1
|
Niharika, Roy A, Mishra J, Chakraborty S, Singh SP, Patra SK. Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:241-260. [PMID: 37019595 DOI: 10.1016/bs.pmbts.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cells of multicellular organisms are genetically homogeneous but heterogenous in structure and function by virtue of differential gene expression. During embryonic development, differential gene expression by modification of chromatin (DNA and histone complex) regulates the developmental proceedings before and after the germ layers are formed. Post-replicative DNA modification, where the fifth carbon atom of the cytosine gets methylated (hereafter, DNA methylation), does not incorporate mutations within the DNA. In the past few years, a boom has been observed in the field of research related to various epigenetic regulation models, which includes DNA methylation, post-translational modification of histone tails, control of chromatin structure by non-coding RNAs, and remodeling of nucleosome. Epigenetic effects like DNA methylation or histone modification play a cardinal role in development but also be able to arise stochastically, as observed during aging, in tumor development and cancer progression. Over the past few decades, researchers allured toward the involvement of pluripotency inducer genes in cancer progression and apparent for prostate cancer (PCa); also, PCa is the most diagnosed tumor worldwide and comes to the second position in causing mortality in men. The anomalous articulation of pluripotency-inducing transcription factor; SRY-related HMG box-containing transcription factor-2 (SOX2), Octamer-binding transcription factor 4 (OCT4) or POU domain, class 5, transcription factor 1 (POU5F1), and NANOG have been reported in different cancers which includes breast cancer, tongue cancer, and lung cancer, etc. Although there is a variety in gene expression signatures demonstrated by cancer cells, the epigenetic mode of regulation at the pluripotency-associated genes in PCa has been recently explored. This chapter focuses on the epigenetic control of NANOG and SOX2 genes in human PCa and the precise role thereof executed by the two transcription factors.
Collapse
|
2
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang Y, Guo J, Cai E, Cai J, Wen Y, Lu S, Li X, Han Q, Jiang J, Li T, Wang Z. HOTAIR maintains the stemness of ovarian cancer stem cells via the miR-206/TBX3 axis. Exp Cell Res 2020; 395:112218. [DOI: 10.1016/j.yexcr.2020.112218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 02/09/2023]
|
4
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
LY75 Suppression in Mesenchymal Epithelial Ovarian Cancer Cells Generates a Stable Hybrid EOC Cellular Phenotype, Associated with Enhanced Tumor Initiation, Spreading and Resistance to Treatment in Orthotopic Xenograft Mouse Model. Int J Mol Sci 2020; 21:ijms21144992. [PMID: 32679765 PMCID: PMC7404269 DOI: 10.3390/ijms21144992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
The implications of the epithelial-mesenchymal transition (EMT) mechanisms in the initiation and progression of epithelial ovarian cancer (EOC) remain poorly understood. We have previously shown that suppression of the antigen receptor LY75 directs mesenchymal-epithelial transition (MET) in EOC cell lines with the mesenchymal phenotype, associated with the loss of Wnt/β-catenin signaling activity. In the present study, we used the LY75-mediated modulation of EMT in EOC cells as a model in order to investigate in vivo the specific role of EOC cells, with an epithelial (E), mesenchymal (M) or mixed epithelial plus mesenchymal (E+M) phenotype, in EOC initiation, dissemination and treatment response, following intra-bursal (IB) injections of SKOV3-M (control), SKOV3-E (Ly75KD) and a mixed population of SKOV3-E+M cells, into severe combined immunodeficiency (SCID) mice. We found that the IB-injected SKOV3-E cells displayed considerably higher metastatic potential and resistance to treatment as compared to the SKOV3-M cells, due to the acquisition of a Ly75KD-mediated hybrid phenotype and stemness characteristics. We also confirmed in vivo that the LY75 depletion directs suppression of the Wnt/β-catenin pathway in EOC cells, suggestive of a protective role of this pathway in EOC etiology. Moreover, our data raise concerns regarding the use of LY75-targeted vaccines for dendritic-cell EOC immunotherapy, due to the possible occurrence of undesirable side effects.
