1
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|
2
|
Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, Xu C, Chen H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother 2020; 132:110770. [PMID: 33011613 DOI: 10.1016/j.biopha.2020.110770] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute pancreatitis (SAP), a serious inflammatory disease of the pancreas, can easily lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS). Acute lung injury (ALI) is one of the most serious complications of SAP. However, the specific pathogenesis of SAP-associated ALI is not fully understood. Crosstalk and multi-mechanisms involving pancreatic necrosis, bacteremia, intestinal barrier failure, activation of inflammatory cascades and diffuse alveolar damage is the main reason for the unclear pathological mechanism of SAP-associated ALI. According to previous research on SAP-associated ALI in our laboratory and theories put forward by other scholars, we propose that the complex pattern of SAP-associated ALI is based on the "pancreas-intestine-inflammation/endotoxin-lung (P-I-I/E-L) pathway". In this review, we mainly concentrated on the specific details of the "P-I-I/E-L pathway" and the potential treatments or preventive measures for SAP-associated ALI.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Chukwuemeka Samuel Okoye
- Orthopedic Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, PR China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
3
|
van den Berg FF, Kempeneers MA, van Santvoort HC, Zwinderman AH, Issa Y, Boermeester MA. Meta-analysis and field synopsis of genetic variants associated with the risk and severity of acute pancreatitis. BJS Open 2019; 4:3-15. [PMID: 32011822 PMCID: PMC6996643 DOI: 10.1002/bjs5.50231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genetic risk factors can provide insight into susceptibility for acute pancreatitis (AP) and disease progression towards (infected) necrotizing pancreatitis and persistent organ failure. The aim of the study was to undertake a systematic review of the genetic evidence for AP. Methods Online databases (MEDLINE, Embase, BIOSIS, Web of Science, Cochrane Library) were searched to 8 February 2018. Studies that reported on genetic associations with AP susceptibility, severity and/or complications were eligible for inclusion. Meta‐analyses were performed of variants that were reported by at least two data sources. Venice criteria and Bayesian false‐discovery probability were applied to assess credibility. Results Ninety‐six studies reporting on 181 variants in 79 genes were identified. In agreement with previous meta‐analyses, credible associations were established for SPINK1 (odds ratio (OR) 2·87, 95 per cent c.i. 1·89 to 4·34), IL1B (OR 1·23, 1·06 to 1·42) and IL6 (OR 1·64, 1·15 to 2·32) and disease risk. In addition, two novel credible single‐nucleotide polymorphisms were identified in Asian populations: ALDH2 (OR 0·48, 0·36 to 0·64) and IL18 (OR 1·47, 1·18 to 1·82). Associations of variants in TNF, GSTP1 and CXCL8 genes with disease severity were identified, but were of low credibility. Conclusion Genetic risk factors in genes related to trypsin activation and innate immunity appear to be associated with susceptibility to and severity of AP.
Collapse
Affiliation(s)
- F F van den Berg
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Kempeneers
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - H C van Santvoort
- Department of Surgery, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Y Issa
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Boermeester
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Stenwall A, Ingvast S, Skog O, Korsgren O. Characterization of host defense molecules in the human pancreas. Islets 2019; 11:89-101. [PMID: 31242128 PMCID: PMC6682263 DOI: 10.1080/19382014.2019.1585165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/21/2018] [Accepted: 02/16/2019] [Indexed: 01/07/2023] Open
Abstract
The gut microbiota can play a role in pancreatitis and, likely, in the development of type 1 diabetes (T1D). Anti-microbial peptides and secretory proteins are important mediators of the innate immune response against bacteria but their expression in the human pancreas is not fully known. In this study, immunohistochemistry was used to analyze the expression of seven anti-microbial peptides (Defensin α1, α4, β1-4 and Cathelicidin) and two secretory proteins with known antimicrobial properties (REG3A and GP2) in pancreatic and duodenal biopsies from 10 non-diabetic organ donors and one organ donor that died at onset of T1D. Immunohistochemical data was compared with previously published whole-transcriptome data sets. Seven (Defensin α1, β2, β3, α4, GP2, Cathelicidin, and REG3A) host defense molecules showed positive staining patterns in most non-diabetic organ donors, whereas two (Defensin β1 and β4) were negative in all non-diabetic donors. Two molecules (Defensin α1 and GP2) were restricted to the exocrine pancreas whereas two (Defensin β3, α4) were only expressed in islet tissue. Cathelicidin, β2, and REG3A were expressed in both islets and exocrine tissue. The donor that died at onset of T1D had generally less positivity for the host defense molecules, but, notably, this pancreas was the only one where defensin β1 was found. Neither donor age, immune-cell infiltration, nor duodenal expression correlated to the pancreatic expression of host defense molecules. In conclusion, these findings could have important implications for the inflammatory processes in diabetes and pancreatitis as we find several host defense molecules expressed by the pancreatic tissue.
