1
|
Abdelrahman M, Wang W, Shaukat A, Kulyar MFEA, Lv H, Abulaiti A, Yao Z, Ahmad MJ, Liang A, Yang L. Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals (Basel) 2022; 12:ani12080997. [PMID: 35454245 PMCID: PMC9029867 DOI: 10.3390/ani12080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Over the last decade, animal nutrition science has been significantly developed, supported by the great advancements in molecular technologies. For scientists, the present "feedomics and nutrigenomics" era continues to evolve and shape how research is designed, performed, and understood. The new omics interpretations have established a new point of view for the nutrition–gene interaction, integrating more comprehensive findings from animal physiology, molecular genetics, and biochemistry. In the ruminant model, this modern approach addresses rumen microbes as a critical intermediate that can deepen the studies of diet–gut interaction with host genomics. The present review discusses nutrigenomics’ and feedomics’ potential contribution to diminishing the knowledge gap about the DNA cellular activities of different nutrients. It also presents how nutritional management can influence the epigenetic pathway, considering the production type, life stage, and species for more sustainable ruminant nutrition strategies. Abstract Ruminant nutrition has significantly revolutionized a new and prodigious molecular approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA technologies and analysis have produced a wealth of data that have shifted the research threshold scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in different cellular genomic alterations among different ruminant species, besides the interactions with other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within the gut health and productivity context, which has made interpreting homogenous evidence more complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts with nutrition and other variables linked to animal performance. Such findings should contribute to crystallizing powerful interpretations correlating feeding management with ruminant production and health through genomics. This review will present a road-mapping discussion of promising trends in ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Wei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aftab Shaukat
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | | | - Haimiao Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Adili Abulaiti
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Zhiqiu Yao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-138-7105-6592
| |
Collapse
|
2
|
Janczewski Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022; 27:1750. [PMID: 35268851 PMCID: PMC8911885 DOI: 10.3390/molecules27051750] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022] Open
Abstract
For decades, various plants have been studied as sources of biologically active compounds. Compounds with anticancer and antimicrobial properties are the most frequently desired. Cruciferous plants, including Brussels sprouts, broccoli, and wasabi, have a special role in the research studies. Studies have shown that consumption of these plants reduce the risk of lung, breast, and prostate cancers. The high chemopreventive and anticancer potential of cruciferous plants results from the presence of a large amount of glucosinolates, which, under the influence of myrosinase, undergo an enzymatic transformation to biologically active isothiocyanates (ITCs). Natural isothiocyanates, such as benzyl isothiocyanate, phenethyl isothiocyanate, or the best-tested sulforaphane, possess anticancer activity at all stages of the carcinogenesis process, show antibacterial activity, and are used in organic synthesis. Methods of synthesis of sulforaphane, as well as its natural or synthetic bifunctional analogues with sulfinyl, sulfanyl, sulfonyl, phosphonate, phosphinate, phosphine oxide, carbonyl, ester, carboxamide, ether, or additional isothiocyanate functional groups, and with the unbranched alkyl chain containing 2-6 carbon atoms, are discussed in this review. The biological activity of these compounds are also reported. In the first section, glucosinolates, isothiocyanates, and mercapturic acids (their metabolites) are briefly characterized. Additionally, the most studied anticancer and antibacterial mechanisms of ITC actions are discussed.
Collapse
Affiliation(s)
- Łukasz Janczewski
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Adimulam T, Arumugam T, Foolchand A, Ghazi T, Chuturgoon AA. The Effect of Organoselenium Compounds on Histone Deacetylase Inhibition and Their Potential for Cancer Therapy. Int J Mol Sci 2021; 22:ijms222312952. [PMID: 34884764 PMCID: PMC8657714 DOI: 10.3390/ijms222312952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.
Collapse
|
4
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
5
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017; 39:1-14. [DOI: 10.1016/j.jnutbio.2016.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
7
|
Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol 2015; 36:4005-16. [DOI: 10.1007/s13277-015-3391-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
|
8
|
Bassett SA, Barnett MPG. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 2014; 6:4273-301. [PMID: 25322459 PMCID: PMC4210916 DOI: 10.3390/nu6104273] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs) remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food.
Collapse
Affiliation(s)
- Shalome A Bassett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Matthew P G Barnett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| |
Collapse
|
9
|
Doherty R, O' Farrelly C, Meade KG. Comparative epigenetics: relevance to the regulation of production and health traits in cattle. Anim Genet 2014; 45 Suppl 1:3-14. [PMID: 24984755 DOI: 10.1111/age.12140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way.
Collapse
Affiliation(s)
- Rachael Doherty
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland; Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
10
|
Turgeon N, Gagné JM, Blais M, Gendron FP, Boudreau F, Asselin C. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G594-605. [PMID: 24525021 DOI: 10.1152/ajpgi.00393.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from dextran sulfate sodium (DSS)-induced murine colitis. Although tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal disease activity index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability, and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation.
