1
|
Downs CJ, Sobolewski ME. The Promise of a Pointillist Perspective for Comparative Immunology. Physiology (Bethesda) 2024; 39:0. [PMID: 38808754 DOI: 10.1152/physiol.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Most studies in comparative immunology involve investigations into the detailed mechanisms of the immune system of a nonmodel organism. Although this approach has been insightful, it has promoted a deep understanding of only a handful of species, thus inhibiting the recognition of broad taxonomic patterns. Here, we call for investigating the immune defenses of numerous species within a pointillist framework, that is, the meticulous, targeted collection of data from dozens of species and investigation of broad patterns of organismal, ecological, and evolutionary forces shaping those patterns. Without understanding basic immunological patterns across species, we are limited in our ability to extrapolate and/or translate our findings to other organisms, including humans. We illustrate this point by focusing predominantly on the biological scaling literature with some integrations of the pace of life literature, as these perspectives have been the most developed within this framework. We also highlight how the more traditional approach in comparative immunology works synergistically with a pointillist approach, with each approach feeding back into the other. We conclude that the pointillist approach promises to illuminate comprehensive theories about the immune system and enhance predictions in a wide variety of domains, including host-parasite dynamics and disease ecology.
Collapse
Affiliation(s)
- Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Marissa E Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
2
|
Delinois LJ, Sharma A, Ramesh AK, Boatright LD, Li Q, Xu R, Luo HR, Mishra BB, Sharma J. Poly(ADP-Ribose) Polymerase-1 Regulates Pyroptosis Independent Function of NLRP3 Inflammasome in Neutrophil Extracellular Trap Formation. Immunohorizons 2024; 8:586-597. [PMID: 39186692 PMCID: PMC11374751 DOI: 10.4049/immunohorizons.2400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1β transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.
Collapse
Affiliation(s)
- Louis J Delinois
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Atul Sharma
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashwin K Ramesh
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laurel D Boatright
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qun Li
- Developmental Dentistry, UT Health Science Center at San Antonio, San Antonio, TX
| | - Rong Xu
- Pathology and Lab Medicine, Boston Children's Hospital, Boston, MA
| | - Hongbo R Luo
- Pathology and Lab Medicine, Boston Children's Hospital, Boston, MA
| | - Bibhuti B Mishra
- Developmental Dentistry, UT Health Science Center at San Antonio, San Antonio, TX
| | - Jyotika Sharma
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Ding J, Xu N, Wang J, He Y, Wang X, Liu M, Liu X. Plancitoxin-1 mediates extracellular trap evasion by the parasitic helminth Trichinella spiralis. BMC Biol 2024; 22:158. [PMID: 39075478 PMCID: PMC11287892 DOI: 10.1186/s12915-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Trichinella spiralis (T. spiralis) is a parasitic helminth that causes a globally prevalent neglected zoonotic disease, and worms at different developmental stages (muscle larvae, adult worms, newborn larvae) induce immune attack at different infection sites, causing serious harm to host health. Several innate immune cells release extracellular traps (ETs) to entrap and kill most pathogens that invade the body. In response, some unicellular pathogens have evolved a strategy to escape capture by ETs through the secretion of nucleases, but few related studies have investigated multicellular helminths. RESULTS In the present study, we observed that ETs from neutrophils capture adult worms of T. spiralis, while ETs from macrophages trap muscle larvae and newborn larvae, and ETs had a killing effect on parasites in vitro. To defend against this immune attack, T. spiralis secretes plancitoxin-1, a DNase II-like protein, to degrade ETs and escape capture, which is essential for the survival of T. spiralis in the host. CONCLUSIONS In summary, these findings demonstrate that T. spiralis escapes ET-mediated capture by secreting deoxyribonuclease as a potential conserved immune evasion mechanism, and plancitoxin-1 could be used as a potential vaccine candidate.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yushu He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Wei Z, Hong H, Liu W, Jiang L, Xu J, Gao X, Qian Y, Jiang Y, Jin Z, Jin Q, Chen M, Yang Z. DNase I rescues goat sperm entrapped by neutrophil extracellular traps. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105107. [PMID: 38036049 DOI: 10.1016/j.dci.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Artificial insemination has been a predominant technique employed in goat husbandry for breeding purposes. Subsequent to artificial insemination, sperm can elicit inflammation in the reproductive tract, resulting in substantial the accumulation of neutrophils. Recognized as foreign entities, sperm may become entrapped within neutrophil extracellular traps (NETs) released by neutrophils, thereby exploiting their properties of pathogen elimination. Deoxyribonuclease I (DNase I), which is known for disintegrating NETs and causing loss of function, has been utilized to ameliorate liver and brain damage resulting from NETs, as well as to enhance sperm quality. This study investigated the mechanism of sperm-induced NETs and further explored the impact of DNase I on NETs. Sperm quality was evaluated using optical microscopy, while the structure of NETs was observed through immunofluorescence staining. The formation mechanism of NETs was examined using inhibitors and PicoGreen. The findings revealed that sperm induced the formation of NETs, a process regulated by glycolysis, NADPH oxidase, ERK1/2, and p38 signaling pathways. The composition of NETs encompassed DNA, citrullinated histone H3 (citH3), and elastase (NE). DNase I protects sperm by degrading NETs, thereby concurrently preserving the integrity of plasma membrane and motility of sperm. In summary, the release of sperm-induced NETs leads to its damage, but this detrimental effect is counteracted by DNase I through degradation of NETs. These observations provide novel insights into reproductive immunity in goats.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China; College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zha Jin
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Qinqin Jin
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Meiyi Chen
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
5
|
López-Andrade B, Cunill V, Andreu V, Bento L, Segura-Guerrero M, Moñino A, Iglesias J, Julià MR, Durán MA, Ballester MC, Muncunill J, Sampol A. Plasma from patients undergoing allogeneic hematopoietic stem cell transplantation promotes NETOSIS in vitro and correlates with inflammatory parameters and clinical severity. Front Immunol 2024; 15:1353106. [PMID: 38550584 PMCID: PMC10972998 DOI: 10.3389/fimmu.2024.1353106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction NETosis, the mechanism by which neutrophils release extracellular traps (NETs), is closely related to inflammation. During the allogeneic hematopoietic stem cell transplantation (allo-HSCT), different stimuli can induce NETs formation. Inflammation and endothelial injury have been associated with acute graft-versus-host disease (aGVHD) and complications after allo-HSCT. We focus on the study of NETosis and its relation with cytokines, hematological and biochemical parameters and clinical outcomes before, during and after allo-HSCT. Methods We evaluate the capacity of plasma samples from allo-HSCT patients to induce NETosis, in a cell culture model. Plasma samples from patients undergoing allo-HSCT had a stronger higher NETs induction capacity (NETsIC) than plasma from healthy donors throughout the transplantation process. An optimal cut-off value by ROC analysis was established to discriminate between patients whose plasma triggered NETosis (NETs+IC group) and those who did not (NETs-IC group). Results Prior to conditioning treatment, the capacity of plasma samples to trigger NETosis was significantly correlated with the Endothelial Activation and Stress Index (EASIX) score. At day 5 after transplant, patients with a positive NETsIC had higher interleukin (IL)-6 and C-reactive protein (CRP) levels and also a higher Modified EASIX score (M-EASIX) than patients with a negative NETsIC. EASIX and M-EASIX scores seek to determine inflammation and endothelium damage, therefore it could indicate a heightened immune response and inflammation in the group of patients with a positive NETsIC. Cytokine levels, specifically IL-8 and IL-6, significantly increased after allo-HSCT with peak levels reached on day 10 after graft infusion. Only, IL-10 and IL-6 levels were significantly higher in patients with a positive NETsIC. In our small cohort, higher IL-6 and IL-8 levels were related to early severe complications (before day 15 after transplant). Discussion Although early complications were not related to NETosis by itself, NETosis could predict overall non-specific but clinically significant complications during the full patient admission. In summary, NETosis can be directly induced by plasma from allo-HSCT patients and NETsIC was associated with clinical indicators of disease severity, cytokines levels and inflammatory markers.
