1
|
Sharma A, Gupta DK, Bisen S, Singh NK. Comparative evaluation of trypsin and elastase digestion techniques for isolation of murine retinal vasculature. Microvasc Res 2024; 154:104682. [PMID: 38521153 PMCID: PMC11180566 DOI: 10.1016/j.mvr.2024.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Dysfunctional pericytes and disruption of adherens or tight junctions are related to many microvascular diseases, including diabetic retinopathy. In this context, visualizing retinal vascular architecture becomes essential for understanding retinal vascular disease pathophysiology. Although flat mounts provide a demonstration of the retinal blood vasculature, they often lack a clear view of microaneurysms and capillary architecture. Trypsin and elastase digestion are the two techniques for isolating retinal vasculatures in rats, mice, and other animal models. Our observations in the present study reveal that trypsin digestion impacts the association between pericytes and endothelial cells. In contrast, elastase digestion effectively preserves these features in the blood vessels. Furthermore, trypsin digestion disrupts endothelial adherens and tight junctions that elastase digestion does not. Therefore, elastase digestion emerges as a superior technique for isolating retinal vessels, which can be utilized to collect reliable and consistent data to comprehend the pathophysiology of disorders involving microvascular structures.
Collapse
Affiliation(s)
- Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Dhiraj Kumar Gupta
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
3
|
Pfaller AM, Kaplan L, Carido M, Grassmann F, Díaz-Lezama N, Ghaseminejad F, Wunderlich KA, Glänzer S, Bludau O, Pannicke T, Weber BHF, Koch SF, Bonev B, Hauck SM, Grosche A. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J Neuroinflammation 2024; 21:33. [PMID: 38273366 PMCID: PMC10809506 DOI: 10.1186/s12974-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.
Collapse
Affiliation(s)
- Anna M Pfaller
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Grassmann
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farhad Ghaseminejad
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bernhard H F Weber
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boyan Bonev
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
4
|
Forini F, Nicolini G, Amato R, Balzan S, Saba A, Bertolini A, Andreucci E, Marracci S, Melecchi A, Terlizzi D, Zucchi R, Iervasi G, Lulli M, Casini G. Local modulation of thyroid hormone signaling in the retina affects the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166892. [PMID: 37758065 DOI: 10.1016/j.bbadis.2023.166892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Thyroid hormone (TH) dyshomeostasis is associated with poor prognosis in acute and prolonged illness, but its role in diabetic retinopathy (DR) has never been investigated. Here, we characterized the TH system in the retinas of db/db mice and highlighted regulatory processes in MIO-M1 cells. In the db/db retinas, typical functional traits and molecular signatures of DR were paralleled by a tissue-restricted reduction of TH levels. A local condition of low T3 (LT3S) was also demonstrated, which was likely to be induced by deiodinase 3 (DIO3) upregulation, and by decreased expression of DIO2 and of TH receptors. Concurrently, T3-responsive genes, including mitochondrial markers and microRNAs (miR-133-3p, 338-3p and 29c-3p), were downregulated. In MIO-M1 cells, a feedback regulatory circuit was evidenced whereby miR-133-3p triggered the post-transcriptional repression of DIO3 in a T3-dependent manner, while high glucose (HG) led to DIO3 upregulation through a nuclear factor erythroid 2-related factor 2-hypoxia-inducible factor-1 pathway. Finally, an in vitro simulated condition of early LT3S and hyperglycemia correlated with reduced markers of both mitochondrial function and stress response, which was reverted by T3 replacement. Together, the data suggest that, in the early phases of DR, a DIO3-driven LT3S may be protective against retinal stress, while, in the chronic phase, it not only fails to limit HG-induced damage, but also increases cell vulnerability likely due to persistent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Francesca Forini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | | | | - Domiziana Terlizzi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riccardo Zucchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Giorgio Iervasi
- Department of Biomedical Sciences, National Research Council, Rome, Italy.
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
6
|
Tun SBB, Barathi VA. Akimba Proliferative Diabetic Retinopathy Model: Understanding Molecular Mechanism and Drug Screening for the Progression of Diabetic Retinopathy. Methods Mol Biol 2023; 2678:13-26. [PMID: 37326702 DOI: 10.1007/978-1-0716-3255-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the prevalence of diabetes has reached epidemic proportions worldwide, diabetic retinopathy incidence is increasing rapidly. An advanced diabetic retinopathy (DR) stage can lead to a sight-threatening form. There is growing evidence showing diabetes causes a range of metabolic changes that subsequently lead to pathological modifications in the retina and retinal blood vessels. To understand the complex mechanism of the pathophysiology of DR, a precise model is not readily available. By crossbreeding the Akita and Kimba strains, a suitable proliferative DR model was acquired. This new Akimba strain manifests marked hyperglycemia and vascular changes, which resemble the early and advanced stage of DR.Here, we describe the breeding method, colony screening for experiments, and imaging techniques widely used to investigate the DR progression in this model. We elaborate step-by-step protocols to set up and perform fundus, fluorescein angiography, optical coherence tomography, and optical coherence tomography-angiogram to study retinal structural changes and vascular abnormalities. In addition, we show a method to label the leukocytes with fluorescence and laser speckle flowgraphy to examine the inflammation in the retina and retinal vessel blood flow speed, respectively. Lastly, we describe electroretinogram to evaluate the functional aspect of the DR transformations.
Collapse
Affiliation(s)
- Sai Bo Bo Tun
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
- Karolinska Institutet, Stockholm, Sweden
| | - Veluchamy Amutha Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore.
- ACP in Ophthalmology & Visual Sciences, DUKE-NUS Graduate Medical School, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Cheung CMG, Fawzi A, Teo KY, Fukuyama H, Sen S, Tsai WS, Sivaprasad S. Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res 2022; 89:101033. [PMID: 34902545 PMCID: PMC11268431 DOI: 10.1016/j.preteyeres.2021.101033] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Diabetic macular ischaemia (DMI) is traditionally defined and graded based on the angiographic evidence of an enlarged and irregular foveal avascular zone. However, these anatomical changes are not surrogate markers for visual impairment. We postulate that there are vascular phenotypes of DMI based on the relative perfusion deficits of various retinal capillary plexuses and choriocapillaris. This review highlights several mechanistic pathways, including the role of hypoxia and the complex relation between neurons, glia, and microvasculature. The current animal models are reviewed, with shortcomings noted. Therefore, utilising the advancing technology of optical coherence tomography angiography (OCTA) to identify the reversible DMI phenotypes may be the key to successful therapeutic interventions for DMI. However, there is a need to standardise the nomenclature of OCTA perfusion status. Visual acuity is not an ideal endpoint for DMI clinical trials. New trial endpoints that represent disease progression need to be developed before irreversible vision loss in patients with DMI. Natural history studies are required to determine the course of each vascular and neuronal parameter to define the DMI phenotypes. These DMI phenotypes may also partly explain the development and recurrence of diabetic macular oedema. It is also currently unclear where and how DMI fits into the diabetic retinopathy severity scales, further highlighting the need to better define the progression of diabetic retinopathy and DMI based on both multimodal imaging and visual function. Finally, we discuss a complete set of proposed therapeutic pathways for DMI, including cell-based therapies that may provide restorative potential.
