM-2, VCAM-1, and FN C1 have been shown to have inhibitory effects in vitro and in vivo. Finally, understanding the mechanism of LFA-1 and VLA-4 binding to their ligands has become a fundamental basis in developing therapeutic agents for inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Helena Yusuf-Makagiansar
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratory, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
17
|
Malmsten M, Siegel G, Wood WG. Ellipsometry Studies of Lipoprotein Adsorption. J Colloid Interface Sci 2000; 224:338-346. [PMID: 10727345 DOI: 10.1006/jcis.1999.6689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption of a number of lipoproteins, i.e., low-density lipoprotein (LDL), oxidized LDL (oxLDL), high-density lipoprotein (HDL), and lipoprotein (a), at silica and methylated silica as well as at the latter surface modified through adsorption of proteoheparan sulfate, was investigated with in situ ellipsometry at close to physiological conditions. It was found that LDL, oxLDL, HDL, and lipoprotein (a) all adsorbed more extensively at silica than at methylated silica. Upon exposure of the methylated silica surface to proteoheparan sulfate, this proteoglycan adsorbs through its hydrophobic moiety, thereby forming a layer similar to that in the biological system, with the polysaccharide chains forming brushes oriented toward the aqueous solution. Analogous to the biological system, both lipoprotein (a) and LDL were found to deposit at such surfaces, the latter particularly in the simultaneous presence of Ca(2+). After HDL pre-exposure, however, no LDL deposition was observed, even at high LDL and Ca(2+) concentrations. These findings correlate well with those obtained from clinical investigations on risk factors for atherosclerosis. Copyright 2000 Academic Press.
Collapse
Affiliation(s)
- M Malmsten
- Institute for Surface Chemistry, Stockholm, SE-114 86, Sweden
| | | | | |
Collapse
|
18
|
Wolfram RM, Budinsky AC, Brodowicz T, Kubista M, Köstler WJ, Kichler-Lakomy C, Hellan M, Kahlhammer G, Wiltschke C, Zielinski CC. Defective antigen presentation resulting from impaired expression of costimulatory molecules in breast cancer. Int J Cancer 2000. [DOI: 10.1002/1097-0215(20001015)88:2<239::aid-ijc15>3.0.co;2-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 1999; 19:91-104. [PMID: 10090394 DOI: 10.1089/107999099314234] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells, by virtue of their capacity to express adhesion molecules and cytokines, are intricately involved in inflammatory processes. Endothelial cells have been shown to express interleukin-1 (IL-1), IL-5, IL-6, IL-8, IL-11, IL-15, several colony-stimulating factors (CSF), granulocyte-CSF (G-CSF), macrophage CSF (M-CSF) and granulocyte-macrophage CSF (GM-CSF), and the chemokines, monocyte chemotactic protein-1 (MCP-1), RANTES, and growth-related oncogene protein-alpha (GRO-alpha). IL-1 and tumor necrosis factor-alpha (TNF-alpha) produced by infiltrating inflammatory cells can induce endothelial cells to express several of these cytokines as well as adhesion molecules. Induction of these cytokines in endothelial cells has been demonstrated by such diverse processes as hypoxia and bacterial infection. Recent studies have demonstrated that adhesive interactions between endothelial cells and recruited inflammatory cells can also signal the secretion of inflammatory cytokines. This cross-talk between inflammatory cells and the endothelium may be critical to the development of chronic inflammatory states. Endothelial-derived cytokines may be involved in hematopoiesis, cellular chemotaxis and recruitment, bone resorption, coagulation, and the acute-phase protein synthesis. As many of these processes are critical to the maturation of an inflammatory and reparative state, it appears likely that endothelial-derived cytokines play a crucial role in several diseases, including atherosclerosis, graft rejection, asthma, vasculitis, and sepsis. Genetic and pharmacologic manipulation of endothelial-derived cytokines provides an additional approach to the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- G Krishnaswamy
- Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614-0622, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The cytoskeletal filament proteins alpha-actinin, filamin, desmin, and filamin-desmin aggregates were adsorbed to a hydrophobic silica surface. The adsorbed amount as measured by ellipsometric methods after rinsing and equilibration was 2.7 mg/m2 for alpha-actinin and 0.4 mg/m2 for filamin plus desmin, respectively. Adsorbed layer thicknesses in physiological salt solution were about 107 nm, 89 nm, 108 nm and 93 nm for alpha-actinin, filamin, desmin, and cross-linked filamin-desmin, respectively. Ca2+ ions in a concentration of 10(-4), 10(-3), and 2.52 mmol/l had no effect on the adsorbed amount, refractive index, and adsorbed layer thickness of the individual intermediate filament proteins. Cross-linked filamin-desmin, however, reacted markedly upon the addition of these Ca2+ concentrations with a change in refractive index and adsorbed layer thickness. The layer formed by the filamin-desmin complex contracted by 2-3, 6-7, and 6-7 nm, respectively. The maximum shortening occurred at 1 pmol/l Ca2+. The Ca(2+)-dependent adsorbed layer changes of cross-linked filamin-desmin supports the contractile mechanisms in muscular tissues and forms the basis for migration and motility in nonmuscular cells. These motional events are crucially involved in peripheral organ perfusion, inflammation, and tumor invasion and metastasis.
Collapse
Affiliation(s)
- G Siegel
- Institute of Physiology, Biophysical Research Group, The Free University of Berlin, Germany
| | | | | |
Collapse
|
21
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|