Collapse
Affiliation(s)
- Bernardo López-Andrade
- Department of Hematology, Hospital Universitari Son Espases, Palma, Spain
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Vanesa Cunill
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Valero Andreu
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Leyre Bento
- Department of Hematology, Hospital Universitari Son Espases, Palma, Spain
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Marina Segura-Guerrero
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Andrea Moñino
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Julio Iglesias
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Maria Rosa Julià
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Maria Antonia Durán
- Department of Hematology, Hospital Universitari Son Espases, Palma, Spain
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Maria Carmen Ballester
- Department of Hematology, Hospital Universitari Son Espases, Palma, Spain
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josep Muncunill
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Antonia Sampol
- Department of Hematology, Hospital Universitari Son Espases, Palma, Spain
- Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| |
Collapse
|
6
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Liu X, Wei Q, Lu L, Cui S, Ma K, Zhang W, Ma F, Li H, Fu X, Zhang C. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Front Immunol 2023; 14:1094685. [PMID: 36860847 PMCID: PMC9968735 DOI: 10.3389/fimmu.2023.1094685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Various intractable inflammatory diseases caused by disorders of immune systems have pressed heavily on public health. Innate and adaptive immune cells as well as secreted cytokines and chemokines are commanders to mediate our immune systems. Therefore, restoring normal immunomodulatory responses of immune cells is crucial for the treatment of inflammatory diseases. Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are nano-sized double-membraned vesicles acting as paracrine effectors of MSCs. MSC-EVs, containing a variety of therapeutic agents, have shown great potential in immune modulation. Herein, we discuss the novel regulatory functions of MSC-EVs from different sources in the activities of innate and adaptive immune cells like macrophages, granulocytes, mast cells, natural killer (NK) cells, dendritic cells (DCs) and lymphocytes. Then, we summarize the latest clinical trials of MSC-EVs in inflammatory diseases. Furthermore, we prospect the research trend of MSC-EVs in the field of immune modulation. Despite the fact that the research on the role of MSC-EVs in regulating immune cells is in infancy, this cell-free therapy based on MSC-EVs still offers a promising solution for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Lu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
A novel methodology for NETs visualization under light microscopy. Biochem Biophys Rep 2023; 34:101437. [PMID: 36817094 PMCID: PMC9932730 DOI: 10.1016/j.bbrep.2023.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in the bloodstream and are very important for the resolution of infection. One of the strategies used by neutrophils to eliminate a microorganism is the formation of extracellular traps. Different methods for neutrophil extracellular traps (NETs) visualization have been described along the years, usually requiring the use of a fluorescent, confocal or scanning electron microscope. This research aimed to visualize NETs using light microscopy as another way to study NETs prior to using the more expensive techniques, making NETs research more cost effective. We evaluated neutrophil purity, viability and function by analyzing the formation of NETs comparing DAPI with safranin. When evaluating NETs formation, neutrophils that were not stimulated did not form NETs and when neutrophils were exposed to PMA or S. aureus NETs were formed and visualized with safranin under light microscopy and DAPI under fluorescence microscopy. Our method demonstrates another way to visualize NETs that can be added to the standard methods of visualization of NETs, increasing the opportunities to generate knowledge in the topic in any lab around the world.
Collapse
|
9
|
Platelet-Neutrophil Association in NETs-Rich Areas in the Retrieved AIS Patient Thrombi. Int J Mol Sci 2022; 23:ijms232214477. [PMID: 36430952 PMCID: PMC9694992 DOI: 10.3390/ijms232214477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Histological structure of thrombi is a strong determinant of the outcome of vascular recanalization therapy, the only treatment option for acute ischemic stroke (AIS) patients. A total of 21 AIS patients from this study after undergoing non-enhanced CT scan and multimodal MRI were treated with mechanical stent-based and manual aspiration thrombectomy, and thromboembolic retrieved from a cerebral artery. Complementary histopathological and imaging analyses were performed to understand their composition with a specific focus on fibrin, von Willebrand factor, and neutrophil extracellular traps (NETs). Though distinct RBC-rich and platelet-rich areas were found, AIS patient thrombi were overwhelmingly platelet-rich, with 90% of thrombi containing <40% total RBC-rich contents (1.5 to 37%). Structurally, RBC-rich areas were simple, consisting of tightly packed RBCs in thin fibrin meshwork with sparsely populated nucleated cells and lacked any substantial von Willebrand factor (VWF). Platelet-rich areas were structurally more complex with thick fibrin meshwork associated with VWF. Plenty of leukocytes populated the platelet-rich areas, particularly in the periphery and border areas between platelet-rich and RBC-rich areas. Platelet-rich areas showed abundant activated neutrophils (myeloperoxidase+ and neutrophil-elastase+) containing citrullinated histone-decorated DNA. Citrullinated histone-decorated DNA also accumulated extracellularly, pointing to NETosis by the activated neutrophils. Notably, NETs-containing areas showed strong reactivity to VWF, platelets, and high-mobility group box 1 (HMGB1), signifying a close interplay between these components.
Collapse
|
10
|
Albaladejo-Riad N, Cuesta A, Esteban MÁ. Induction and characterization of extracellular traps by gilthead seabream (Sparus aurata L.) head-kidney leucocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 130:582-590. [PMID: 36152801 DOI: 10.1016/j.fsi.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was the induction and characterization of extracellular traps (ETs) produced by gilthead seabream (Sparus aurata L.) head-kidney leucocytes. The cells were incubated several times (10, 30, 60, 120, and 180 min) with different concentrations of the stimulants diluted in RPMI-1640 culture medium: RPMI-1640 (control), β-glucan from Saccharomyces cerevisiae (BG, 0-400 μg mL-1), lipopolysaccharide from Escherichia coli (LPS, 0-10 μg mL-1), calcium ionophore A23187 (CaI, 0-5 μg mL-1), Phorbol 12-myristate 13-acetate (PMA, 0-1000 ng mL-1) and polyinosinic-polycytidylic acid sodium salt (Poly I:C, 0-200 μg mL-1). BG, LPS and CaI exerted only weak stimulatory activity, while PMA and poly I:C exerted a potent one. After stimulation of the leucocytes, ETs structures were quantified and visualised through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ETs structures had DNA and myeloperoxidase. The ETs morphology was studied by light and scanning electron microscopy. These data confirm that seabream leucocytes form ETs with different morphological properties, depending on the used stimulant. These results will be the basis for new studies to analyse the implication of this mechanism in fish immunity. All this new knowledge will have its application in fish farms when we learn to manipulate the innate immune response in order to mitigate microbial infections.