Collapse
Affiliation(s)
- Chui Ming Gemmy Cheung
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | | | - Kelvin Yc Teo
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore
| | | | | | - Wei-Shan Tsai
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
8
|
Hanaguri J, Yokota H, Kushiyama A, Kushiyama S, Watanabe M, Yamagami S, Nagaoka T. The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice. Int J Mol Sci 2022; 23:ijms23031362. [PMID: 35163285 PMCID: PMC8835894 DOI: 10.3390/ijms23031362] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
We investigated the effect of tofogliflozin, a sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i), on retinal blood flow dysregulation, neural retinal dysfunction, and the impaired neurovascular coupling in type 2 diabetic mice. Tofogliflozin was added to mouse chow to deliver 5 mg/kg/day and 6-week-old mice were fed for 8 weeks. The longitudinal changes in the retinal neuronal function and blood flow responses to systemic hyperoxia and flicker stimulation were evaluated every 2 weeks in diabetic db/db mice that received tofogliflozin (n =6) or placebo (n = 6) from 8 to 14 weeks of age. We also evaluated glial activation and vascular endothelial growth factor (VEGF) expression by immunofluorescence. Tofogliflozin treatment caused a sustained decrease in blood glucose in db/db mice from 8 weeks of the treatment. In tofogliflozin-treated db/db mice, both responses improved from 8 to 14 weeks of age, compared with vehicle-treated diabetic mice. Subsequently, the electroretinography implicit time for the oscillatory potential was significantly improved in SGLT2i-treated db/db mice. The systemic tofogliflozin treatment prevented the activation of glial fibrillary acidic protein and VEGF protein expression, as detected by immunofluorescence. Our results suggest that glycemic control with tofogliflozin significantly improved the impaired retinal neurovascular coupling in type 2 diabetic mice with the inhibition of retinal glial activation.
Collapse
Affiliation(s)
- Junya Hanaguri
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan;
| | - Sakura Kushiyama
- Division of Life Science, Department of Nursing, National College of Nursing, Kiyose, Tokyo 204-8575, Japan;
| | - Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
- Correspondence: ; Tel.: +81-3-3972-8111
| |
Collapse
|
9
|
Ye S, Zhang Y, Wang X, Liang X, Wei M, Zong R, Liu Z, Chen Q. Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy. Exp Ther Med 2021; 22:1164. [PMID: 34504609 PMCID: PMC8393590 DOI: 10.3892/etm.2021.10598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Aberrant Wnt signaling activation plays a pathological role in DR. However, the underlying mechanisms of aberrant Wnt signaling in DR remain unknown. Autophagy has been reported to be involved in the pathophysiology of DR. The present study aimed therefore to investigate the regulatory effects of autophagy on Wnt signaling in DR. Wnt signaling was activated in the retina of db/db mice combined with an increase in the expression of the autophagic proteins microtubule-associated protein 1A/1B-light chain 3 and beclin-1 and a decrease in the expression of the autophagic protein P62. Inhibition of autophagy by 3-methyladenin decreased Wnt signaling in diabetic retinas, indicating a potential association between Wnt signaling and autophagy. Rapamycin, an autophagy inducer, upregulated Wnt signaling in the retina of normal C57BL/6J mice. In cultured Müller cells, rapamycin induced autophagy and activated Wnt signaling, while chloroquine, an autophagy inhibitor, inhibited autophagy and downregulated Wnt signaling, suggesting that autophagy could regulate Wnt signaling in mice retina and retinal cells. In summary, this study demonstrated that autophagy may positively regulate Wnt signaling in diabetic retinas, indicating a potential mechanism of Wnt signaling upregulation in DR and a possible novel therapeutic target of DR.
Collapse
Affiliation(s)
- Sihao Ye
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuhan Zhang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xin Wang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xu Liang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyan Wei
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Rongrong Zong
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zuguo Liu
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| | - Qian Chen
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| |
Collapse
|
10
|
Berkowitz BA, Qian H. OCT imaging of rod mitochondrial respiration in vivo. Exp Biol Med (Maywood) 2021; 246:2151-2158. [PMID: 34024141 DOI: 10.1177/15353702211013799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light-dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload. Mol Metab 2021; 51:101235. [PMID: 33872860 PMCID: PMC8131719 DOI: 10.1016/j.molmet.2021.101235] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The molecular pathogenesis of late complications associated with type 2 diabetes mellitus (T2DM) is not yet fully understood. While high glucose levels indicated by increased HbA1c only poorly explain disease progression and late complications, a pro-inflammatory status, oxidative stress, and reactive metabolites generated by metabolic processes were postulated to be involved. Individuals with metabolic syndrome (MetS) frequently progress to T2DM, whereby 70% of patients with T2DM show non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of MetS, and insulin resistance (IR). Epidemiological studies have shown that T2DM and steatosis are associated with alterations in iron metabolism and hepatic iron accumulation. Excess free iron triggers oxidative stress and a switch towards a macrophage pro-inflammatory status. However, so far it remains unclear whether hepatic iron accumulation plays a causative role in the generation of IR and T2DM or whether it is merely a manifestation of altered hepatic metabolism. To address this open question, we generated and characterized a mouse model of T2DM with IR, steatosis, and iron overload. METHODS Leprdb/db mice hallmarked by T2DM, IR and steatosis were crossed with Fpnwt/C326S mice with systemic iron overload to generate Leprdb/db/Fpnwt/C326S mice. The resulting progeny was characterized for major diabetic and iron-related parameters. RESULTS We demonstrated that features associated with T2DM in Leprdb/db mice, such as obesity, steatosis, or IR, reduce the degree of tissue iron overload in Fpnwt/C326S mice, suggesting an 'iron resistance' phenotype. Conversely, we observed increased serum iron levels that strongly exceeded those in the iron-overloaded Fpnwt/C326S mice. Increased hepatic iron levels induced oxidative stress and lipid peroxidation and aggravated IR, as indicated by diminished IRS1 phosphorylation and AKT activation. Additionally, in the liver, we observed gene response patterns indicative of de novo lipogenesis and increased gluconeogenesis as well as elevated free glucose levels. Finally, we showed that iron overload in Leprdb/db/Fpnwt/C326S mice enhances microvascular complications observed in retinopathy, suggesting that iron accumulation can enhance diabetic late complications associated with the liver and the eye. CONCLUSION Taken together, our data show that iron causes the worsening of symptoms associated with the MetS and T2DM. These findings imply that iron depletion strategies together with anti-diabetic drugs may ameliorate IR and diabetic late complications.