Collapse
|
6
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Grubelnik G, Boštjančič E, Pavlič A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood) 2020; 245:456-464. [PMID: 32041418 PMCID: PMC7082888 DOI: 10.1177/1535370220905560] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NANOG is an important stem cell transcription factor involved in human development and cancerogenesis. Its expression is complex and regulated on different levels. Moreover, NANOG protein might regulate hundreds of target genes at the same time. NANOG is crucial for preimplantation development phase and progressively decreases during embryonic stem cells differentiation, thus regulating embryonic and fetal development. Postnatally, NANOG is undetectable or expressed in very low amounts in the majority of human tissues. NANOG re-expression can be detected during cancerogenesis, already in precancerous lesions, with increasing levels of NANOG in high grade dysplasia. NANOG is believed to enable cancer cells to obtain stem-cell like properties, which are believed to be the source of expanding growth, tumor maintenance, metastasis formation, and tumor relapse. High NANOG expression in cancer is frequently associated with advanced stage, poor differentiation, worse overall survival, and resistance to treatment, and is therefore a promising prognostic and predictive marker. We summarize the current knowledge on the role of NANOG in cancerogenesis and development, including our own experience. We provide a critical overview of NANOG as a prognostic and diagnostic factor, including problems regarding its regulation and detection.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marina Kos
- Clinical Hospital Center Sestre Milosrdnice and University of Zagreb Medical School, Zagreb 10 000, Croatia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
8
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
9
|
Mahalaxmi I, Devi SM, Kaavya J, Arul N, Balachandar V, Santhy KS. New insight into NANOG: A novel therapeutic target for ovarian cancer (OC). Eur J Pharmacol 2019; 852:51-57. [PMID: 30831081 DOI: 10.1016/j.ejphar.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer incidence, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases especially Ovarian cancer (OC). It has been suggested that drug resistance and disease relapse are the main causes for the aggressive nature of OC. There is an immediate need to develop novel strategies to understand the mechanism to overcome chemoresistance. Nanog has been found to regulate stemness like cells inside the cancer cells that are termed as Cancer Stem Cells (CSCs). These cells show high self-renewal capacity with a peculiar potential in tumour initiation, heterogeneity, progression, metastasis, recurrence, radiotherapy and multi drug resistance. Recent studies have demonstrated that Nanog, a key transcription factor for pluripotency, has been playing a major role in chemoresistance. In this review, we address the functions of Nanog in both normal and cancer cells, how Nanog is involved in OC tumorigenesis and chemoresistance. This review also highlights the methods that are used for targeting Nanog as a remedy for treating OC. Thus, through this review, we predict that these concepts will open new avenues of research in ovarian cancer stem cells, and would propose Nanog as a target to improve the outcome of chemotherapy.
Collapse
Affiliation(s)
- Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India.
| | | | - Jayaramayya Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India
| | - Narayanasamy Arul
- Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Kumaran Sivanandan Santhy
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India
| |
Collapse
|
10
|
Chen H, Liu J, Wang H, Cheng Q, Zhou C, Chen X, Ye F. Inhibition of RNA-Binding Protein Musashi-1 Suppresses Malignant Properties and Reverses Paclitaxel Resistance in Ovarian Carcinoma. J Cancer 2019; 10:1580-1592. [PMID: 31031868 PMCID: PMC6485236 DOI: 10.7150/jca.27352] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
Background and Aims: Ovarian carcinoma (OC) is one of the most lethal malignant tumors with a high reoccurrence and chemoresistance. The key mechanism relationship with chemoresistance in ovarian carcinoma is still unclear. The existence of cancer stem cells involves in chemoresistance and reoccurrence in OC. The objective of this study was to investigate the expression, suppression of malignant properties and reversal of paclitaxel resistance inhibiting RNA-binding protein Musashi-1 with siRNA in ovarian cancer cells. Methods: The expression of MSI-1 was analyzed in 39 normal ovarian epithelia tissues, 92 serous cystadenomas, 68 borderline serous cystadenomas, and 97 serous cystadenocarcinomas by immunohistochemistry. pLKO.1-MSI-1-siRNA expression vector was transfected into ovarian carcinoma cell line A2780 and its paclitaxel-resistant cell subline A2780/Taxol. The roles of MSI-1 in proliferation, apoptosis, migration and invasion were explored by cell proliferation analysis, Caspase 3 activity assay, wound healing assay, migration and matrigel invasion assay, respectively. Western Blotting and Real-time quantitative PCR were conducted to detect the expression of MSI-1 and the ERK signaling pathway. Reversal of paclitaxel resistance assay was used to evaluate the role of MSI-1 in paclitaxel resistance of OC cells. Finally, therapeutic effects of MSI-1 inhibition were investigated the xenogratfs of SCID mice in vivo of the paclitacel-resistant. Results: MSI-1 is overexpressed and associated with an unfavorable prognosis in OC patients. Knockdown of MSI-1 by small interfering RNA (siRNA) inhibits proliferation, promotes apoptosis, and reduces migration and invasion of cancer cells. Moreover, MSI-1 expression inhibition reverses paclitaxel-resistance in OC cells. We further display that MSI-1 effectively protects OC cells from paclitaxel-induced apoptosis by increasing the expression of p-Bcl-2 through ERK signaling pathway activation. In vivo, MSI-1 siRNA clearly showed a strong effect on tumor growth inhibition and paclitaxel-resistance reversal. Conclusions: These findings suggest that MSI-1 overexpression is associated with the prognosis of OC patients, and knockdown of MSI-1 can suppress malignant properties and reverse paclitaxel-resistance in OC cells. MSI-1 maybe act as a potential prognostic indicator and a therapeutic target in OC.