Collapse
Affiliation(s)
- Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Antwi S, Oduro-Mensah D, Asiedu-Larbi J, Oduro-Mensah E, Quasie O, Lewis C, Darko-Obiri D, Ocloo A, Okine LK. Prophylactic or therapeutic administration of Holarrhena floribunda hydro ethanol extract suppresses complete Freund's adjuvant-induced arthritis in Sprague-Dawley rats. J Inflamm (Lond) 2022; 19:3. [PMID: 35248062 PMCID: PMC8897772 DOI: 10.1186/s12950-022-00301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A hydro ethanol extract of the stem bark of Holarrhena floribunda (HFE) has been shown to be effective in the management of acute inflammation. This study was to evaluate usefulness of the extract for the management of chronic inflammation in a murine model. METHODS Arthritis was induced in Sprague-Dawley rats using Complete Freund's Adjuvant. Anti-arthritic effect of the extract was evaluated in prophylactic and therapeutic treatment models at doses of 50, 200 and 500 mg/kg. Parameters assessed included oedema, serology of inflammatory response, bone tissue histology and haematology. Data were analysed by ANOVA and Tukey's multiple comparisons post hoc test. RESULTS HFE at 50-500 mg/kg dose-dependently [P ≥ 0.0354 (prophylactic) and P ≥ 0.0001 (therapeutic) inhibited swelling of the injected paw upon prophylactic [≤ 81.26% (P < 0.0001) or therapeutic [≤ 67.92% (P < 0.01) administration - and prevented spread of arthritis to the contralateral paw. The inflammation alleviation activity was further demonstrated by decrease in arthritis score, radiologic score and erythrocyte sedimentation rate. HFE at all doses significantly reduced serum interleukin (IL)-1α (P < 0.0197), and 500 mg/kg HFE reduced IL-6 (P = 0.0032). In contrast, serum concentrations of IL-10, protein kinase A and cyclic adenosine monophosphate were enhanced (P ≤ 0.0436). HFE consistently showed better prophylactic than therapeutic activity. CONCLUSION HFE strongly suppressed Complete Freund's Adjuvant-induced arthritis and modulated regulators of inflammation, including IL-1α, - 6 and - 10. Taken together, the data suggest that HFE has potential for use as an agent for modulation of the inflammatory response.
Collapse
Affiliation(s)
- Stephen Antwi
- Department of Pharmacology/Toxicology, Centre for Plant Medicine Research, P. O. Box 73, Mampong, Akuapem, Ghana
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 54, Accra, Ghana.
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Jerry Asiedu-Larbi
- Department of Pharmacology/Toxicology, Centre for Plant Medicine Research, P. O. Box 73, Mampong, Akuapem, Ghana
| | | | - Olga Quasie
- Department of Pharmacology/Toxicology, Centre for Plant Medicine Research, P. O. Box 73, Mampong, Akuapem, Ghana
| | - Clara Lewis
- Clinical Research Department, Centre for Plant Medicine Research, P. O. Box 73, Mampong, Akuapem, Ghana
| | - David Darko-Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 54, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laud Kenneth Okine
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 54, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Tian Y, Russo RM, Li Y, Karmakar M, Liu B, Puskarich MA, Jones AE, Stringer KA, Standiford TJ, Alam HB. Serum citrullinated histone H3 concentrations differentiate patients with septic verses non-septic shock and correlate with disease severity. Infection 2020; 49:83-93. [PMID: 33000445 PMCID: PMC7527151 DOI: 10.1007/s15010-020-01528-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Purpose Microbial infection stimulates neutrophil/macrophage/monocyte extracellular trap formation, which leads to the release of citrullinated histone H3 (CitH3) catalyzed by peptidylarginine deiminase (PAD) 2 and 4. Understanding these molecular mechanisms in the pathogenesis of septic shock will be an important next step for developing novel diagnostic and treatment modalities. We sought to determine the expression of CitH3 in patients with septic shock, and to correlate CitH3 levels with PAD2/PAD4 and clinically relevant outcomes. Methods Levels of CitH3 were measured in serum samples of 160 critically ill patients with septic and non-septic shock, and healthy volunteers. Analyses of clinical and laboratory characteristics of patients were conducted. Results Levels of circulating CitH3 at enrollment were significantly increased in septic shock patients (n = 102) compared to patients hospitalized with non-infectious shock (NIC) (n = 32, p < 0.0001). The area under the curve (95% CI) for distinguishing septic shock from NIC using CitH3 was 0.76 (0.65–0.86). CitH3 was positively correlated with PAD2 and PAD4 concentrations and Sequential Organ Failure Assessment Scores [total score (r = 0.36, p < 0.0001)]. The serum levels of CitH3 at 24 h (p < 0.01) and 48 h (p < 0.05) were significantly higher in the septic patients that did not survive. Conclusion CitH3 is increased in patients with septic shock. Its serum concentrations correlate with disease severity and prognosis, which may yield vital insights into the pathophysiology of sepsis. Electronic supplementary material The online version of this article (10.1007/s15010-020-01528-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuzi Tian
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA.,Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rachel M Russo
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA.
| | - Monita Karmakar
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.,Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alan E Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, University of Michigan Medical School, 1500 E Medical Center Dr. SPC 5331, Ann Arbor, MI, 48109-5331, USA.
| |
Collapse
|
13
|
Covantes-Rosales CE, Toledo-Ibarra GA, González-Navarro I, Agraz-Cibrian JM, Girón-Pérez DA, Ventura-Ramon GH, Diaz-Resendiz KJG, Bueno-Durán AY, Ponce-Regalado MD, Girón-Pérez MI. Diazinon acute exposure induces neutrophil extracellular traps in Nile tilapia (Oreochromis niloticus). FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1798885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- C. E. Covantes-Rosales
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - G. A. Toledo-Ibarra
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - I. González-Navarro
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - J. M. Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - D. A. Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - G. H. Ventura-Ramon
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - K. J. G. Diaz-Resendiz
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| | - A. Y. Bueno-Durán
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
| | - M. D. Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Carretera a Yahualica, Tepatitlán de Morelos, Jalisco, México
| | - M. I. Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Cd de la Cultura Amado Nervo, Tepic Nayarit, México
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Calle tres s/n, Colonia Ciudad Industrial, Tepic Nayarit, México
| |
Collapse
|
14
|
Bakhtiarizadeh MR, Mirzaei S, Norouzi M, Sheybani N, Vafaei Sadi MS. Identification of Gene Modules and Hub Genes Involved in Mastitis Development Using a Systems Biology Approach. Front Genet 2020; 11:722. [PMID: 32754201 PMCID: PMC7371005 DOI: 10.3389/fgene.2020.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Mastitis is defined as the inflammation of the mammary gland, which impact directly on the production performance and welfare of dairy cattle. Since, mastitis is a multifactorial complex disease and the molecular pathways underlying this disorder have not been clearly understood yet, a system biology approach was used in this study to a better understanding of the molecular mechanisms behind mastitis. Methods Publicly available RNA-Seq data containing samples from milk of five infected and five healthy Holstein cows at five time points were retrieved. Gene Co-expression network analysis (WGCNA) approach and functional enrichment analysis were then applied with the aim to find the non-preserved module of genes that their connectivity were altered under infected condition. Hub genes were identified in the non-preserved modules and were subjected to protein-protein interactions (PPI) network construction. Results Among the 25 modules identified, eight modules were non-preserved and were also biologically associated with inflammation, immune response and mastitis development. Interestingly most of the hub genes in the eight modules were also densely connected in the PPI network. Of the hub genes, 250 genes were hubs in both co-expression and PPI networks and most of them were reported to play important roles in immune response or inflammatory pathways. The blue module was highly enriched in inflammatory responses and STAT1 was suggested to play an important role in mastitis development by regulating the immune related genes in this module. Moreover, a set of highly connected genes were identified such as BIRC3, PSMA6, FYN, F11R, NFKBIZ, NFKBIA, GRO1, PHB, CD3E, IL16, GSN, SOCS2, HCK, VAV1 and TLR6, which have been established to be critical for mastitis pathogenesis. Conclusion This study improved the understanding of the mechanisms underlying bovine mastitis and suggested eight non-preserved modules along with several most important genes with promising potential in etiology of mastitis.