Collapse
|
12
|
Vujosevic S, Gatti V, Muraca A, Brambilla M, Villani E, Nucci P, Rossetti L, De Cilla' S. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY CHANGES AFTER SUBTHRESHOLD MICROPULSE YELLOW LASER IN DIABETIC MACULAR EDEMA. Retina 2020; 40:312-321. [PMID: 31972802 DOI: 10.1097/iae.0000000000002383] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess changes on optical coherence tomography (OCT) angiography in diabetic macular edema (DME) treated with subthreshold micropulse yellow laser (SMPL) over a period of 6 months. METHODS Thirty-five eyes (35 consecutive patients) with treatment-naive DME prospectively underwent (at baseline, 3 and 6 months) best-corrected visual acuity, swept-source OCT angiography/OCT, and fundus autofluorescence. Following parameters were evaluated on OCT angiography in the superficial capillary plexus (SCP) and deep capillary plexus (DCP): the area of foveal avascular zone, number of microaneurysms (MA), area of cysts, and presence of capillary network alterations. Microaneurysm change was also evaluated in 15 fellow eyes, not needing treatment over 6 months. Vessel and perfusion densities were evaluated in the SCP, DCP, and choriocapillaris, with image J. Retina thickness, number of hyperreflective retinal spots, and external limiting membrane integrity were evaluated on OCT. All measurements were performed by two masked graders, independently. RESULTS All patients had diabetes mellitus Type 2 (mean age, 69.4 ± 10.9 years; duration of diabetes mellitus, 15.7 ± 8.7 years; and HbA1c 7.7 ± 1.2%). Mean best-corrected visual acuity at baseline was 69.7 ± 12.0 letters ETDRS, 72.7 ± 10.7 at 3 months (gain 3.1 ± 4.3, P = 0.0049) and 74.3 ± 9.5 at 6 months (gain 4.6 ± 7.2, P < 0.0001). Foveal avascular zone area decreased in the DCP at 6 months (P = 0.01). Area of cysts decreased in the SCP at 3 months and 6 months (P = 0.038; P = 0.049), and in the DCP at 6 months (P = 0.0071). Number of MA decreased at 6 months in the SCP (P = 0.0007) and at 3 months and 6 months in the DCP (P = 0.048; P < 0.0001) in treated eyes. No significant change in number of MA was found in nontreated eyes. There was no statistically significant change in any other OCT angiography/OCT parameter. CONCLUSION Subthreshold micropulse yellow laser induces more pronounced changes in the DCP than in the SCP in DME. These changes occurred as early as 3 months after treatment. The evaluation of specific parameters in the DCP may help in determining treatment response.
Collapse
Affiliation(s)
- Stela Vujosevic
- Eye Unit, University Hospital Maggiore della Carita', Novara, Italy
| | - Valentina Gatti
- Eye Unit, University Hospital Maggiore della Carita', Novara, Italy
| | - Andrea Muraca
- Eye Unit, University Hospital Maggiore della Carita', Novara, Italy
| | - Marco Brambilla
- Medical Physics, University Hospital Maggiore della Carita', Novara, Italy
| | - Edoardo Villani
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
- Eye Clinic, San Giuseppe Hospital, Milan, Italy
| | - Paolo Nucci
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
- Eye Clinic, San Giuseppe Hospital, Milan, Italy
| | - Luca Rossetti
- Eye Clinic, University of Milan, San Paolo Hospital, Milan, Italy; and
| | - Stefano De Cilla'
- Eye Unit, University Hospital Maggiore della Carita', Novara, Italy
- Department of Health Science, University East Piedmont "A. Avogadro," Novara, Italy
| |
Collapse
|
13
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
14
|
Chang KC, Petrash JM. Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:173-202. [PMID: 30362099 DOI: 10.1007/978-3-319-98788-0_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms linking the action of AR to these diseases are not well understood. As DR and cataract are among the leading causes of blindness in the world, there is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer onset and progression. In this review we examine possible mechanisms that relate AR to molecular signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer as well as diseases of the eye such as uveitis, cataract, and retinopathy.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
15
|
Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW. Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease. Invest Ophthalmol Vis Sci 2018; 59:519-527. [PMID: 29372250 PMCID: PMC5786342 DOI: 10.1167/iovs.17-21873] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/08/2017] [Indexed: 11/24/2022] Open
Abstract
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD.
Collapse
Affiliation(s)
- Michael D. Abramoff
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, United States
- Iowa City VA Health Care System, Iowa City, Iowa, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - K. Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
16
|
Liu CH, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: from development to pathologies. FASEB J 2017; 31:4665-4681. [PMID: 28739642 DOI: 10.1096/fj.201700336r] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RVS, Yang Y, Moran E, Ma JX. Pathogenic Role of microRNA-21 in Diabetic Retinopathy Through Downregulation of PPARα. Diabetes 2017; 66:1671-1682. [PMID: 28270521 PMCID: PMC5440012 DOI: 10.2337/db16-1246] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023]
Abstract
Fenofibrate, a specific agonist of peroxisome proliferator-activated receptor-α (PPARα), displays robust therapeutic effects on diabetic retinopathy (DR) in patients with type 2 diabetes. Our recent studies have shown that PPARα is downregulated in the diabetic retina, which contributes to the pathogenesis of DR. However, the mechanism for diabetes-induced downregulation of PPARα remains unknown. We investigated the role of microRNA-21 (miR-21) in regulating PPARα in DR. miR-21 was overexpressed, while PPARα levels were decreased in the retina of db/db mice, a model of type 2 diabetes. Such alterations were also observed in palmitate-treated retinal endothelial cells. miR-21 targeted PPARα by inhibiting its mRNA translation. Knockout of miR-21 prevented the decrease of PPARα, alleviated microvascular damage, ameliorated inflammation, and reduced cell apoptosis in the retina of db/db mice. Intravitreal injection of miR-21 inhibitor attenuated PPARα downregulation and ameliorated retinal inflammation in db/db mice. Further, retinal miR-21 levels were increased, while PPARα levels were decreased in oxygen-induced retinopathy (OIR). Knockout of miR-21 prevented PPARα downregulation and ameliorated retinal neovascularization and inflammation in OIR retinas. In conclusion, diabetes-induced overexpression of miR-21 in the retina is at least partly responsible for PPARα downregulation in DR. Targeting miR-21 may represent a novel therapeutic strategy for DR.
Collapse
Affiliation(s)
- Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Raju V S Rajala
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yanhui Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Elizabeth Moran
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
18
|
Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res 2017; 139:101-107. [PMID: 28408138 DOI: 10.1016/j.visres.2017.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/20/2023]
Abstract
Since 1875, controversy has ensued over whether ocular diabetic complications are primarily vasculopathic or neuropathic in nature. Here, we discuss the historical context by which diabetic retinopathy (DR) came to be considered a primary vasculopathy, in contrast to more recent data suggesting the importance of diabetic retinal neurodegeneration (DRN) as the primary manifestation of ocular diabetic damage. Unsurprisingly, DRN parallels other diabetic complications related to neuropathy. In general, there are three possible relationships between microvascular DR and DRN: i) microvasculopathy causes neurodegeneration; ii) neurodegeneration causes microvasculopathy or iii) they are mutually independent. The authors' group has recently produced experimental data showing that DRN precedes even the earliest manifestations of DR microvasculopathy. In combination with earlier studies showing that focal implicit time delays predicted future development of DR microvasculopathy in the same location, relationships i) and iii) are unlikely. As such, ii) is the most likely relationship: DRN is a cause of DR. Granted, additional studies are needed to confirm this hypothesis and elucidate the mechanism of diabetes-induced neurodegeneration. We conclude this review by proposing experimental approaches to test the hypothesis that DRN causes DR. If confirmed, this new paradigm may lead to earlier detection of ocular diabetic damage and earlier treatment of early DR, thereby preventing visual loss in people with diabetes.