Collapse
Affiliation(s)
- Huaizeng Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Jia Liu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Hanzhi Wang
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Qi Cheng
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Xiaojing Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Feng Ye
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| |
Collapse
|
11
|
Xu DD, Wang Y, Zhou PJ, Qin SR, Zhang R, Zhang Y, Xue X, Wang J, Wang X, Chen HC, Wang X, Pan YW, Zhang L, Yan HZ, Liu QY, Liu Z, Chen SH, Chen HY, Wang YF. The IGF2/IGF1R/Nanog Signaling Pathway Regulates the Proliferation of Acute Myeloid Leukemia Stem Cells. Front Pharmacol 2018; 9:687. [PMID: 30013477 PMCID: PMC6036281 DOI: 10.3389/fphar.2018.00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia is an aggressive disease characterized by clonal proliferation and differentiation into immature hematopoietic cells of dysfunctional myeloid precursors. Accumulating evidence shows that CD34+CD38- leukemia stem cells (LSCs) are responsible for drug resistance, metastasis, and relapse of leukemia. In this study, we found that Nanog, a transcription factor in stem cells, is significantly overexpressed in CD34+ populations from patients with acute myeloid leukemia and in LSCs from leukemia cell lines. Our data demonstrate that the knockdown of Nanog inhibited proliferation and induced cell cycle arrest and cell apoptosis. Moreover, Nanog silencing suppressed the leukemogenesis of LSCs in mice. In addition, we found that these functions of Nanog were regulated by the insulin-like growth factor receptor (IGF1R) signaling pathway. Nanog overexpression rescued the colony formation ability of LSCs treated with picropodophyllin (PPP), an IGF1R inhibitor. By contrast, knockdown of Nanog abolished the effects of IGF2 on the colony formation ability of these LSCs. These findings suggest that the IGF2/IGF1R/Nanog signaling pathway plays a critical role in LSC proliferation.
Collapse
Affiliation(s)
- Dan-Dan Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Ying Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu-Rong Qin
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Xue Xue
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jianping Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xia Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hong-Ce Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu-Wei Pan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Li Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hai-Zhao Yan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Su-Hong Chen
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hong-Yuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Cancer Stem Cell-Related Marker NANOG Expression in Ovarian Serous Tumors: A Clinicopathological Study of 159 Cases. Int J Gynecol Cancer 2018; 27:2006-2013. [PMID: 28906309 DOI: 10.1097/igc.0000000000001105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The objectives of this study were to assess cancer stem cell-related marker NANOG expression in ovarian serous tumors and to evaluate its prognostic significance in relation to ovarian serous carcinoma. METHODS NANOG protein expression was immunohistochemically evaluated in the ovarian tissue microarrays of 20 patients with benign ovarian serous tumors, 30 patients with borderline ovarian serous tumors, and 109 patients with ovarian serous carcinomas, from which 106 were of high-grade and 3 of low-grade morphology Immunohistochemical reaction was scored according to signal intensity and the percentage of positive cells in tumor samples. Pursuant to our summation of signal intensity and positive cell occurrence, we divided our samples into 4 groups: NANOG-negative, NANOG-slightly positive, NANOG-moderately positive, and NANOG-strongly positive group. Complete clinical data were obtained for the ovarian serous carcinoma group, and correlation between clinical data and NANOG expression was analyzed. RESULTS A specific brown nuclear, or cytoplasmic reaction, was considered a positive NANOG staining. In terms of the ovarian serous carcinoma group, 69.7% were NANOG positive, 22.9% slightly positive, 22.9% moderately positive, and 23.9% strongly positive. All NANOG-positive cases were of high-grade morphology. Benign and borderline tumors and low-grade serous carcinomas were NANOG negative. There was no significant correlation between NANOG expression and clinical parameters in terms of the ovarian serous carcinoma group. CONCLUSIONS Positive NANOG expression is significantly associated with high-grade ovarian serous carcinoma and is absent in benign, borderline, and low-grade serous lesions. In our study, there was no correlation between NANOG expression and clinical parameters, including its use in the prognosis of ovarian serous carcinoma.