Collapse
Affiliation(s)
| | - Shabnam Mirzaei
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Milad Norouzi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | |
Collapse
|
15
|
Niedźwiedzka-Rystwej P, Repka W, Tokarz-Deptuła B, Deptuła W. "In sickness and in health" - how neutrophil extracellular trap (NET) works in infections, selected diseases and pregnancy. J Inflamm (Lond) 2019; 16:15. [PMID: 31297037 PMCID: PMC6599315 DOI: 10.1186/s12950-019-0222-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
The discovery of the NET network (neutrophil extracellular trap) has revolutionized the perception of defense mechanisms used by neutrophils in infections and non-infectious states, as this mechanism proves the complexity of the ways in which neutrophils can act in the organism. The paper describes the NET network and its participation in bacterial, viral, fungal and parasitic infections, both in a positive and a negative aspect. In addition, attention was paid to the participation of NETs in the course of autoimmune diseases, cancer, as well as its impact on pregnancy and fertility in mammals.
Collapse
Affiliation(s)
| | - Weronika Repka
- Scientific Student’s Association for Microbiology, University of Szczecin, Szczecin, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
16
|
A DNase from a Fungal Phytopathogen Is a Virulence Factor Likely Deployed as Counter Defense against Host-Secreted Extracellular DNA. mBio 2019; 10:mBio.02805-18. [PMID: 30837342 PMCID: PMC6401486 DOI: 10.1128/mbio.02805-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We document that the absence of a single gene encoding a DNase in a fungal plant pathogen results in significantly reduced virulence to a plant host. We compared a wild-type strain of the maize pathogen Cochliobolus heterostrophus and an isogenic mutant lacking a candidate secreted DNase-encoding gene and demonstrated that the mutant is reduced in virulence on leaves and on roots. There are no previous reports of deletion of such a gene from either an animal or plant fungal pathogen accompanied by comparative assays of mutants and wild type for alterations in virulence. We observed DNase activity, in fungal culture filtrates, that is Mg2+ dependent and induced when plant host leaf material is present. Our findings demonstrate not only that fungi use extracellular DNases (exDNases) for virulence, but also that the relevant molecules are deployed in above-ground leaves as well as below-ground plant tissues. Overall, these data provide support for a common defense/counter defense virulence mechanism used by animals, plants, and their fungal and bacterial pathogens and suggest that components of the mechanism might be novel targets for the control of plant disease. Histone-linked extracellular DNA (exDNA) is a component of neutrophil extracellular traps (NETs). NETs have been shown to play a role in immune response to bacteria, fungi, viruses, and protozoan parasites. Mutation of genes encoding group A Streptococcus extracellular DNases (exDNases) results in reduced virulence in animals, a finding that implies that exDNases are deployed as counter defense against host DNA-containing NETs. Is the exDNA/exDNase mechanism also relevant to plants and their pathogens? It has been demonstrated previously that exDNA is a component of a matrix secreted from plant root caps and that plants also carry out an extracellular trapping process. Treatment with DNase I destroys root tip resistance to infection by fungi, the most abundant plant pathogens. We show that the absence of a single gene encoding a candidate exDNase results in significantly reduced virulence of a fungal plant pathogen to its host on leaves, the known infection site, and on roots. Mg2+-dependent exDNase activity was demonstrated in fungal culture filtrates and induced when host leaf material was present. It is speculated that the enzyme functions to degrade plant-secreted DNA, a component of a complex matrix akin to neutrophil extracellular traps of animals.
Collapse
|
17
|
Abstract
The immune system in a broad sense is a mechanism that allows a living organism to discriminate between "self" and "nonself." Examples of immune systems occur in multicellular organisms as simple and ancient as sea sponges. In fact, complex multicellular life would be impossible without the ability to exclude external life from the internal environment. This introduction to the immune system will explore the cell types and soluble factors involved in immune reactions, as well as their location in the body during development and maintenance. Additionally, a description of the immunological events during an innate and adaptive immune reaction to an infection will be discussed, as well as a brief introduction to autoimmunity, cancer immunity, vaccines, and immunotherapies.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Aude Thiriot
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Felicity Stark
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Establishment of a method for measuring leukocyte phagocytosis based on 16S rDNA. Mol Biol Rep 2018; 46:833-840. [PMID: 30506506 DOI: 10.1007/s11033-018-4538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
The goal of this study was to develop a method for measuring leukocyte phagocytosis based on 16S rDNA, and to investigate its clinical significance. Whole blood was collected and incubated with bacteria. Free bacteria were removed using differential centrifugation. Bacteria phagocytosed by leukocytes were measured using real-time PCR technology based on universal primers of 16S rDNA. The change rate of bacterial DNA (CRD) was considered as a criterion of phagocyte function. In the test, the CRD of whole blood leukocytes from a healthy volunteer was repeatedly measured (five times) by the new method in order to document the repeatability. The CRD from the new method and the rate of phagocytosis measured using traditional microscopy were compared in a young healthy group and an aged group of volunteers to observe the relationship between the new method and traditional microscopy and to assess the clinical value of the new method. There was a significant correlation between real-time PCR technology and traditional microscopy (r = 0.82, P < 0.01). The coefficient of variation (CV) was 2.7% for the new method. The CRD was statistically significantly lower in the aged group than in the healthy young group (P < 0.05). The real-time PCR method established for measuring leukocyte phagocytosis was accurate and reliable, and has potential clinical application.
Collapse
|
19
|
Palladino END, Katunga LA, Kolar GR, Ford DA. 2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation. J Lipid Res 2018; 59:1424-1432. [PMID: 29739865 DOI: 10.1194/jlr.m084731] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Neutrophils form neutrophil extracellular traps (NETs), which have been implicated in microcirculatory plugging. NET formation (NETosis) involves the fusion of granule and nuclear contents, which are then released in the extracellular space. Myeloperoxidase (MPO) plays a major role in NETosis leading to the dissociation of DNA from histones. During neutrophil activation, MPO is released and activated to convert hydrogen peroxide and chloride to hypochlorous acid (HOCl). HOCl targets plasmalogens leading to the production of the chlorinated lipids, 2-chlorofatty aldehyde and 2-chlorofatty acid (2-ClFA). Here, we tested the hypothesis that 2-ClFAs are important lipid mediators of NETosis. Human neutrophils treated with physiological levels of 2-ClFAs formed NETs, characterized by MPO association with DNA and neutrophil elastase (NE) redistribution to the perinuclear area. 2-ClFA-induced NETs reduced Escerichia coli colony forming units. 2-ClFA-induced NETosis is calcium- and protein arginine deiminase 4-dependent. Interestingly, unlike PMA, 2-ClFA initiates the NETosis process without neutrophil activation and degranulation. Furthermore, 2-ClFA elicits NETosis in bone-marrow derived neutrophils from MPO-deficient mice. Taken together, these findings suggest 2-ClFA as an MPO product that triggers the NETosis pathway following neutrophil activation.