Collapse
Affiliation(s)
- Anton Stenwall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Antimicrobial Peptide Human Neutrophil Peptide 1 as a Potential Link Between Chronic Inflammation and Ductal Adenocarcinoma of the Pancreas. Pancreas 2018; 47:561-567. [PMID: 29683978 DOI: 10.1097/mpa.0000000000001054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Defensins are antimicrobial peptides playing a role in innate immunity, in epithelial cell regeneration, and in carcinogenesis of inflammation-triggered malignancies. We analyzed this role in pancreatic ductal adenocarcinoma (PDAC) in the context of its association with chronic pancreatitis (CP). METHODS Human tissue of healthy pancreas, CP, and PDAC was screened for defensins by immunohistochemistry. Defensin α 1 (human neutrophil peptide 1 [HNP-1]) expression was validated using mass spectrometry and microarray analysis. Human neutrophil peptide 1 expression and influences of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) were studied in human pancreatic cancer cells (Colo 357, T3M4, PANC-1) and normal human pancreatic duct epithelial cells (HPDE). RESULTS Accumulation of HNP-1 in malignant pancreatic ductal epithelia was seen. Spectrometry showed increased expression of HNP-1 in CP and even more in PDAC. At RNA level, no significant regulation was found. In cancer cells, HNP-1 expression was significantly higher than in HPDE. Proinflammatory cytokines significantly led to increased HNP-1 levels in culture supernatants and decreased levels in lysates of cancer cells. In HPDE cytokines significantly decreased HNP-1 levels. CONCLUSIONS Inflammatory regulation of HNP-1 in PDAC tissue and cells indicates that HNP-1 may be a link between chronic inflammation and malignant transformation in the pancreas.
Collapse
|
6
|
Chen Y, Xie CL, Hu R, Shen CY, Zeng M, Wu CQ, Chen TW, Chen C, Tang MY, Xue HD, Jin ZY, Zhang XM. Genetic Polymorphisms: A Novel Perspective on Acute Pancreatitis. Gastroenterol Res Pract 2017; 2017:5135172. [PMID: 29333155 PMCID: PMC5733231 DOI: 10.1155/2017/5135172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a complex disease that results in significant morbidity and mortality. For many decades, it has compelled researchers to explore the exact pathogenesis and the understanding of the pathogenesis of AP has progressed dramatically. Currently, premature trypsinogen activation and NF-κB activation for inflammation are two remarkable hypotheses for the mechanism of AP. Meanwhile, understanding of the influence of genetic polymorphisms has resulted in tremendous development in the understanding of the advancement of complex diseases. Now, genetic polymorphisms of AP have been noted gradually and many researchers devote themselves to this emerging area. In this review, we comprehensively describe genetic polymorphisms combined with the latest hypothesis of pathogenesis associated with AP.