Collapse
Affiliation(s)
- Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Inflammatory bowel disease includes ulcerative colitis and Crohn's disease, which are both inflammatory disorders of the gastrointestinal tract. Both types of inflammatory bowel disease have a complex etiology, resulting from a genetically determined susceptibility interacting with environmental factors, including the diet and gut microbiota. Genome Wide Association Studies have implicated more than 160 single-nucleotide polymorphisms in disease susceptibility. Consideration of the different pathways suggested to be involved implies that specific dietary interventions are likely to be appropriate, dependent upon the nature of the genes involved. Epigenetics and the gut microbiota are also responsive to dietary interventions. Nutrigenetics may lead to personalized nutrition for disease prevention and treatment, while nutrigenomics may help to understand the nature of the disease and individual response to nutrients.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand and Nutrigenomics New Zealand, Auckland, New Zealand.
| |
Collapse
|
12
|
Venturelli S, Berger A, Böcker A, Busch C, Weiland T, Noor S, Leischner C, Schleicher S, Mayer M, Weiss TS, Bischoff SC, Lauer UM, Bitzer M. Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One 2013; 8:e73097. [PMID: 24023672 PMCID: PMC3758278 DOI: 10.1371/journal.pone.0073097] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/18/2013] [Indexed: 01/13/2023] Open
Abstract
The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead structure for chemical optimization of bioavailability, pharmacology or HDAC inhibition.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Alexander Berger
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | | | - Christian Busch
- Section of Dermato-Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Timo Weiland
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Seema Noor
- Section of Dermato-Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Sabine Schleicher
- University Children's Hospital, Department of Hematology/Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mascha Mayer
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Thomas S. Weiss
- Center for Liver Cell Research, Department of Pediatrics and Adolescent Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Stephan C. Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Liu Y, Chakravarty S, Dey M. Phenethylisothiocyanate alters site- and promoter-specific histone tail modifications in cancer cells. PLoS One 2013; 8:e64535. [PMID: 23724058 PMCID: PMC3665791 DOI: 10.1371/journal.pone.0064535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/16/2013] [Indexed: 01/05/2023] Open
Abstract
Site-specific histone modifications are important epigenetic regulators of gene expression. As deregulation of genes often results in complex disorders, corrective modulation of site-specific histone marks could be a powerful therapeutic or disease-preventive strategy. However, such modulation by dietary compounds and the resulting impact on disease risk remain relatively unexplored. Here we examined phenethylisothiocyanate (PEITC), a common dietary compound derived from cruciferous vegetables with known chemopreventive properties under experimental conditions, as a possible modulator of histone modifications in human colon cancer cells. The present study reports novel, dynamic, site-specific chemical changes to histone H3 in a gene-promoter-specific manner, associated with PEITC exposure in human colon tumor-derived SW480 epithelial cells. In addition, PEITC attenuated cell proliferation in a concentration- and time-dependent manner, likely mediated by caspase-dependent apoptotic signalling. The effects of PEITC on histone modifications and gene expression changes were achieved at low, non-cytotoxic concentrations, in contrast to the higher concentrations necessary to halt cancer cell proliferation. Increased understanding of specific epigenetic alterations by dietary compounds may provide improved chemopreventive strategies for reducing the healthcare burden of cancer and other human diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Suvobrata Chakravarty
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Moul Dey
- Department of Health & Nutritional Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| |
Collapse
|
14
|
Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C, Gomez-Cabrera MC, Pallardo FV, Lippi G. Physical exercise as an epigenetic modulator: Eustress, the "positive stress" as an effector of gene expression. J Strength Cond Res 2013; 26:3469-72. [PMID: 22561977 DOI: 10.1519/jsc.0b013e31825bb594] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physical exercise positively influences epigenetic mechanisms and improves health. Several issues remain unclear concerning the links between physical exercise and epigenetics. There is growing concern about the negative influence of excessive and persistent physical exercise on health. How an individual physically adapts to the prevailing environmental conditions might influence epigenetic mechanisms and modulate gene expression. In this article, we put forward the idea that physical exercise, especially long-term repetitive strenuous exercise, positively affects health, reduces the aging process, and decreases the incidence of cancer through induced stress and epigenetic mechanisms. We propose herein that stress may stimulate genetic adaptations through epigenetics that, in turn, modulate the link between the environment, human lifestyle factors, and genes.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weiland T, Noor S, Leischner C, Weiss TS, Lauer UM, Bischoff SC, Bitzer M. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 2012; 24:977-85. [PMID: 23159065 DOI: 10.1016/j.jnutbio.2012.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/29/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
Kaempferol is a natural polyphenol belonging to the group of flavonoids. Different biological functions like inhibition of oxidative stress in plants or animal cells and apoptosis induction have been directly associated with kaempferol. The underlying mechanisms are only partially understood. Here we report for the first time that kaempferol has a distinct epigenetic activity by inhibition of histone deacetylases (HDACs). In silico docking analysis revealed that it fits into the binding pocket of HDAC2, 4, 7 or 8 and thereby binds to the zinc ion of the catalytic center. Further in vitro profiling of all conserved human HDACs of class I, II and IV showed that kaempferol inhibited all tested HDACs. In clinical oncology, HDAC inhibitors are currently under investigation as new anticancer compounds. Therefore, we studied the effect of kaempferol on human-derived hepatoma cell lines HepG2 and Hep3B as well as on HCT-116 colon cancer cells and found that it induces hyperacetylation of histone complex H3. Furthermore, kaempferol mediated a prominent reduction of cell viability and proliferation rate. Interestingly, toxicity assays revealed signs of relevant cellular toxicity in primary human hepatocytes only starting at 50 μM as well as in an in vivo chicken embryotoxicity assay at 200 μM. In conclusion, the identification of a novel broad inhibitory capacity of the natural compound kaempferol for human-derived HDAC enzymes opens up the perspective for clinical application in both tumor prevention and therapy. Moreover, kaempferol may serve as a novel lead structure for chemical optimization of pharmacokinetics, pharmacology or inhibitory activities.
Collapse
Affiliation(s)
- Alexander Berger
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|