Collapse
Affiliation(s)
- Elisa N D Palladino
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104.,Center for Cardiovascular Research Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Lalage A Katunga
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104.,Center for Cardiovascular Research Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Grant R Kolar
- Pathology Department Saint Louis University School of Medicine, St. Louis, MO 63104.,Research Microscopy and Histology Core, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 .,Center for Cardiovascular Research Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Recent studies indicate that the risk of thrombosis in hematologic patients may be similar or even higher than that found in patients with solid tumors. However, available information about pathogenesis and incidence of thrombosis in acute leukemia is limited. This review focuses on mechanisms underlying thrombosis in acute leukemia and discusses recent literature data. RECENT FINDINGS In the last few years, proofs have been provided that leukemic cells release free prothrombotic products, such as micro-vesicles, tissue factors, circulating free DNA and RNA. Furthermore, leukemic blasts can activate the procoagulant population of platelets, which initiate and amplify coagulation, causing thrombosis. In addition to factors produced by acute leukemia itself, others concur to trigger thrombosis. Some drugs, infections and insertion of central venous catheter have been described to increase risk of thrombosis in patients with acute leukemia. SUMMARY Thrombosis represents a serious complication in patients affected by myeloid and lymphoid acute leukemia. A proper knowledge of its pathophysiology and of the predisposing risk factors may allow to implement strategies of prevention. Improving prevention of thrombosis appears a major goal in patients whose frequent conditions of thrombocytopenia impede an adequate delivery of anticoagulant therapy.
Collapse
|
21
|
Li RHL, Ng G, Tablin F. Lipopolysaccharide-induced neutrophil extracellular trap formation in canine neutrophils is dependent on histone H3 citrullination by peptidylarginine deiminase. Vet Immunol Immunopathol 2017; 193-194:29-37. [PMID: 29129225 DOI: 10.1016/j.vetimm.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs), which are extracellular chromatin decorated with histones and antimicrobial proteins. Although known for antimicrobial properties, overzealous production of NETs (NETosis) may lead to cytotoxicity and multiple organ failure in sepsis. Pathogen-induced NETosis has been extensively studied in mice but its importance in dogs remains largely unknown. This study sought to characterize in vitro NETosis induced by E.coli LPS, including assessing the role of peptidylarginine deiminase (PAD) in canine NETosis. Neutrophils (1×106 cells/ml) from healthy dogs were isolated and treated with 100μg/ml LPS, 100nM phorbol 12-myristate 13-acetate (PMA), or buffer for either 90 or 180min. NETs were assessed using fluorescence microscopy of living neutrophils and immunofluorescent microscopy. Supernatant and cellular debris were purified and cell-free DNA was quantified by spectrophotometry. The role of PAD was assessed by treating LPS- and PMA-activated neutrophils with 50, 100 or 200μM of the PAD inhibitor, Cl-amidine. In vitro NETosis was characterized by co-localization of cell-free DNA, citrullinated histone H3, and myeloperoxidase. LPS stimulation resulted in intracellular citrullination of histone H3. Compared to PMA chemically-induced NETosis, LPS resulted in smaller NETs with less extracellular citrullinated histone H3. Cl-amidine decreased citrullination of histones and NET production in either LPS- or PMA-stimulated neutrophils demonstrating that neutrophil PAD is essential for these cellular processes.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| | - Geena Ng
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
22
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1019] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Pieper J, Locke M, Ruzaike G, Voigt S, Methner U, Berndt A. In vitro and in vivo generation of heterophil extracellular traps after Salmonella exposure. Vet Immunol Immunopathol 2017; 188:1-11. [PMID: 28615122 DOI: 10.1016/j.vetimm.2017.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The release of extracellular traps (ETs) by granulocytes is a unique strategy to stop the dissemination of microbial pathogens. This study was undertaken to elucidate the potential of avian granulocytes (heterophils) to form ETs that can arrest and kill Salmonella organisms. After in vitro exposure of isolated heterophils and in vivo infection of day-old chicks with Salmonella enterica subsp. enterica serovars Infantis (SI) or Enteritidis (SE), the generation of ETs as well as the trapping and survivability of Salmonella organisms in the ET meshwork were determined by means of microscopy and spectrophotometry. In vitro, heterophils were able to form ETs within 15min after SE and SI inoculation. At 120min and with a multiplicity of infection of 1 and 5, SI induced significantly more ETs and DNA release than SE. Both SE and SI were found to be associated with the ET structures. Live-dead staining showed most of the microorganisms within the extracellular scaffold alive. In vivo, heterophils were detected in cecal lumen of SE-, but not SI-infected chicks. In cecum of the SE-exposed chicks, ET formations were scarcely detected whereas intact heterophils with phagocytosed bacteria were frequently found. The results evidence the capability of heterophils to generate ETs after SE and SI exposure in vitro. However, an infection of chicks with Salmonella did not significantly induce the formation of ET structures in cecum. Thus, the process to form ETs (ETosis) seems not to be of special relevance for Salmonella defense within the cecal lumen of young chicks.
Collapse
Affiliation(s)
- Jana Pieper
- University of Applied Sciences, Department for Medical Engineering and Biotechnology, Jena, Germany
| | - Maria Locke
- Institute of Molecular Pathogenesis, 'Friedrich-Loeffler-Institut' (Federal Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Gunda Ruzaike
- University of Applied Sciences, Department for Medical Engineering and Biotechnology, Jena, Germany
| | - Stefanie Voigt
- Friedrich-Schiller-University, Faculty of Biology and Pharmacy, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, 'Friedrich-Loeffler-Institut' (Federal Institute for Animal Health), Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, 'Friedrich-Loeffler-Institut' (Federal Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
24
|
Luehong N, Khaowmek J, Wongsawan K, Chuammitri P. Preferential pattern of mouse neutrophil cell death in response to various stimulants. In Vitro Cell Dev Biol Anim 2017; 53:513-524. [DOI: 10.1007/s11626-016-0129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
|
25
|
Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z. Root Border Cells and Their Role in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:143-161. [PMID: 27215971 DOI: 10.1146/annurev-phyto-080615-100140] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Collapse
Affiliation(s)
- Martha Hawes
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - B Gillian Turgeon
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14853;
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - David A Huskey
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Zhongguo Xiong
- School of Plant Science, Bio5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
26
|
Berezin A. Is the neutrophil extracellular trap-driven microvascular inflammation essential for diabetes vasculopathy? BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0021-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Baetz U. Root Exudates as Integral Part of Belowground Plant Defence. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Mejía SP, Cano LE, López JA, Hernandez O, González Á. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis. MICROBIOLOGY-SGM 2015; 161:1008-1017. [PMID: 25701733 DOI: 10.1099/mic.0.000059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022]
Abstract
Neutrophils play an important role as effector cells and contribute to the resistance of the host against microbial pathogens. Neutrophils are able to produce extracellular traps (NETs) in response to medically important fungi, including Aspergillus spp., Candida albicans and Cryptococcus gattii. However, NET production in response to Paracoccidioides brasiliensis has yet to be studied. We have demonstrated that human neutrophils produce NETs against both conidia and yeasts of P. brasiliensis. Although the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) did not alter NET production against conidia, it partially suppressed NET formation against P. brasiliensis yeasts. Cytochalasin D or IFN-γ did not affect the production of NETs against the fungus. Additionally, a mutant strain of P. brasiliensis with reduced expression of an alternative oxidase induced significantly higher levels of NETs in comparison with the WT strain. Finally, c.f.u. quantification of P. brasiliensis showed no significant differences when neutrophils were treated with DPI, DNase I or cytochalasin D as compared with untreated cells. These data establish that NET formation by human neutrophils appears to be either dependent or independent of reactive oxygen species production, correlating with the fungal morphotype used for stimulation. However, this mechanism was ineffective in killing the fungus.