Collapse
Affiliation(s)
- Stephanie K Lynch
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Michael D Abràmoff
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Iowa Institute for Biomedical Imaging, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA; Department of Veterans Affairs, 601 US-6, Iowa City, IA 52246, USA.
| |
Collapse
|
19
|
Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling. Mol Cell Biol 2016; 36:2645-54. [PMID: 27528615 PMCID: PMC5038150 DOI: 10.1128/mcb.00235-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
The very-low-density lipoprotein receptor (VLDLR) negatively regulates Wnt signaling. VLDLR has two major alternative splice variants, VLDLRI and VLDLRII, but their biological significance and distinction are unknown. Here we found that most tissues expressed both VLDLRI and VLDLRII, while the retina expressed only VLDLRII. The shed soluble VLDLR extracellular domain (sVLDLR-N) was detected in the conditioned medium of retinal pigment epithelial cells, interphotoreceptor matrix, and mouse plasma, indicating that ectodomain shedding of VLDLR occurs endogenously. VLDLRII displayed a higher ectodomain shedding rate and a more potent inhibitory effect on Wnt signaling than VLDLRI in vitro and in vivo O-glycosylation, which is present in VLDLRI but not VLDLRII, determined the differential ectodomain shedding rates. Moreover, the release of sVLDLR-N was inhibited by a metalloproteinase inhibitor, TAPI-1, while it was promoted by phorbol 12-myristate 13-acetate (PMA). In addition, sVLDLR-N shedding was suppressed under hypoxia. Further, plasma levels of sVLDLR-N were reduced in both type 1 and type 2 diabetic mouse models. We concluded that VLDLRI and VLDLRII had differential roles in regulating Wnt signaling and that decreased plasma levels of sVLDLR-N may contribute to Wnt signaling activation in diabetic complications. Our study reveals a novel mechanism for intercellular regulation of Wnt signaling through VLDLR ectodomain shedding.
Collapse
|
20
|
Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 2016; 113:E2655-64. [PMID: 27114552 DOI: 10.1073/pnas.1522014113] [Citation(s) in RCA: 436] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.
Collapse
|
21
|
Rajagopal R, Bligard GW, Zhang S, Yin L, Lukasiewicz P, Semenkovich CF. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy. Diabetes 2016; 65:1072-84. [PMID: 26740595 PMCID: PMC5166563 DOI: 10.2337/db15-1255] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/23/2015] [Indexed: 12/23/2022]
Abstract
Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease.
Collapse
Affiliation(s)
- Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Gregory W Bligard
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sheng Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Li Yin
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Peter Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
22
|
Ranji M, Ghanian Z, Staniszewski K, Jamali N, Sepehr R, Wang S, Sorenson C, Sheibani N. Quantitative assessment of retinopathy using multi-parameter image analysis. JOURNAL OF MEDICAL SIGNALS & SENSORS 2016. [DOI: 10.4103/2228-7477.181022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 2015; 315:162-74. [PMID: 26701291 DOI: 10.1016/j.neuroscience.2015.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) convey an increased risk for developing dementia. The microtubule-associated protein tau is implicated in neurodegenerative disease by undergoing hyperphosphorylation and aggregation, leading to cytotoxicity and neurodegeneration. Enzymes involved in the regulation of tau phosphorylation, such as GSK3β, are tightly associated with pathways found to be dysregulated in T2DM. We have shown previously that leptin-resistant mice, which develop obesity and a diabetic phenotype, display elevated levels of tau phosphorylation. Here we show cells cultured with leptin, an adipokine shown to have neuroprotective effects, reduces tau phosphorylation. To explore how this mechanism works in vivo we transduced an existing diabetic mouse line (Lepr(db/db)) with a tau mutant (tau(P301L)) via adeno-associated virus (AAV). The resulting phenotype included a striking increase in tau phosphorylation and the number of neurofibrillary tangles (NFTs) found within the hippocampus. We conclude that leptin resistance-induced obesity and diabetes accelerates the development of tau pathology. This model of metabolic dysfunction and tauopathy provides a new system in which to explore the mechanisms underlying the ways in which leptin resistance and diabetes influence development of tau pathology, and may ultimately be related to the development of NFTs.
Collapse
Affiliation(s)
- T L Platt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States
| | - T L Beckett
- Sanders Brown Center on Aging, University of Kentucky, United States
| | - K Kohler
- Sanders Brown Center on Aging, University of Kentucky, United States
| | - D M Niedowicz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States; Sanders Brown Center on Aging, University of Kentucky, United States
| | - M P Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, United States; Sanders Brown Center on Aging, University of Kentucky, United States.
| |
Collapse
|
24
|
Jung E, Kim J, Kim CS, Kim SH, Cho MH. Gemigliptin, a dipeptidyl peptidase-4 inhibitor, inhibits retinal pericyte injury in db/db mice and retinal neovascularization in mice with ischemic retinopathy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2618-29. [DOI: 10.1016/j.bbadis.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022]
|
25
|
Jung SH, Kim YS, Lee YR, Kim JS. High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy. Br J Pharmacol 2015; 173:15-26. [PMID: 26276677 DOI: 10.1111/bph.13279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time-saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches. EXPERIMENTAL APPROACH We developed a model for diabetic retinopathy using the early stage of transgenic zebrafish (flk:EGFP) by treating embryos with 130 mM glucose, from 3-6 days post fertilisation (high-glucose model). On day 6, lenses from zebrafish larvae were isolated and treated with 3% trypsin, and changes in hyaloid-retinal vessels were analysed using fluorescent stereomicroscopy. In addition, expression of tight junction proteins (such as zonula occludens-1), effects of hyperosmolar solutions and of hypoxia, and Vegf expression were assessed by RT -PCR. NO production was assessed with a fluorescent substrate. Effects of inhibitors of the VEGF receptor, NO synthesis and a VEGF antibody (ranibizumab) were also measured. KEY RESULTS In this high-glucose model, dilation of hyaloid-retinal vessels, on day 6, was accompanied by morphological lesions with disruption of tight junction proteins, overproduction of Vegf mRNA and increased NO production. Treatment of this high-glucose model with an inhibitor of VEGF receptor tyrosine kinase or an inhibitor of NO synthase or ranibizumab decreased dilation of hyaloid-retinal vessels. CONCLUSIONS AND IMPLICATIONS These findings suggest that short-term exposure of zebrafish larvae to high-glucose conditions could be used for screening and drug discovery for diabetic retinopathy and particularly for disorders of retinal vessels related to disruption of tight junction proteins and excessive VEGF and NO production.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Yu-Ri Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Jin Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| |
Collapse
|
26
|
Berkowitz BA, Kern TS, Bissig D, Patel P, Bhatia A, Kefalov VJ, Roberts R. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice. Invest Ophthalmol Vis Sci 2015; 56:6294-303. [PMID: 26431483 PMCID: PMC4594469 DOI: 10.1167/iovs.15-16990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. METHODS Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). RESULTS Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. CONCLUSIONS Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Timothy S. Kern
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - David Bissig
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Priya Patel
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ankit Bhatia
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
27
|