Collapse
Affiliation(s)
- Yong Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chao Lian Xie
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Hu
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Yi Shen
- Sichuan Key Laboratory of Medical Imaging and Department of Pathophysiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mei Zeng
- Biology Group, North Sichuan Medical College, Nanchong, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chen Chen
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hua Dan Xue
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Yu Jin
- Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Huang YP, Wang TY, Wang W, Sun HZ. Association between Genetic Polymorphisms in DEFB1 and Susceptibility to Digestive Diseases. Med Sci Monit 2015; 21:2240-50. [PMID: 26232989 PMCID: PMC4527116 DOI: 10.12659/msm.893453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant expression of defensins is implicated in the pathogenesis of digestive diseases. However, the contribution of specific defensins and the influence of their genetic polymorphisms on the progression of digestive diseases remain controversial. In the present meta-analysis, we investigated the association between DEFB1 SNPs and the susceptibility to digestive diseases. Material/Methods Case-control studies that reported the correlation between DEFB1 SNPs and the susceptibility to digestive diseases were identified through electronic databases searches, and high-quality studies that satisfied our inclusion criteria were selected for this meta-analysis. Statistical analyses were performed utilizing STATA software version 12.0. Results The present meta-analysis revealed that patients with digestive diseases exhibited higher frequencies of the DEFB1 genetic variants rs11362G>A, rs1800972C>G, and rs1799946G>A compared to healthy controls under the allele model. Subgroup analysis based on country showed that the rs1800972C>G variant under allele model and rs1799946G>A are associated with the susceptibility to digestive diseases in Hungarian and Italian populations, respectively. Subgroup analysis based on disease type showed that: (1) rs11362G>A variant was strongly associated with severe acute pancreatitis (SAP) and chronic gastritis, (2) frequency of rs1800972C>G variant was higher in SAP subgroup, and (3) frequency of rs1799946G>A variant was positively associated with the susceptibility to Crohn’s disease (CD) under the allele model and with SAP. Conclusions Our meta-analysis provides evidence that DEFB1 genetic polymorphisms rs11362G>A, rs1800972C>G and rs1799946G>A are important contributing factors to the development of digestive diseases.
Collapse
Affiliation(s)
- Yin-Peng Huang
- Department of General Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China (mainland)
| | - Tian-Yi Wang
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China (mainland)
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China (mainland)
| | - Hong-Zhi Sun
- Department of General Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
8
|
Increased intestinal production of α-defensins in aged rats with acute pancreatic injury. Exp Gerontol 2014; 60:215-9. [DOI: 10.1016/j.exger.2014.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
|
9
|
Ronai Z, Kovacs-Nagy R, Szantai E, Elek Z, Sasvari-Szekely M, Faludi G, Benkovits J, Rethelyi JM, Szekely A. Glycogen synthase kinase 3 beta gene structural variants as possible risk factors of bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:217-22. [PMID: 24677591 PMCID: PMC3980030 DOI: 10.1002/ajmg.b.32223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/10/2014] [Indexed: 11/07/2022]
Abstract
The glycogen synthase kinase 3B (GSK3B) is an important target protein of several antidepressants, such as lithium, a mood stabilizer. Recent studies associated structural variations of the GSK3B gene to bipolar disorder (BP), although replications were not conclusive. Here we present data on copy number variations (CNVs) of the GSK3B gene probing the 9th exon region in 846 individuals (414 controls, 172 patients with major depressive disorder (MDD) and 260 with BP). A significant accumulation (odds ratio: 5.5, P = 0.00051) of the amplified exon 9 region was found in patients (22 out of 432) compared to controls (4 of 414). Analyzing patient subgroups, GSK3B structural variants were found to be risk factors of BP particularly (P = 0.00001) with an odds ratio of 8.1 while no such effect was shown in the MDD group. The highest odds (19.7 ratio) for bipolar disorder was observed in females with the amplified exon 9 region. A more detailed analysis of the identified GSK3B CNV by a set of probes covering the GSK3B gene and the adjacent NR1I2 and C3orf15 genes showed that the amplified sequences contained 3' (downstream) segments of the GSK3B and NR1I2 genes but none of them involved the C3orf15 gene. Therefore, the copy number variation of the GSK3B gene could be described as a complex set of structural variants involving partial duplications and deletions, simultaneously. In summary, here we confirmed significant association of the GSK3B CNV and bipolar disorder pointing out that the copy number and extension of the CNV varies among individuals.