Collapse
Affiliation(s)
- Susana P Mejía
- School of Microbiology, Universidad de Antioquia, Calle 70 no. 52-51, Medellín, Colombia.,Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Carrera 72A no. 78B 141, Medellín, Colombia
| | - Luz E Cano
- School of Microbiology, Universidad de Antioquia, Calle 70 no. 52-51, Medellín, Colombia.,Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Carrera 72A no. 78B 141, Medellín, Colombia
| | - Juan A López
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Calle 70 no. 52-51, Medellín, Colombia
| | - Orville Hernandez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas (CIB), Carrera 72A no. 78B 141, Medellín, Colombia.,Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Calle 70 no. 52-51, Medellín, Colombia
| | - Ángel González
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Calle 70 no. 52-51, Medellín, Colombia
| |
Collapse
|
29
|
Tibrewal S, Ivanir Y, Sarkar J, Nayeb-Hashemi N, Bouchard CS, Kim E, Jain S. Hyperosmolar stress induces neutrophil extracellular trap formation: implications for dry eye disease. Invest Ophthalmol Vis Sci 2014; 55:7961-9. [PMID: 25406284 PMCID: PMC4263134 DOI: 10.1167/iovs.14-15332] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/26/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine if hyperosmolar stress can stimulate human neutrophils to form neutrophil extracellular traps (NETs) and to investigate potential strategies to reduce formation of NETs (NETosis) in a hyperosmolar environment. METHODS Neutrophils were isolated from peripheral venous blood of healthy subjects and incubated in iso-osmolar (280 mOsM) or hyperosmolar (420 mOsM) media for 4 hours. Neutrophil extracellular traps were quantified using a PicoGreen dye assay to measure extracellular DNA. Two known inhibitors of NETosis, staurosporine and anti-β2 integrin blocking antibody, and two proresolution formyl peptide receptor 2 (FPR2) agonists, annexin/lipocortin-1 mimetic peptide and 15-epi-lipoxin A4, were evaluated as possible strategies to reduce hyperosmolarity-induced NETosis. RESULTS The amount of NETs induced by hyperosmolar medium (420 mOsM) increased linearly over time to 3.2 ± 0.3 times that induced by iso-osmolar medium at 4 hours (P < 0.05). NETosis increased exponentially with increasing osmolarity and was independent of the stimulus used to increase osmolarity. Upon neutrophil exposure to hyperosmolar stress, restoration of iso-osmolar conditions decreased NET formation by 52.7% ± 5% (P < 0.05) but did not completely abrogate it. Among the strategies tested to reduce NETosis in a hyperosmolar environment, annexin-1 peptide was the most efficacious. CONCLUSIONS Hyperosmolarity induces formation of NETs by neutrophils. This NETosis mechanism may explain the presence of excessive NETs on the ocular surface of patients with dry eye disease. Because they reduce hyperosmolarity-induced NETosis, FPR2 agonists may have therapeutic potential in these patients.
Collapse
Affiliation(s)
- Sapna Tibrewal
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States
| | - Yair Ivanir
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States
| | - Joy Sarkar
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States
| | - Neema Nayeb-Hashemi
- Department of Ophthalmology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States
| | - Charles S. Bouchard
- Department of Ophthalmology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States
| | - Eunjae Kim
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States
| | - Sandeep Jain
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States
| |
Collapse
|
30
|
Moraco AH, Kornfeld H. Cell death and autophagy in tuberculosis. Semin Immunol 2014; 26:497-511. [PMID: 25453227 DOI: 10.1016/j.smim.2014.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis has succeeded in infecting one-third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease.
Collapse
Affiliation(s)
- Andrew H Moraco
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Daigo K, Mantovani A, Bottazzi B. The yin-yang of long pentraxin PTX3 in inflammation and immunity. Immunol Lett 2014; 161:38-43. [PMID: 24792672 PMCID: PMC7112810 DOI: 10.1016/j.imlet.2014.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 01/04/2023]
Abstract
CRP and PTX3 are prototypical short and long pentraxin respectively. They are both soluble pattern recognition molecule involved in the innate immune and inflammatory response. PTX3 but not CRP is conserved in mouse and men and gene-modified mice help in the understanding of the biological properties. Protective and detrimental roles are exerted by PTX3.
Pentraxins are a family of multimeric proteins characterized by the presence of a pentraxin signature in their C-terminus region. Based on the primary structure, pentraxins are divided into short and long pentraxin: C-reactive protein (CRP) is the prototype of the short pentraxin subfamily while pentraxin 3 (PTX3) is the prototypic long pentraxin. Despite these two molecules exert similar fundamental actions in the regulation of innate immune and inflammatory responses, several differences exist between CRP and PTX3, including gene organization, protein oligomerization and expression pattern. The pathophysiological roles of PTX3 have been investigated using genetically modified mice since PTX3 gene organization and regulation are well conserved between mouse and human. Such in vivo studies figured out that PTX3 mainly have host-protective effects, even if it could also exert negative effects under certain pathophysiologic conditions. Here we will review the general properties of CRP and PTX3, emphasizing the differences between the two molecules and the regulatory functions exerted by PTX3 in innate immunity and inflammation.
Collapse
Affiliation(s)
- Kenji Daigo
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | | |
Collapse
|
32
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
33
|
Al-Ghoul WM, Kim MS, Fazal N, Azim AC, Ali A. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. RESULTS IN IMMUNOLOGY 2014; 4:14-22. [PMID: 24809006 PMCID: PMC4009405 DOI: 10.1016/j.rinim.2014.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/25/2022]
Abstract
Simvastatin (SMV) has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA) with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs) inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI) adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI + SMV) immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel) (1.86 mg/kg i.p., TI + Mel) mice were compared as a positive control. Mice were assessed for the following: (1) tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2) NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3) transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER). Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1) gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO) and Gr-1 infiltration, (2) NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3) transepithelial gut leakiness as assessed in the ileum and colon by FITC-dextran leakiness and TEER. Thus, simvastatin exhibits strong acute anti-inflammatory actions associated with marked decreases in gut tissue and systemic NETosis and decreased gut mucosa leakiness.
Collapse
Affiliation(s)
- Walid M. Al-Ghoul
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Margarita S. Kim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Anser C. Azim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Ashraf Ali
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| |
Collapse
|
34
|
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense. TRENDS IN PLANT SCIENCE 2014; 19:90-8. [PMID: 24332225 DOI: 10.1016/j.tplants.2013.11.006] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/23/2013] [Accepted: 11/14/2013] [Indexed: 05/20/2023]
Abstract
The significance of root exudates as belowground defense substances has long been underestimated, presumably due to being buried out of sight. Nevertheless, this chapter of root biology has been progressively addressed within the past decade through the characterization of novel constitutively secreted and inducible phytochemicals that directly repel, inhibit, or kill pathogenic microorganisms in the rhizosphere. In addition, the complex transport machinery involved in their export has been considerably unraveled. It has become evident that the profile of defense root exudates is not only diverse in its composition, but also strikingly dynamic. In this review, we discuss current knowledge of the nature and regulation of root-secreted defense compounds and the role of transport proteins in modulating their release.
Collapse
Affiliation(s)
- Ulrike Baetz
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| |
Collapse
|
35
|
Jenne CN, Wong CHY, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, McFadden G, Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 2013; 13:169-80. [PMID: 23414757 DOI: 10.1016/j.chom.2013.01.005] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/08/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils mediate bacterial clearance through various mechanisms, including the release of mesh-like DNA structures or neutrophil extracellular traps (NETs) that capture bacteria. Although neutrophils are also recruited to sites of viral infection, their role in antiviral innate immunity is less clear. We show that systemic administration of virus analogs or poxvirus infection induces neutrophil recruitment to the liver microvasculature and the release of NETs that protect host cells from virus infection. After systemic intravenous poxvirus challenge, mice exhibit thrombocytopenia and the recruitment of both neutrophils and platelets to the liver vasculature. Circulating platelets interact with, roll along, and adhere to the surface of adherent neutrophils, forming large, dynamic aggregates. These interactions facilitate the release of NETs within the liver vasculature that are able to protect host cells from poxvirus infection. These findings highlight the role of NETs and early tissue-wide responses in preventing viral infection.