Berkowitz BA, Bissig D, Roberts R. MRI of rod cell compartment-specific function in disease and treatment in vivo. Prog Retin Eye Res 2015; 51:90-106. [PMID: 26344734 DOI: 10.1016/j.preteyeres.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Rod cell oxidative stress is a major pathogenic factor in retinal disease, such as diabetic retinopathy (DR) and retinitis pigmentosa (RP). Personalized, non-destructive, and targeted treatment for these diseases remains elusive since current imaging methods cannot analytically measure treatment efficacy against rod cell compartment-specific oxidative stress in vivo. Over the last decade, novel MRI-based approaches that address this technology gap have been developed. This review summarizes progress in the development of MRI since 2006 that enables earlier evaluation of the impact of disease on rod cell compartment-specific function and the efficacy of anti-oxidant treatment than is currently possible with other methods. Most of the new assays of rod cell compartment-specific function are based on endogenous contrast mechanisms, and this is expected to facilitate their translation into patients with DR and RP, and other oxidative stress-based retinal diseases.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - David Bissig
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robin Roberts
- Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
28
|
Abstract
Diabetic retinopathy (DR) is one of today's main causes of blindness in numerous developed countries worldwide. The underlying pathogenesis of DR is complex and not well understood, thus impeding development of specific, effective treatment modalities. Consequently, the use of animal models of DR is of critical importance for investigating the pathogenesis of and treatment for DR. While rats and mice are the most commonly used animal models of DR, the zebrafish now appears to be a promising model. Nonhuman primates and humans have similar eye structures, and both can develop spontaneous diabetes mellitus (DM). Although various traditionally used animal models of DR undergo a number of pathological changes similar to those of human DR, several human variations, e.g. retinal neovascularization, cannot yet be fully mimicked in any existing animal model of DM. Since both the animal models and the methods chosen for inducing DR have great influence on experimental results, a clear understanding of available animal models is vital for planning an experimental design. In this review, we summarize the mechanisms, methodologies and pros and cons of the most commonly used animal models of DR.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , P.R. China
| | | | | |
Collapse
|
29
|
Retinal Neurodegeneration in db/db Mice at the Early Period of Diabetes. J Ophthalmol 2015; 2015:757412. [PMID: 25821591 PMCID: PMC4363796 DOI: 10.1155/2015/757412] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 12/28/2022] Open
Abstract
Purpose. To describe both the functional and pathological alternations in neurosensory retina in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods. db/db (BKS/DB-/-) mice and heterozygous littermates (as control group) at various ages (12, 16, 20, 24, and 28 weeks) were inspected with pattern electroretinogram (PERG), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT). Histological markers of neuroinflammation (IBA-1 and F4/80) were evaluated by immunohistochemistry. In addition, levels of retinal ganglion cell death were measured by terminal dUTP nick-end labeling (TUNEL). Results. Significant alternations of PERG responses and increased retinal ganglion cells (RGCs) apoptosis were observed in diabetic db/db mice for 20-week period when compared with control group. IBA-1 and F4/80 expression in microglia/macrophages became evidently for 24-week period, thus supporting the PERG findings. Furthermore, obvious thinning of nasal and dorsal retina in 28-week-old db/db mice was also revealed by OCT. No visible retinal microvascular changes were detected by FFA throughout the experiments on db/db mice. Conclusions. Diabetic retina underwent neurodegenerative changes in db/db mice, which happened at retinal ganglion cell layer and inner nuclear layer. But there was no obvious abnormality in retinal vasculature on db/db mice.
Collapse
|
30
|
Samuels IS, Bell BA, Pereira A, Saxon J, Peachey NS. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. J Neurophysiol 2014; 113:1085-99. [PMID: 25429122 DOI: 10.1152/jn.00761.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the diabetic retina, cellular changes in the retinal pigment epithelium (RPE) and neurons occur before vision loss or diabetic retinopathy can be identified clinically. The precise etiologies of retinal pathology are poorly defined, and it remains unclear if the onset and progression of cellular dysfunction differ between type 1 and type 2 diabetes. Three mouse models were used to compare the time course of RPE involvement in type 1 and type 2 diabetes. C57BL/6J mice injected with streptozotocin (STZ mice) modeled type 1 diabetes, whereas Lepr(db/db) mice on both BKS and B6.BKS background strains modeled type 2 diabetes. Electroretinogram (ERG)-based techniques were used to measure light-evoked responses of the RPE (direct current-coupled ERG, dc-ERG) and the neural retina (a-wave, b-wave). Following onset of hyperglycemia, a-wave and b-wave amplitudes of STZ mice declined progressively and by equivalent degrees. Components of the dc-ERG were also altered, with the largest reduction seen in the c-wave. Lepr(db/db) mice on the BKS strain (BKS.Lepr) displayed sustained hyperglycemia and a small increase in insulin, whereas Lepr(db/db) mice on the B6.BKS background (B6.BKS.Lepr) were transiently hyperglycemic and displayed severe hyperinsulinemia. BKS.Lepr mice exhibited sustained reductions in the dc-ERG c-wave, fast oscillation, and off response that were not attributable to reduced photoreceptor activity; B6.BKS.Lepr mice displayed transient reductions in the c-wave and fast oscillation that correlated with hyperglycemia and magnitude of photoreceptor activity. In summary, all mouse models displayed altered RPE function concomitant with the onset of hyperglycemia. These results suggest that RPE function is directly reduced by elevated blood glucose levels. That RPE dysfunction was reversible and mitigated in hyperinsulinemic B6.BKS.Lepr mice provides insight into the underlying mechanism.
Collapse
Affiliation(s)
- Ivy S Samuels
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Ariane Pereira
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| | - Joseph Saxon
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
31
|
Valdez CN, Arboleda-Velasquez JF, Amarnani DS, Kim LA, D'Amore PA. Retinal microangiopathy in a mouse model of inducible mural cell loss. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2618-26. [PMID: 25092275 DOI: 10.1016/j.ajpath.2014.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/06/2023]
Abstract
Diabetes can lead to vision loss because of progressive degeneration of the neurovascular unit in the retina, a condition known as diabetic retinopathy. In its early stages, the pathology is characterized by microangiopathies, including microaneurysms, microhemorrhages, and nerve layer infarcts known as cotton-wool spots. Analyses of postmortem human retinal tissue and retinas from animal models indicate that degeneration of the pericytes, which constitute the outer layer of capillaries, is an early event in diabetic retinopathy; however, the relative contribution of specific cellular components to the pathobiology of diabetic retinopathy remains to be defined. We investigated the phenotypic consequences of pericyte death on retinal microvascular integrity by using nondiabetic mice conditionally expressing a diphtheria toxin receptor in mural cells. Five days after administering diphtheria toxin in these adult mice, changes were observed in the retinal vasculature that were similar to those observed in diabetes, including microaneurysms and increased vascular permeability, suggesting that pericyte cell loss is sufficient to trigger retinal microvascular degeneration. Therapies aimed at preventing or delaying pericyte dropout may avoid or attenuate the retinal microangiopathy associated with diabetes.