Collapse
Affiliation(s)
- Zsolt Ronai
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Reka Kovacs-Nagy
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Szantai
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Elek
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Maria Sasvari-Szekely
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gabor Faludi
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Budapest, Hungary
| | - Judit Benkovits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Janos M. Rethelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Anna Szekely
- Institute of Psychology, Eotvos Lorand University, Budapest, Hungary,Corresponding author Anna Szekely (associate professor) Institute of Psychology, Eotvos Lorand University, Budapest, Hungary Address: Izabella u. 46, Budapest, Hungary-1064 Tel: (+3620) 466-4554 Fax: (+361) 461-2691
| |
Collapse
|
10
|
Taudien S, Huse K, Groth M, Platzer M. Narrowing down the distal border of the copy number variable beta-defensin gene cluster on human 8p23. BMC Res Notes 2014; 7:93. [PMID: 24552181 PMCID: PMC3942070 DOI: 10.1186/1756-0500-7-93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Copy number variation (CNV) in the range from 2 to 12 per diploid genome is an outstanding feature of the beta-defensin gene (DEFB) cluster on human chromosome 8p23.1 numerously demonstrated by different methods. So far, CNV was proven for a 115 kb region between DEFB4 and 21 kb proximal of DEFB107 but the borders for the entire CNV repeat unit are still unknown. Our study aimed to narrow down the distal border of the DEFB cluster. Results We established tests for length polymorphisms based on amplification and capillary electrophoresis with laser-induced fluorescence (CE-LIF) analysis of seven insertion/deletion (indel) containing regions spread over the entire cluster. The tests were carried out with 25 genomic DNAs with different previously determined cluster copy numbers. CNV was demonstrated for six indels between ~1 kb distal of DEFB108P and 10 kb proximal of DEFB107. In contrast, the most distal indel is not affected by CNV. Conclusion Our analysis fixes the minimal length of proven CNV to 157 kb including DEFB108P but excluding DEFB109P. The distal border between CNV and non-CNV part of the DEF cluster is located in the 59 kb interval chr8:7,171,082-7,230,128.
Collapse
Affiliation(s)
- Stefan Taudien
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr, 11, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
11
|
Ikuta T, Inagaki Y, Tanaka K, Saito T, Nakajima Y, Bando M, Kido JI, Nagata T. Gene polymorphism of β-defensin-1 is associated with susceptibility to periodontitis in Japanese. Odontology 2013; 103:66-74. [PMID: 24276427 DOI: 10.1007/s10266-013-0139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
Periodontitis is a multifactorial disease associated with genetic and environmental factors. Single-nucleotide polymorphisms (SNPs) are associated with susceptibility to common diseases such as diabetes and periodontitis. Although the oral cavity is exposed to various organisms, the conditions are well controlled by innate and acquired immune systems. Antimicrobial peptides (AMPs) play an important role in the innate immune system; however, the association of AMP-SNPs with periodontitis has not been fully elucidated. This study investigated the relationship between AMP-SNPs and periodontitis in Japanese. One hundred and five Japanese subjects were recruited, which included patients with aggressive, severe, moderate and mild periodontitis, and age-matched healthy controls. Genomic DNA was isolated from peripheral blood and genotypes of SNPs of β-defensin-1 and lactoferrin genes (DEFB1: rs1799946, rs1800972 and rs11362; and LTF: rs1126478) were investigated using the PCR-Invader assay. Protein level of AMPs in gingival crevicular fluid (GCF) was quantified by ELISA. Case-control studies revealed that the -44 CC genotype of DEFB1 (rs1800972) was associated with periodontitis (OR 2.51), particularly with severe chronic periodontitis (OR 4.15) and with combined severe and moderate chronic periodontitis (OR 4.04). No statistical differences were found in other genotypes. The β-defensin-1 concentrations in GCF were significantly lower in subjects with the -44 CC genotype of DEFB1 than in those without this genotype. No significant differences between GCF concentrations of AMPs and other genotypes were detected. The -44 CC genotype of the β-defensin-1 gene (DEFB1 rs1800972) may be associated with susceptibility to chronic periodontitis in Japanese.
Collapse
Affiliation(s)
- Takahisa Ikuta
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
de Oca EPM. Antimicrobial peptide elicitors: New hope for the post-antibiotic era. Innate Immun 2012; 19:227-41. [DOI: 10.1177/1753425912460708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides or host defense peptides are fundamental components of human innate immunity. Recent and growing evidence suggests they have a role in a broad range of diseases, including cancer, allergies and susceptibility to infection, including HIV/AIDS. Antimicrobial peptide elicitors (APEs) are physical, biological or chemical agents that boost human antimicrobial peptide expression. The current knowledge of APEs and their potential use in the treatment of human infectious diseases are reviewed, and a classification system for APEs is proposed. The efficient use of APEs in clinical practice could mark the beginning of the urgently needed post-antibiotic era, but further trials assessing their efficacy and safety are required.