Collapse
Affiliation(s)
- Craig N Jenne
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Henriksen ML, Brandt J, Iyer SSC, Thielens NM, Hansen S. Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids. Mol Immunol 2013; 56:757-67. [PMID: 23954398 DOI: 10.1016/j.molimm.2013.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/22/2023]
Abstract
Collectins are a group of innate immune proteins that contain collagen-like regions and globular C-type lectin domains. Via the lectin domains, collectins recognize and bind to various microbial carbohydrate patterns. Collectin 11 (CL-11) exists in complex with the complement activating MBL-associated proteases, MASPs. In the present work, we characterize the interaction between CL-11 and DNA, and show that CL-11 binds to DNA from a variety of origins in a calcium-independent manner. CL-11 binds also to apoptotic cells presenting extracellular DNA on their surface. The binding to DNA is sensitive to changes in ionic strength and pH. Competition studies show that CL-11 binds to nucleic acids and carbohydrates via separate binding-sites and oligomericity appears crucial for binding activity. Combined interaction with DNA and mannan strongly increases binding avidity. By surface plasmon resonance we estimate the dissociation constant for the binding between CL-11 and double stranded DNA oligonucleotides to K(D)=9-20 nM. In an in vitro assay we find that CL-11 binds to DNA coated surfaces, which leads to C4b deposition via MASP-2. We propose that CL-11, e.g. via complement, may play a role in response to particles and surfaces presenting extracellular DNA, such as apopototic cells, neutrophil extracellular traps and biofilms.
Collapse
Affiliation(s)
- Maiken L Henriksen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
37
|
Driouich A, Follet-Gueye ML, Vicré-Gibouin M, Hawes M. Root border cells and secretions as critical elements in plant host defense. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:489-95. [PMID: 23856080 DOI: 10.1016/j.pbi.2013.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/20/2023]
Abstract
Border cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based matrix seems to function in root defense in a way similar to that of recently characterized neutrophil extracellular traps (NETs) in mammalian cells. This review discusses the role of the cells and secreted compounds in the protection of root tip against microbial infections.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI Végétal-Agronomie-Sols et Innovations et Plate Forme d'Imagerie Cellulaire (PRIMACEN) de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | |
Collapse
|
38
|
Hahn S, Giaglis S, Chowdhury CS, Chowdury CS, Hösli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35:439-53. [PMID: 23649713 PMCID: PMC3685704 DOI: 10.1007/s00281-013-0380-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Das T, Manefield M. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa. Commun Integr Biol 2013; 6:e23570. [PMID: 23710274 PMCID: PMC3656008 DOI: 10.4161/cib.23570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA.
Collapse
Affiliation(s)
- Theerthankar Das
- Centre for Marine BioInnovation (CMB); School of Biotechnology and Biomolecular Sciences (BABS); University of New South Wales (UNSW); Sydney, NSW Australia
| | | |
Collapse
|
40
|
Basic science for the clinician 59: polymorphonuclear cells: mechanisms in human defense and in the pathogenesis of autoimmune disease. J Clin Rheumatol 2013; 18:443-9. [PMID: 23211587 DOI: 10.1097/rhu.0b013e31827732f1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When I learned about polymorphonuclear neutrophils (PMNs) in medical school, they were presented as pretty much 1-trick ponies: PMNs were phagocytes with no intrinsic specificity; their only specificity was supplied by the Fcγ receptors on their surfaces and that would then be the specificity of the bound immunoglobulin G, nothing intrinsic to the PMN. My, how simple life was in those days! And how wrong! Turns out, these circulating cells are involved in bridging the innate immune system and the acquired immune response in some very interesting ways and may play a crucial role in the immunopathogenesis of some of "our" diseases. Polymorphonuclear neutrophils are often underappreciated as drivers of inflammatory diseases, which is why I think it is time for us to turn our attention to this underappreciated component of the immune response.
Collapse
|
41
|
Gray RD, Lucas CD, MacKellar A, Li F, Hiersemenzel K, Haslett C, Davidson DJ, Rossi AG. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. JOURNAL OF INFLAMMATION-LONDON 2013; 10:12. [PMID: 23514610 PMCID: PMC3643828 DOI: 10.1186/1476-9255-10-12] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/22/2013] [Indexed: 12/22/2022]
Abstract
Background Activation of NADPH oxidase is required for neutrophil extracellular trap (NET) formation. Protein kinase C (PKC) is an upstream mediator of NADPH oxidase activation and thus likely to have a role in NET formation. Methods Pharmacological inhibitors were used to block PKC activity in neutrophils harvested from healthy donor blood. Results Pan PKC inhibition with Ro-31-8220 (p<0.001), conventional PKC inhibition with Go 6976 (p<0.001) and specific PKCβ inhibition with LY333531 (p<0.01) blocked NET formation in response to PMA. Inhibition of novel and atypical PKC had no effect. LY333531 blocked NET induction by the diacylglycerol analogue OAG (conventional PKC activator) (p<0.001). Conclusions Conventional PKCs have a prominent role in NET formation. Furthermore PKCβ is the major isoform implicated in NET formation.
Collapse
Affiliation(s)
- Robert D Gray
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Christopher D Lucas
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Annie MacKellar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Katia Hiersemenzel
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Chris Haslett
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Donald J Davidson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, Scotland, UK
| |
Collapse
|
42
|
Arazna M, Pruchniak MP, Demkow U. Neutrophil extracellular traps in bacterial infections: strategies for escaping from killing. Respir Physiol Neurobiol 2013; 187:74-7. [PMID: 23499796 DOI: 10.1016/j.resp.2013.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
Neutrophils are among the first responders to virulent factors. They kill microbes by phagocytosis, oxidative burst, and as neutrophil extracellular traps (NETs). NETs production leads to unique cell death depending on, inter alia, reactive oxygen species (ROS). Recently a number of studies highlight the mechanism of bacterial escape from extracellular traps; the process that may influence the outcome of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Arazna
- Department of Laboratory Diagnostic and Clinical Immunology of Developmental Age, Warsaw Medical University, Marszalkowska 24, 00-576 Warsaw, Poland.
| | | | | |
Collapse
|
43
|
Abstract
Neutrophils are the first line of defense of the immune system against infection. Among their weaponry, they have the ability to mix and extrude their DNA and bactericidal molecules creating NET-like structures in a unique type of cell death called NETosis. This process is important in order to control extracellular infections limiting collateral damage. Its aberrant function has been implicated in several human diseases including sepsis and autoimmune disease. The purpose of the present paper is to give a general introduction to this concept.
Collapse
|
44
|
Knight JS, Kaplan MJ. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr Opin Rheumatol 2013; 24:441-50. [PMID: 22617827 DOI: 10.1097/bor.0b013e3283546703] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Historically, researchers have focused on the role of adaptive immunity in lupus pathogenesis; recently, however, there has been renewed interest in the contributions of a prototypical innate immune cell - the neutrophil. RECENT FINDINGS Neutrophil extracellular traps (NETs) are released via a novel form of cell death called NETosis. NETs, consisting of a chromatin meshwork decorated with antimicrobial peptides, play an important role in the innate response to microbial infections. Some lupus patients do not clear NETs normally, a phenotype that correlates with disease activity. Further, lupus neutrophils - and, in particular, an aberrant subset called low-density granulocytes - have an increased propensity to undergo NETosis. Both interferon alpha (IFNα) and immune complexes are potential triggers of enhanced NETosis in lupus patients. SUMMARY NETs are a potent stimulus for IFNα release by plasmacytoid dendritic cells, and, as such, may play an important role in propagation of the lupus phenotype. NETs can also directly damage tissues - including the endothelium - with implications for lupus nephritis and accelerated atherosclerosis. Whether aberrant NETosis is sufficient to trigger systemic lupus erythematosus, and whether inhibition of NETosis can ameliorate clinical manifestations of lupus, are open questions, and will be exciting topics of future research.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
45
|
Abstract
The immune system in a broad sense is a mechanism that allows a living organism to discriminate between "self" and "non-self." Examples of immune systems occur in multicellular organisms as simple and ancient as sea sponges. In fact, complex multicellular life would be impossible without the ability to exclude external life from the internal environment. This introduction to the immune system explores the cell types and soluble factors involved in immune reactions, as well as their location in the body during development and maintenance. Additionally, a description of the immunological events during an innate and adaptive immune reaction to an infection is discussed, as well as a brief introduction to autoimmunity and cancer immunity.