Collapse
Affiliation(s)
- Cammi N Valdez
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Joseph F Arboleda-Velasquez
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Dhanesh S Amarnani
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Leo A Kim
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Patricia A D'Amore
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Chou JC, Rollins SD, Ye M, Batlle D, Fawzi AA. Endothelin receptor-A antagonist attenuates retinal vascular and neuroretinal pathology in diabetic mice. Invest Ophthalmol Vis Sci 2014; 55:2516-25. [PMID: 24644048 DOI: 10.1167/iovs.13-13676] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. METHODS Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. RESULTS Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. CONCLUSIONS Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jonathan C Chou
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | | | | | | | | |
Collapse
|
33
|
Szabadfi K, Pinter E, Reglodi D, Gabriel R. Neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:1-121. [PMID: 24952915 DOI: 10.1016/b978-0-12-800179-0.00001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Erika Pinter
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE MTA Lendulet-PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
34
|
Jo DH, Cho CS, Kim JH, Jun HO, Kim JH. Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics. J Biomed Sci 2013; 20:38. [PMID: 23786217 PMCID: PMC3694455 DOI: 10.1186/1423-0127-20-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022] Open
Abstract
Effective and validated animal models are valuable to investigate the pathogenesis and potential therapeutics for human diseases. There is much concern for diabetic retinopathy (DR) in that it affects substantial number of working population all around the world, resulting in visual deterioration and social deprivation. In this review, we discuss animal models of DR based on different species of animals from zebrafish to monkeys and prerequisites for animal models. Despite criticisms on imprudent use of laboratory animals, we hope that animal models of DR will be appropriately utilized to deepen our understanding on the pathogenesis of DR and to support our struggle to find novel therapeutics against catastrophic visual loss from DR.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University, Seoul 110-744, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Chou JC, Rollins SD, Fawzi AA. Trypsin digest protocol to analyze the retinal vasculature of a mouse model. J Vis Exp 2013:e50489. [PMID: 23793268 DOI: 10.3791/50489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.
Collapse
Affiliation(s)
- Jonathan C Chou
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine
| | | | | |
Collapse
|
36
|
Yu H, Wark L, Ji H, Willard L, Jaing Y, Han J, He H, Ortiz E, Zhang Y, Medeiros DM, Lin D. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Mol Nutr Food Res 2013; 57:1158-69. [PMID: 23505020 DOI: 10.1002/mnfr.201200642] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/25/2022]
Abstract
SCOPE Our aim was to investigate whether dietary wolfberry altered carotenoid metabolic gene expression and enhanced mitochondrial biogenesis in the retina of diabetic mice. METHODS AND RESULTS Six-week-old male db/db and wild-type mice were fed the control or wolfberry diets for 8 weeks. At study termination, liver and retinal tissues were collected for analysis by transmission electron microscopy, real-time PCR, immunoprecipitation, Western blot, and HPLC. Wolfberry elevated zeaxanthin and lutein levels in the liver and retinal tissues and stimulated expression of retinal scavenger receptor class B type I, glutathione S-transferase Pi 1, and β,β-carotene 9',10'-oxygenase 2, and induced activation and nuclear enrichment of retinal AMP-activated protein kinase α2 (AMPK-α2). Furthermore, wolfberry attenuated hypoxia and mitochondrial stress as demonstrated by declined expression of hypoxia-inducible factor-1-α, vascular endothelial growth factor, and heat shock protein 60. Wolfberry enhanced retinal mitochondrial biogenesis in diabetic retinas as demonstrated by reversed mitochondrial dispersion in the retinal pigment epithelium, increased mitochondrial copy number, elevated citrate synthase activity, and upregulated expression of peroxisome proliferator-activated receptor γ co-activator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A. CONCLUSION Consumption of dietary wolfberry could be beneficial to retinoprotection through reversal of mitochondrial function in diabetic mice.
Collapse
Affiliation(s)
- Huifeng Yu
- Department of Human Nutrition, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Giocanti-Auregan A, Tadayoni R, Ahn L, Pena J, D’Amico D. Revue systématique de la littérature des modèles murins de rétinopathie diabétique. J Fr Ophtalmol 2013; 36:268-76. [DOI: 10.1016/j.jfo.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/25/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
|
38
|
Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 2013; 5:444-56. [PMID: 22730475 PMCID: PMC3380708 DOI: 10.1242/dmm.009597] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and one of the major causes of blindness worldwide. The pathogenesis of DR has been investigated using several animal models of diabetes. These models have been generated by pharmacological induction, feeding a galactose diet, and spontaneously by selective inbreeding or genetic modification. Among the available animal models, rodents have been studied most extensively owing to their short generation time and the inherited hyperglycemia and/or obesity that affect certain strains. In particular, mice have proven useful for studying DR and evaluating novel therapies because of their amenability to genetic manipulation. Mouse models suitable for replicating the early, non-proliferative stages of the retinopathy have been characterized, but no animal model has yet been found to demonstrate all of the vascular and neural complications that are associated with the advanced, proliferative stages of DR that occur in humans. In this review, we summarize commonly used animal models of DR, and briefly outline the in vivo imaging techniques used for characterization of DR in these models. Through highlighting the ocular pathological findings, clinical implications, advantages and disadvantages of these models, we provide essential information for planning experimental studies of DR that will lead to new strategies for its prevention and treatment.
Collapse
|
39
|
|
40
|
Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013:106594. [PMID: 24286086 PMCID: PMC3826427 DOI: 10.1155/2013/106594] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- *Amy C. Y. Lo:
| |
Collapse
|
41
|
Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, Medeiros D, Lin D. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med (Maywood) 2011; 236:1051-63. [PMID: 21750018 DOI: 10.1258/ebm.2011.010400] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia-linked oxidative stress and/or consequent endoplasmic reticulum (ER) stress are the causative factors of pathogenesis of diabetic retinopathy. Dietary bioactive components which mitigate oxidative stress may serve as potential chemopreventive agents to prevent or slow down the disease progression. Wolfberry is a traditional Asian fruit consumed for years to prevent aging eye diseases in Asian countries. Here we report that dietary wolfberry ameliorated mouse retinal abnormality at the early stage of type 2 diabetes in db/db mice. Male mice at six weeks of age were fed the control diet with or without 1% (kcal) wolfberry for eight weeks. Dietary wolfberry restored the thickness of the whole retina, in particular the inner nuclear layer and photoreceptor layer, and the integrity of the retinal pigment epithelia (RPE), and the ganglion cell number in db/db mice. Western blotting of whole retinal cell lysates revealed that addition of wolfberry lowered expression of ER stress biomarkers binding immunoglobulin protein (BiP), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and caspase-12, and restored AMP-activated protein kinase (AMPK), thioredoxin, Mn superoxide dismutase (Mn SOD) and forkhead O transcription factor 3 α (FOXO3α) activities. To determine if our observations were due to the high contents of zeaxanthin and lutein in wolfberry, additional studies using these carotenoids were conducted. Using the human adult diploid RPE cell line ARPE-19, we demonstrated that both zeaxanthin and lutein could mimic the wolfberry preventive effect on activation of AMPK, thioredoxin, Mn SOD, FOXO3α activities, normalize cellular reactive oxygen species and attenuate ER stress in ARPE-19 cells exposed to a high glucose challenge. The zeaxanthin preventive effect was abolished by small interfering RNA knockdown of AMPKα. These results suggested that AMPK activation appeared to play a key role in upregulated expression of thioredoxin and Mn SOD, and mitigation of cellular oxidative stress and/or ER stress by wolfberry and zeaxanthin and/or lutein. Taken together, dietary wolfberry on retinal protection in diabetic mice is, at least partially, due to zeaxanthin and/or lutein.