Collapse
|
13
|
Yamamoto CM, Oakes ML, Murakami T, Muto MG, Berkowitz RS, Ng SW. Comparison of benign peritoneal fluid- and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res 2018; 11:20. [PMID: 29499737 PMCID: PMC5834862 DOI: 10.1186/s13048-018-0391-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are considered as a new class of resources for potential biomarkers. We analyzed expression of specific mRNA and miRNA in EVs derived from ovarian cancer ascites and the ideal controls, peritoneal fluids from benign patients for potential early detection and prognostic biomarkers. METHODS Fluids were collected from subjects with benign cysts or endometrioma (n = 10), or low/high grade serous ovarian carcinoma (n = 8). EV particles were captured using primarily ExoComplete filterplate or ultracentrifugation and analyzed by nanoparticle tracking analysis, ELISA, and scanning electron microscopy. EV RNAs extracted from two ascites and three peritoneal fluids were submitted for next-generation sequencing. The expression of 34 mRNA and 18 miRNAs in the EVs isolated from patient fluids and cell line media was determined using qPCR. RESULTS EVs isolated from patient samples had concentrations greater than 1010 EV particles/mL and 30% were EpCAM-positive based on ELISA. EV particle sizes averaged 113 ± 11.5 nm. The qPCR studies identified five mRNA (CA11, MEDAG, LAMA4, SPINT2, NANOG) and six miRNA (let-7b, miR23b, miR29a, miR30d, miR205, miR720) that were significantly differentially expressed between cancer ascites and peritoneal fluids. In addition, CA11 mRNA was decreased to 0.5-fold and SPINT2 and NANOG mRNA were significantly increased up to 100-fold in conditioned media of cancer cells compared to immortalized ovarian surface and fallopian tube epithelial cell lines, the hypothesized cells of origin for ovarian cancer development. CONCLUSIONS This study indicates that EV mRNA profiles can reflect the disease stage and may provide a potentially novel source for discovery of biomarkers in ovarian cancer.