Collapse
Affiliation(s)
- Ernesto Prado Montes de Oca
- Molecular Biology Laboratory, Biosecurity Area, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
- In silico Laboratory, Pharmaceutical and Medical Biotechnology Unit, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
| |
Collapse
|
13
|
Taudien S, Gäbel G, Kuss O, Groth M, Grützmann R, Huse K, Kluttig A, Wolf A, Nothnagel M, Rosenstiel P, Greiser KH, Werdan K, Krawczak M, Pilarsky C, Platzer M. Association studies of the copy-number variable ß-defensin cluster on 8p23.1 in adenocarcinoma and chronic pancreatitis. BMC Res Notes 2012; 5:629. [PMID: 23148552 PMCID: PMC3532138 DOI: 10.1186/1756-0500-5-629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 12/20/2022] Open
Abstract
Background Human ß-defensins are a family of antimicrobial peptides located at the mucosal surface. Both sequence multi-site variations (MSV) and copy-number variants (CNV) of the defensin-encoding genes are associated with increased risk for various diseases, including cancer and inflammatory conditions such as psoriasis and acute pancreatitis. In a case–control study, we investigated the association between MSV in DEFB104 as well as defensin gene (DEF) cluster copy number (CN), and pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Results Two groups of PDAC (N=70) and CP (N=60) patients were compared to matched healthy control groups CARLA1 (N=232) and CARLA2 (N=160), respectively. Four DEFB104 MSV were haplotyped by PCR, cloning and sequencing. DEF cluster CN was determined by multiplex ligation-dependent probe amplification. Neither the PDAC nor the CP cohorts show significant differences in the DEFB104 haplotype distribution compared to the respective control groups CARLA1 and CARLA2, respectively. The diploid DEF cluster CN exhibit a significantly different distribution between PDAC and CARLA1 (Fisher’s exact test P=0.027), but not between CP and CARLA2 (P=0.867). Conclusion Different DEF cluster b CN distribution between PDAC patients and healthy controls indicate a potential protective effect of higher CNs against the disease.
Collapse
Affiliation(s)
- Stefan Taudien
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr 11, D-07745, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pinheiro da Silva F, Machado MCC. Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 2012; 36:308-14. [PMID: 22659161 DOI: 10.1016/j.peptides.2012.05.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are molecules that provide protection against environmental pathogens, acting against a large number of microorganisms, including bacteria, fungi, yeast, virus and others. Two major groups of antimicrobial peptides are found in humans: cathelicidins and defensins. Recently, several studies have furnished information that besides their role in infection diseases, antimicrobial peptides play a role in diseases as diverse as inflammatory disorders, autoimmunity and cancer. Here, we discuss the role of antimicrobial peptides and vitamin D have in such complex diseases and propose their use should be more explored in the diagnosis and treatment of such conditions.
Collapse
|
15
|
Gursoy UK, Könönen E. Understanding the roles of gingival beta-defensins. J Oral Microbiol 2012; 4:JOM-4-15127. [PMID: 22389759 PMCID: PMC3290911 DOI: 10.3402/jom.v4i0.15127] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022] Open
Abstract
Gingival epithelium produces β-defensins, small cationic peptides, as part of its contribution to the innate host defense against the bacterial challenge that is constantly present in the oral cavity. Besides their functions in healthy gingival tissues, β-defensins are involved in the initiation and progression, as well as restriction of periodontal tissue destruction, by acting as antimicrobial, chemotactic, and anti-inflammatory agents. In this article, we review the common knowledge about β-defensins, coming from in vivo and in vitro monolayer studies, and present new aspects, based on the experience on three-dimensional organotypic culture models, to the important role of gingival β-defensins in homeostasis of the periodontium.
Collapse
Affiliation(s)
- Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | |
Collapse
|