Collapse
Affiliation(s)
- Scott McComb
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
46
|
Sputum neutrophils in cystic fibrosis patients display a reduced respiratory burst. J Cyst Fibros 2012; 12:352-62. [PMID: 23267772 DOI: 10.1016/j.jcf.2012.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/03/2012] [Accepted: 11/04/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Few data exist on the functional activity of airway neutrophils in the milieu of the cystic fibrosis (CF) lung. We assessed reactive oxygen species (ROS) production by sputum neutrophils and the relationship to neutrophil viability. Identical assessments were made on peripheral blood neutrophils from CF patients. METHODS ROS production in sputum neutrophils was assessed in 31 CF patients at varying phases of clinical disease using flow cytometry. Twenty patients provided blood samples (including 16 who also provided a matched sputum sample). Neutrophil viability was determined using dual annexin V (apoptosis) and propidium iodide (necrosis) staining. Comparative peripheral blood data were obtained from 7 healthy controls. RESULTS ROS production was reduced in sputum compared to blood neutrophils and they demonstrated a higher level of necrosis. Subpopulations of neutrophils with different ROS production capacity were apparent in peripheral blood. Lung function was positively associated with both the proportion of blood neutrophils demonstrating increased ROS production and the proportion of apoptotic sputum neutrophils. CONCLUSIONS CF airway neutrophils display functional exhaustion. Healthier lungs in CF appear to be associated with subpopulations of blood neutrophils with increased oxidative burst capacity and evidence for increased neutrophil apoptosis within the airway.
Collapse
|
47
|
Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis-the journey of TF through NETs. Front Immunol 2012; 3:385. [PMID: 23264778 PMCID: PMC3524512 DOI: 10.3389/fimmu.2012.00385] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/30/2012] [Indexed: 01/06/2023] Open
Abstract
The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET) release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis, and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.
Collapse
Affiliation(s)
- Konstantinos Kambas
- First Department of Internal Medicine, University General Hospital of Alexandroupolis, Democritus University of Thrace Alexandroupolis, Greece
| | | | | |
Collapse
|
48
|
Sonawane S, Khanolkar V, Namavari A, Chaudhary S, Gandhi S, Tibrewal S, Jassim SH, Shaheen B, Hallak J, Horner JH, Newcomb M, Sarkar J, Jain S. Ocular surface extracellular DNA and nuclease activity imbalance: a new paradigm for inflammation in dry eye disease. Invest Ophthalmol Vis Sci 2012; 53:8253-63. [PMID: 23169882 DOI: 10.1167/iovs.12-10430] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE We determined whether nucleases are deficient in the tear fluid of dry eye disease (DED) patients, and whether this causes extracellular DNA (eDNA) and neutrophil extracellular trap (NET) accumulation in the precorneal tear film, thus causing ocular surface inflammation. METHODS Exfoliated cells adhered to Schirmer test strips were collected on glass slides, and immunofluorescence confocal microscopy was used to evaluate neutrophils, eDNA, NETs, and their molecular components. Similar experiments were performed with mucoid films collected from the inferior conjunctival fornix or bulbar conjunctiva. We used quantitative PCR to evaluate eDNA signaling pathways and inflammatory cytokine expression. We also determined the amount of ocular surface eDNA and evaluated tear fluid nuclease activity. RESULTS eDNA, NETs, and neutrophils were present on the ocular surface in DED patients and abundant in mucoid films. NETs consisted of eDNA, histones, cathelicidin, and neutrophil elastase. Tear fluid nuclease activity was decreased significantly in DED patients, whereas the amount of eDNA on the ocular surface was increased significantly. Expression of genes downstream of eDNA signaling, such as TLR9, MyD88, and type I interferon, as well as the inflammatory cytokines interleukin-6 and tumor necrosis factor-α, was significantly increased in DED patients. CONCLUSIONS Extracellular DNA production and clearance mechanisms are dysregulated in DED. Nuclease deficiency in tear fluid allows eDNA and NETs to accumulate in precorneal tear film, and results in ocular surface inflammation. These findings point to novel therapeutic interventions in severe DED based on clearance of eDNA, NETs, and other molecular components from the ocular surface.
Collapse
Affiliation(s)
- Snehal Sonawane
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Daigo K, Hamakubo T. Host-protective effect of circulating pentraxin 3 (PTX3) and complex formation with neutrophil extracellular traps. Front Immunol 2012; 3:378. [PMID: 23248627 PMCID: PMC3521240 DOI: 10.3389/fimmu.2012.00378] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 01/21/2023] Open
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor which is classified as a long-pentraxin in the pentraxin family. It is known to play an important role in innate immunity, inflammatory regulation, and female fertility. PTX3 is synthesized by specific cells, primarily in response to inflammatory signals. Among these various cells, neutrophils have a unique PTX3 production system. Neutrophils store PTX3 in neutrophil-specific granules and then the stored PTX3 is released and localizes in neutrophil extracellular traps (NETs). Although certain NET components have been identified, such as histones and anti-microbial proteins, the detailed mechanisms by which NETs localize, as well as capture and kill microbes, have not been fully elucidated. PTX3 is a candidate diagnostic marker of infection and vascular damage. In severe infectious diseases such as sepsis, the circulating PTX3 concentration increases greatly (up to 100 ng/mL, i.e., up to 100-fold of the normal level). Even though it is clearly implied that PTX3 plays a protective role in sepsis and certain other disorders, the detailed mechanisms by which it does so remain unclear. A proteomic study of PTX3 ligands in septic patients revealed that PTX3 forms a complex with certain NET component proteins. This suggests a role for PTX3 in which it facilitates the efficiency of anti-microbial protein pathogen clearance by interacting with both pathogens and anti-microbial proteins. We discuss the possible relationships between PTX3 and NET component proteins in the host protection afforded by the innate immune response. The PTX3 complex has the potential to be a highly useful diagnostic marker of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Daigo
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | | |
Collapse
|
50
|
Oklu R, Albadawi H, Watkins MT, Monestier M, Sillesen M, Wicky S. Detection of extracellular genomic DNA scaffold in human thrombus: implications for the use of deoxyribonuclease enzymes in thrombolysis. J Vasc Interv Radiol 2012; 23:712-8. [PMID: 22525027 DOI: 10.1016/j.jvir.2012.01.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight into thrombus remodeling. MATERIALS AND METHODS Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples < 3 d old and five samples > 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content and high cell density, which were mostly near the lumen. These regions of high cell density contained neutrophils and monocytes. Similarly, sections from the acute murine hindlimb ischemia model also exhibited extensive immunoreactivity to the histone antibody in the extracellular space within murine thrombi. CONCLUSIONS Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold.
Collapse
Affiliation(s)
- Rahmi Oklu
- Division of Vascular Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|