Collapse
Affiliation(s)
- Cindy M. Yamamoto
- Hitachi Chemical Co. America, Ltd. R and D Center, 1003 Health Sciences Rd, Irvine, CA 92617 USA
| | - Melanie L. Oakes
- Hitachi Chemical Co. America, Ltd. R and D Center, 1003 Health Sciences Rd, Irvine, CA 92617 USA
| | - Taku Murakami
- Hitachi Chemical Co. America, Ltd. R and D Center, 1003 Health Sciences Rd, Irvine, CA 92617 USA
| | - Michael G. Muto
- Department of Obstetrics, Gynecology and Reproductive Biology, Gynecologic Oncology Division, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Ross S. Berkowitz
- Department of Obstetrics, Gynecology and Reproductive Biology, Gynecologic Oncology Division, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Shu-Wing Ng
- Department of Obstetrics, Gynecology and Reproductive Biology, Gynecologic Oncology Division, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Department of Obstetrics and Gynecology, Tuft Medical Center, 800 Washington Street, Boston, MA 02111 USA
| |
Collapse
|
14
|
Zhang H, Song H, Yuan R, Zhang X, Yu H, Zhao Y, Jiang T. Polyene phosphatidylcholine overcomes oxaliplatin resistance in human gastric cancer BGC823 cells. Biochem Biophys Res Commun 2018; 497:108-114. [PMID: 29421658 DOI: 10.1016/j.bbrc.2018.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/16/2022]
Abstract
Intrinsic or acquired resistance to oxaliplatin (L-OHP) is a major reason of treatment failure in gastric cancer and limits therapeutic success. Here we generated an oxaliplatin resistant gastric cancer cell line, BGC823/L-OHP, to investigate the effect of a hepatoprotective compound, polyene phosphatidylcholine (PPC), on conquest of oxaliplatin resistance. BGC823/L-OHP cells showed less sensitive to L-OHP directed growth inhibition than the parental BGC823 cells. PPC treatment significantly increased anti-proliferative activity of L-OHP on resistant cells and promoted L-OHP triggered apoptosis, indicating that drug resistance was overcome. Mechanistically, L-OHP incubation stimulated upregulation of an ABC family protein, ABCF2, and the expression was inhibited by PPC. Moreover, expression levels of the stemness factor Nanog and its regulator TLR4 were notably enhanced in BGC823/L-OHP cells and reduced by PPC treatment. To conclude, PPC can overcome oxaliplatin resistance in gastric cancer cells via promoting apoptosis, inhibiting ABCF2, as well via reducing cancer stem cell-like features. The combination therapeutic strategy could serve to increase oxaliplatin effectiveness in the clinic.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hao Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Ronghui Yuan
- School of Medicine, Qingdao University, Qingdao, China.
| | - Xianxiang Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hongsheng Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yuanyuan Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Park SW, Do HJ, Choi W, Song H, Chung HJ, Kim JH. NANOG gene expression is regulated by the ETS transcription factor ETV4 in human embryonic carcinoma NCCIT cells. Biochem Biophys Res Commun 2017; 487:532-538. [DOI: 10.1016/j.bbrc.2017.04.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/27/2023]
|
16
|
Tamaki T, Shimizu T, Niki M, Shimizu M, Nishizawa T, Nomura S. Immunohistochemical analysis of NANOG expression and epithelial-mesenchymal transition in pulmonary sarcomatoid carcinoma. Oncol Lett 2017; 13:3695-3702. [PMID: 28529586 DOI: 10.3892/ol.2017.5864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/31/2017] [Indexed: 01/23/2023] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSCs) are defined as a group of poorly differentiated non-small cell lung cancers that demonstrate sarcoma-like differentiation. The mechanism of mesenchymal differentiation in PSC is epithelial-mesenchymal transition (EMT). The expression of homeobox protein NANOG (NANOG), which regulates the pluripotency of embryonic stem cells, is associated with the EMT process. Therefore, the present study aimed to assess the expression level of NANOG and the status of the EMT process in PSC. The data of patients with PSC were retrospectively reviewed and immunohistochemical analyses were performed on patient samples to examine the expression of NANOG and EMT-associated proteins. The comparator group included randomly selected patients with matched clinicopathological characteristics who had pulmonary adenocarcinoma (PA). In the present study, 12 patients with PSC (4 females and 8 males) were enrolled; their median age was 65 years (range, 36-79 years), and the number of patients with stage IB, IIB, IIIA, IIIB and IV disease were 1, 1, 1, 1 and 8, respectively. The immunoreactive score (IRS) for E-cadherin was significantly lower in the PSC group compared with the PA group (P<0.0001), whereas the IRS for vimentin was significantly higher in the PSC group compared with the PA group (P<0.0001). However, the IRS for NANOG was significantly decreased in the PSC group compared with the PA group (P<0.0001), which suggests that NANOG does not serve an essential role in EMT in PSC. In addition, the overall survival of patients with PSC was significantly lower compared with that of patients with PA (median survival time, 7.0 vs. 35.6 months, respectively; P=0.0256). However, no significant difference was observed in the OS of patients who expressed low compared with high levels of NANOG (P=0.4416). In conclusion, it was clearly demonstrated that cytoplasmic NANOG expression was significantly lower in PSC compared with PA, and that the EMT process in PSC was accelerated, compared with that in PA.