Collapse
Affiliation(s)
- Ling Tang
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yeung CM, Lo ACY, Cheung AKH, Chung SSM, Wong D, Chung SK. More severe type 2 diabetes-associated ischemic stroke injury is alleviated in aldose reductase-deficient mice. J Neurosci Res 2010; 88:2026-34. [PMID: 20143423 DOI: 10.1002/jnr.22349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldose reductase (AR), the first enzyme in the polyol pathway, has been implicated in a wide variety of physiological and pathological functions, such as diabetic vascular and neural complications. It is known that diabetes mellitus can exacerbate brain and retina damage after ischemic injuries. However, the underlying mechanisms are not clear. In the present study, we made use of db/db mice with an AR null mutation (AR(-/-)db/db) to understand better the role of AR in the pathogenesis of brain and retina ischemic injuries under diabetic conditions. Cerebral and retinal ischemia was induced by transient middle cerebral artery occlusion in control and diabetic mice either with or without an AR null mutation. Mice were evaluated for neurological deficits after 30 min of ischemia and 23.5 hr of reperfusion. Our results showed that the diabetic db/db mice had significantly more severe neurological deficit and larger brain infarct size than the nondiabetic mice. Compared with wild-type db/db mice, the AR(-/-)db/db mice had significantly lower neurological scores, smaller brain infarct areas, and less hemispheric brain swelling. Retinal swelling was also significantly decreased in the AR(-/-)db/db mice. Less swelling in the brain and retina of the AR(-/-)db/db mice correlated with less expression of the water channel aquaporin 4. Taken together, these data clearly show that deletion of AR leads to less severe brain and retinal ischemic injuries in the diabetic db/db mouse. The present study indicates that inhibition of AR in diabetics may protect against damage in the brain and retina following ischemic reperfusion injury.
Collapse
Affiliation(s)
- Chung-Man Yeung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Cohen MP, Hud E, Shea E, Shearman CW. Vitreous fluid of db/db mice exhibits alterations in angiogenic and metabolic factors consistent with early diabetic retinopathy. Ophthalmic Res 2007; 40:5-9. [PMID: 18025835 DOI: 10.1159/000111151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 03/10/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study evaluated the postulate that the vitreous of diabetic db/db mice, a genetic model of type 2 diabetes that manifests hyperglycemia and insulin resistance, exhibits alterations in angiogenic and metabolic factors that reflect abnormalities in the retinal microvasculature participatory in the pathogenesis of diabetic retinopathy. METHODS Vitreous obtained from db/db and age-matched nondiabetic db/m mice was analyzed by Western blot for pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF), by immunoassay for type IV collagen, and by measurement of TBARs for lipid peroxide products. RESULTS Compared to nondiabetic db/m controls, vitreous from db/db mice contained decreased PEDF and increased VEGF (VEGF:PEDF relative ratio 2.2 +/- 0.3 and 1.0 +/- 0.1 in db/db vs. db/m, respectively; p < 0.05), and elevated concentrations of lipid peroxide products (187 +/- 43 and 84 +/- 15 ng/ml in db/db vs. db/m, respectively; p < 0.05) and type IV collagen (5.2 +/- 0.7 and 3.1 +/- 0.4 nmol/ml in db/db vs. db/m, respectively; p < 0.05). These changes were observed at age 18-20 weeks, consistent with an early stage in the development of retinal microvascular pathology. CONCLUSIONS The findings support the potential usefulness of vitreous from the db/db mouse as a model tissue for investigation of pathogenetic factors and assessment of therapeutic interventions in early diabetic retinopathy.
Collapse
|
45
|
Cheung AKH, Fung MKL, Lo ACY, Lam TTL, So KF, Chung SSM, Chung SK. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 2005; 54:3119-25. [PMID: 16249434 DOI: 10.2337/diabetes.54.11.3119] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In 15-month-old db/db mice, signs of diabetic retinopathy, including blood-retinal barrier breakdown, loss of pericytes, neuro-retinal apoptosis, glial reactivation, and proliferation of blood vessels, were evident. These changes in the diabetic retina were associated with increased expression of aldose reductase (AR). To further understand the role of AR in the pathogenesis of diabetic retinopathy, we generated db/db mice with an AR null mutation (AR-/- db/db). AR deficiency led to fewer retinal blood vessels with IgG leakage, suggesting that AR may contribute to blood-retinal barrier breakdown. AR deficiency also prevented diabetes-induced reduction of platelet/endothelial cell adhesion molecule-1 expression and increased expression of vascular endothelial growth factor, which may have contributed to blood-retinal barrier breakdown. In addition, long-term diabetes-induced neuro-retinal stress and apoptosis and proliferation of blood vessels were less prominent in AR-/- db/db mice. These findings indicate that AR is responsible for the early events in the pathogenesis of diabetic retinopathy, leading to a cascade of retinal lesions, including blood-retinal barrier breakdown, loss of pericytes, neuro-retinal apoptosis, glial reactivation, and neovascularization.
Collapse
Affiliation(s)
- Alvin K H Cheung
- Institute of Molecular Biology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Berkowitz BA, Luan H, Gupta RR, Pacheco D, Seidner A, Roberts R, Liggett J, Knoerzer DL, Connor JR, Du Y, Kern TS, Ito Y. Regulation of the early subnormal retinal oxygenation response in experimental diabetes by inducible nitric oxide synthase. Diabetes 2004; 53:173-8. [PMID: 14693712 DOI: 10.2337/diabetes.53.1.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We aimed to test the hypothesis that the inducible form of nitric oxide synthase (iNOS) contributes to the development of an early subnormal retinal oxygenation response in preclinical models of diabetic retinopathy. In urethane anesthetized Sprague Dawley rats or C57BL/6 mice, functional magnetic resonance imaging was used to noninvasively measure the change in retinal oxygen tension (Delta PO(2)) during a carbogen-inhalation challenge. In the rat experiments, the retinal Delta PO(2) of the following groups were compared: control rats (n = 9), 3-month diabetic rats (n = 5), and 3-month diabetic rats treated orally with L-N(6)-(1-iminoethyl)lysine 5-tetrazole amide, a prodrug of an inhibitor of iNOS (n = 6). In addition, the retinal Delta PO(2) of the following mouse groups were compared: C57BL/6 mice (n = 20), C57BL/6-Nos2(tm1 Lau) mice (n = 10), 4-month diabetic mice (n = 13), and 4-month diabetic knockout mice (n = 6). Only the Delta PO(2) of the superior hemiretina of the diabetic rat and mice groups were significantly subnormal (P < 0.05). The superior Delta PO(2) of the diabetic rats treated with the prodrug was not significantly (P > 0.05) different from their respective normal controls. In the mice experiments, the superior retinal Delta PO(2) of the iNOS null mice was not statistically different (P > 0.05) from that of normal control mice. iNOS is required for the development of an early subnormal Delta PO(2) in experimental diabetic retinopathy.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tadayoni R, Paques M, Gaudric A, Vicaut E. Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice. Exp Eye Res 2003; 77:497-504. [PMID: 12957148 DOI: 10.1016/s0014-4835(03)00155-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to analyse the dynamics of red blood cells (RBC) and white blood cells (WBC) in the retinal capillaries of C57BL/KS db/db mice, a genetic model of type 2 diabetes, and control mice, at different ages. Modified epifluorescence microscopy was used to analyse the capillary velocity of FITC-labeled RBC and rhodamine-labeled WBC in the retina. C57BL/KS db/db diabetic mice were compared to heterozygous non-diabetic mice at ages 8 and 18 weeks (n=6 in each group). At 8 weeks, when hyperglycemia begins in db/db mice, no significant difference was found between average RBC and WBC velocity of the 2 groups. At 18 weeks, RBC velocity was significantly higher in diabetic mice compared to controls (1.21+/-0.29 versus 1.08+/-0.28 mm sec(-1) p=0.0003). No significant difference was found between WBC velocities (0.87+/-0.3 versus 0.85+/-0.3 mm sec(-1)) even when normalized by RBC velocity values. Temporal and spatial coefficients of variation were significantly higher for WBC than RBC velocities (p<0.0001) but were not significantly different in diabetic and control mice. Direct measurement of RBC velocity with this new method showed that it was higher in the retinal capillaries of diabetic than control mice after 10-12 weeks of hyperglycemia, but not at the onset of hyperglycemia. This suggests that enhanced RBC velocity is not an immediate effect of hyperglycemia but a consequence of persistent hyperglycemia. The above results are in line with the hypothesis that microvascular flow increases in diabetes, as one of the first microvascular alterations. In contrast, WBC velocity was not different in diabetic and control mice.