Collapse
Affiliation(s)
- Takeshi Tamaki
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | - Toshiki Shimizu
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | - Maiko Niki
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | - Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | - Tohru Nishizawa
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Osaka 570-8507, Japan
| |
Collapse
|
17
|
Kenda Suster N, Smrkolj S, Virant-Klun I. Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. J Ovarian Res 2017; 10:11. [PMID: 28231820 PMCID: PMC5324304 DOI: 10.1186/s13048-017-0306-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of aggressive character of ovarian cancer and unsuccessful treatment of women with this deadly disease has been recently explained by the theory of cancer stem cells (CSCs). It has been reported that ovarian carcinogenesis and progression of disease is associated with epithelial-mesenchymal transition (EMT). EMT, a physiological cell process during embryonic development and later in life during regeneration, could, when induced in pathological condition, generate CSCs-like cells. Until now EMT in the ovarian tissue has been mainly studied in cell cultures in vitro. The aim of this study was to focus on in situ morphological changes in the ovarian surface epithelium of tumor tissue in women with epithelial ovarian cancer after we applied the antibodies for markers of EMT vimentin and pluripotency-related markers NANOG, SOX2 and SSEA-4. Methods We analyzed ovarian tissue sections of 20 women with high grade serous ovarian carcinoma. After eosin and hematoxylin staining, used in standard practice, immunohistochemistry was performed for vimentin and markers of pluripotency: NANOG, SSEA-4 and SOX2. We focused on the ovarian surface epithelium in order to observe morphological changes in tumor tissue. Results Among epithelial cells of the ovarian surface epithelium in women with serous ovarian carcinoma we observed a population of small NANOG-positive cells with diameters of up to 5 μm and nuclei, which filled almost the entire cell volumes. These small NANOG-positive cells were in some cases concentrated in the regions with morphologically changed epithelial cells. In these regions, a population of bigger round cells with diameters of 10–15 μm with large nuclei, and positively stained for vimentin, NANOG and other markers of pluripotnecy, were released from the surface epithelium. These cells are proposed as CSCs, and possibly originate from small stem cells among epithelial cells. They formed typical cell clusters, invaded the tissue by changing their round shape into a mesenchymal-like phenotype, and contributed to the manifestation of ovarian cancer. Conclusions Our findings show morphological changes in the ovarian surface epithelium in tumor slides of high grade serous ovarian carcinoma and provide a new population of putative CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0306-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Liu S, Sun J, Cai B, Xi X, Yang L, Zhang Z, Feng Y, Sun Y. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumour Biol 2016; 37:9671-80. [PMID: 26801672 DOI: 10.1007/s13277-016-4848-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
NANOG is a key transcription factor that is overexpressed and plays an important role in various cancers. Its overexpression is associated with highly tumorigenic, drug-resistant, and poor prognosis. However, the underlying mechanism of action of NANOG in ovarian cancer remains unclear. Epithelial-mesenchymal transition (EMT), which is a critical process in cancer invasion and metastasis, is also associated with drug resistance. We determined whether NANOG is associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cells (HEY and SKOV3) compared with normal epithelial ovarian cells (Moody). Low expression of NANOG increased the expression of E-cadherin and decreased the expression of vimentin, β-catenin, and Snail. Furthermore, the cell migration and invasion abilities were decreased. The multidrug resistance genes MDR-1 and GST-π were also downregulated when NANOG was lowly expressed. The cells that were transfected with the si-NANOG plasmid were more sensitive to cisplatin compared with the cells that were transfected with empty vector. The data demonstrated that Stat3 was correlated with NANOG-mediated EMT and drug resistance. The silencing of Stat3 expression abrogated NANOG-mediated EMT changes and increased the sensitivity of the cells to chemotherapy. These results suggest that NANOG mediates EMT and drug resistance through activation of the Stat3 pathway in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Jing Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Bin Cai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Liu Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 201600.
| |
Collapse
|
19
|
Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells 2015; 33:2381-90. [PMID: 25821200 DOI: 10.1002/stem.2007] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/08/2015] [Indexed: 12/22/2022]
Abstract
The homeobox domain transcription factor NANOG, a key regulator of embryonic development and cellular reprogramming, has been reported to be broadly expressed in human cancers. Functional studies have provided strong evidence that NANOG possesses protumorigenic attributes. In addition to promoting self-renewal and long-term proliferative potential of stem-like cancer cells, NANOG-mediated oncogenic reprogramming may underlie clinical manifestations of malignant disease. In this review, we examine the molecular origin, expression, biological activities, and mechanisms of action of NANOG in various malignancies. We also consider clinical implications such as correlations between NANOG expression and cancer prognosis and/or response to therapy. We surmise that NANOG potentiates the molecular circuitry of tumorigenesis, and thus may represent a novel therapeutic target or biomarker for the diagnosis, prognosis, and treatment outcome of cancer. Finally, we present critical pending questions relating NANOG to cancer stem cells and tumor development.
Collapse
Affiliation(s)
- Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Tao Yang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junchen Wang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Sun AX, Liu CJ, Sun ZQ, Wei Z. NANOG: A promising target for digestive malignant tumors. World J Gastroenterol 2014; 20:13071-13078. [PMID: 25278701 PMCID: PMC4177486 DOI: 10.3748/wjg.v20.i36.13071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/03/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
NANOG has been extensively researched since its discovery by Chambers et al. NANOG is a homeodomain transcription factor and an essential regulator of embryonic stem cell (ESC) self-renewal, which inhibits differentiation. Cancer stem cells (CSCs) are a small subset of cells that are thought to drive uncontrolled tumor growth; CSCs retain the tumor capabilities of self-renewal and propagation. The existence of CSCs was recently shown by direct experimental evidence. NANOG is expressed in CSCs and ESCs, although it remains unclear whether ESCs and CSCs share similar mechanisms in the regulation of physical and biological processes. Several studies suggest that the expression level of NANOG is high in cancer tissues and low or absent in normal tissues. High levels of NANOG expression are associated with advanced stages of cancer and a poor prognosis, indicating that it plays a vital role in tumor transformation, tumorigenesis, and tumor metastasis. NANOG is part of a complex regulatory network that controls cell fate determination, proliferation, and apoptosis. NANOG cooperates with other regulators, such as microflora, transcription factors, and kinases, in cancer cells. NANOG might have a promising future in anti-cancer and other therapeutic treatments, which could improve human health.
Collapse
|
21
|
Lin Y, Xiong F, Zhou Y, Wu X, Liu F, Xue S, Chen H. NANOG upregulates c-Jun oncogene expression through binding the c-Jun promoter. Mol Carcinog 2014; 54:1407-16. [PMID: 25213759 DOI: 10.1002/mc.22219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 01/06/2023]
Abstract
NANOG plays important roles in neoplastic processes. However, the molecular mechanism of NANOG in tumorigenesis remains to be elucidated. In this report, we demonstrated that forced expression of NANOG in 293 cells and cancer cells led to increased c-Jun expression, whereas downregulation of endogenous NANOG significantly reduced c-Jun expression in cancer cells. Dual luciferase reporter assays demonstrated that NANOG binds the c-Jun proximal promoter and transactivates the c-Jun gene. An ATTA consensus motif between the -160 and -268 region of the c-Jun promoter was identified as the NANOG-responsive element. Electromobility shift assay and chromatin immunoprecipitation results confirmed the direct binding of NANOG protein to the c-Jun promoter in vitro and in vivo. NANOG directly bound c-Jun protein as shown by GST pulldown and immunoprecipitation assays. Taking these findings together, we conclude that c-Jun is a direct target gene of NANOG and that c-Jun protein may be a novel co-activator of NANOG in cancer cells. We suggest the possibility that NANOG may play a significant role in carcinogenesis via its activation of c-Jun expression.