Collapse
Affiliation(s)
- Ramin Tadayoni
- Laboratoire d'Etude de la Microcirculation, Hôpital Fernand Widal, 200 rue du Faubourg Saint-Denis, 75010 Paris, France
| | | | | | | |
Collapse
|
48
|
Bodeutsch N, Thanos S. Migration of phagocytotic cells and development of the murine intraretinal microglial network: an in vivo study using fluorescent dyes. Glia 2000; 32:91-101. [PMID: 10975914 DOI: 10.1002/1098-1136(200010)32:1<91::aid-glia90>3.0.co;2-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work was undertaken to study whether retinal ganglion cell (RGC) death, which occurs during postnatal development of the mouse retina could aid in assessing the topological and chronological pattern of microglial cell migration. The study was conducted from postnatal day 0 (P0) to adulthood. The fluorescent dyes Fluorogold (FG) or (4-[4-didecylaminostyryl]-N-methylpyridinium iodide (4Di-10ASP) used in this study, were transported retrogradely to the RGC soma when either dye was injected into the superior colliculus (SC) at P0. Some of these labeled RGCs die due to natural apoptosis during this stage of development and are phagocytosed by microglial cells, which move to the site of RGC death, to become labeled with the same dye. The retinas were examined to quantify the microglial cells from P5 to adulthood. In addition, the reaction of microglia to optic nerve crush was studied in adult animals. Both dyes labeled RGCs in the contralateral retina and a few RGCs in the retina ipsilateral to the injected SC. The density of labeled RGCs decreased by 22% between P5 and P7. During this phase, microglial cells become visible as they ingested the fluorescent detritus of the dying RGCs. Microglial cells were evenly distributed across the entire retinal surface and migrated to the outer plexiform layer. Migrating microglia consecutively altered their morphology from the amoeboid to the ramified form. In terms of intracellular storage of the dyes, resident microglial cells retained the fluorescent dye 4Di-10ASP over a period of 12 months. In contrast, FG was completely transferred from the RGCs and microglial cells to intramural cells (pericytes) of the retinal capillaries after 10 months. This resulted in delineation of the entire intraretinal vascular network. Finally, resident retinal microglial cells were also activated by injury to the adult optic nerve and phagocytosed degenerating neurons. Retinal microglial cells can be monitored with vital fluorescent dyes while they migrate across the retina and establish their intra-retinal network. It is possible to label microglia with lipophilic dyes and they remain labeled for a long time. In addition, intramural pericytes can be labeled by slow release of FG from RGCs and microglial cells. The findings suggest that ingested fluorescent dyes having different properties can be used to study different populations of retinal cells in vivo.
Collapse
Affiliation(s)
- N Bodeutsch
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
49
|
Clements RS, Robison WG, Cohen MP. Anti-glycated albumin therapy ameliorates early retinal microvascular pathology in db/db mice. J Diabetes Complications 1998; 12:28-33. [PMID: 9442812 DOI: 10.1016/s1056-8727(97)00051-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyperglycemia plays a primary causal role in the early vascular damage leading to diabetic retinopathy, but the intermediate biochemical mechanisms involved are not known. Because albumin modified by Amadori glucose adducts has been implicated in the pathogenesis of diabetic nephropathy, we investigated whether or not glycated albumin plays a similar role in diabetic retinopathy. We observed basement membrane thickening and an accumulation of basement membrane material in the capillaries of the outer plexiform layer of retinae from diabetic db/db mice compared with their nondiabetic db/m littermates. Both of these abnormalities were ameliorated by chronic (8 week) treatment with monoclonal antibodies that specifically recognize Amadori-modified glycated albumin (and not other glucose-modified or advanced glycation endproducts-modified proteins), despite the fact that the administration of these antibodies did not alter the glycemic status of the diabetic animals. Thus, albumin containing Amadori glucose adducts contributes to the pathogenesis of diabetic retinal vascular disease, and agents that neutralize or prevent the formation of excess glycated albumin in diabetes may offer prophylaxis against the early changes of diabetic retinopathy.
Collapse
Affiliation(s)
- R S Clements
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | |
Collapse
|
50
|
Zarow C, Barron E, Chui HC, Perlmutter LS. Vascular basement membrane pathology and Alzheimer's disease. Ann N Y Acad Sci 1997; 826:147-60. [PMID: 9329687 DOI: 10.1111/j.1749-6632.1997.tb48467.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously demonstrated that the capillary vascular basement membrane (VBM) is pathologically altered in Alzheimer's disease (AD). This microangiopathy is highlighted by the immunocytochemical localization of the three principal intrinsic VBM components: heparan sulfate proteoglycan, collagen type IV, and laminin. These three VBM components also immunolable amyloid deposits and senile plaque-associated glial processes. The present study examines the ultrastructure of the VBM in one brain region severely affected (temporal gyrus) and one relatively spared (cerebellum) from the lesions of AD in both AD and neurological control cases. The cross-sectional area as well as the width of the VBM were found to be greater in AD cortical capillaries. In addition, we found ultrastructural evidence for the activation of microglial-related perivascular cells, and their apparent extravasation through the VBM, findings consistent with the hypothesis that these cells are being recruited as part of a disease-related immune response. The recruitment of these "resting" microglial-like cells from their intra-VBM location to plaques and tangles in AD may explain (1) the thickening and vacuolization of the VBM; (2) the specificity of this VBM alteration to brain regions where there are plaques and tangles; and (3) the source of some of the large number of activated microglia in these affected areas. Thus, while VBM alterations may not be specific to AD, these changes appear to be specifically related to the disease process.
Collapse
Affiliation(s)
- C Zarow
- Alzheimer's Disease Diagnostic and Treatment Center, Downey, California 90242, USA
| | | | | | | |
Collapse
|