Collapse
Affiliation(s)
- Yanli Lin
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Fuyin Xiong
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yanrong Zhou
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaojie Wu
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Fang Liu
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Shiwei Xue
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hongxing Chen
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
22
|
Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci 2014; 15:14935-48. [PMID: 25158233 PMCID: PMC4200775 DOI: 10.3390/ijms150914935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
Chemo-resistance is the major cause of high mortality in head and neck squamous cell carcinomas (HNSCC) in which HNSCC-derived cancer stem cells (CSCs) may be involved. Previously, we enriched a subpopulation of HNSCC-derived spheroid cells (SC) (HNSCC-SC) and identified Nanog as a CSCs marker. The aim of this study was to determine the role of Nanog in the chemosensitivity of HNSCC. The functional and clinicopathological studies of Nanog were investigated in HNSCC cells and specimens. Nanog expression was increased in HNSCC cell lines as compared to a normal oral epithelial cell line. Nanog upregulation in clinical tissues from HNSCC patients with recurrent and metastatic specimens relative to the mRNA levels in the samples from normal or primary tissues were examined. Targeting Nanog in HNSCC-SC significantly inhibited their tumorigenic and CSCs-like abilities and effectively increased the sensitivity of HNSCC-SC to chemotherapeutic drug cisplatin treatment. Targeting Nanog in HNSCC-SC showed a synergistic therapeutic effect with cisplatin. Our results suggest that targeting Nanog may have promising therapeutic potential for HNSCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanog Homeobox Protein
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Chuan-En Huang
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Lo-Lin Tsai
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| |
Collapse
|
23
|
Zhang K, Fowler M, Glass J, Yin H. Activated 5'flanking region of NANOGP8 in a self-renewal environment is associated with increased sphere formation and tumor growth of prostate cancer cells. Prostate 2014; 74:381-94. [PMID: 24318967 DOI: 10.1002/pros.22759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/18/2013] [Indexed: 02/03/2023]
Abstract
INTRODUCTION NANOGP8 is a retrogene which encodes a full-length protein similar to the NANOG1 gene. The expression of NANOGP8 has been documented in several cancers and is related to cell proliferation and tumor development. However, the regulation of NANOGP8 expression has not been investigated. Therefore, the role of NANOGP8 in cell proliferation has not been completely understood. METHODS We evaluate the expression of NANOG1 and NANOGP8 in prostate cancer cell lines and primary cultures of prostate tissues. We investigate clonogenicity, sphere formation, and xenograft tumor growth of prostate cancer cells with an activated 5'flanking region of NANOGP8. We examine the role of NANOGP8 in cell cycle progression. RESULTS In the prostate cells the NANOG RNA was transcribed from NANOGP8 and not from NANOG1. Cells with the activated 5'flanking region of NANOGP8 exhibited enhanced clonogenicity, sphere formation, and xenograft tumor growth. The sphere culture and tumor initiation mouse mode promoted the activation of the 5'flanking region of NANOGP8. Forced expression of NANOGP8 increased the entry into the cell cycle. DISCUSSION In prostate cells NANOGP8 is a predominant molecule of NANOG. The activation of 5'flanking sequence of NANOGP8 could play a role in the regulation of the stem-like properties of cancer stem cells and prostate tumor initiation and development. The microenvironment favoring cancer stem cells could promote the activation of the 5'flanking region of NANOGP8.
Collapse
Affiliation(s)
- Kai Zhang
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana
| | | | | | | |
Collapse
|
24
|
Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther 2013; 6:1207-20. [PMID: 24043946 PMCID: PMC3772775 DOI: 10.2147/ott.s38114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer.
Collapse
Affiliation(s)
- Mong-Lien Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
25
|
Li L, Yu H, Wang X, Zeng J, Li D, Lu J, Wang C, Wang J, Wei J, Jiang M, Mo B. Expression of seven stem-cell-associated markers in human airway biopsy specimens obtained via fiberoptic bronchoscopy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:28. [PMID: 23683495 PMCID: PMC3689624 DOI: 10.1186/1756-9966-32-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Background Previous reports have suggested that malignant transformations originate from adult stem cells, and may thus express the stem-cell-associated markers. The purpose of this study is to investigate the differential expression and clinical significance of seven stem-cell-associated markers (Bmi1, CD133, CD44, Sox2, Nanog, OCT4 and Msi2) in lung cancer, providing new targets for the diagnosis and treatment of lung cancer. Methods In this study, we evaluated the differential expression of mRNA levels seven stem-cell-associated markers by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) from 112 human lung cancer and 18 non-cancer tissues obtained by bronchoscopy. We further verified the differential expression of these markers by immunohistochemistry in 50 lung cancer specimens, 30 benign inflammatory lesion tissues and 20 non-tumor adjacent lung tissues. Results With the exception of OCT4, other markers Bmi1, CD133, CD44, Sox2, Nanog and Msi2 mRNA and protein were abundantly expressed in lung cancer. Additionally, Nanog expression was highly upregulated in lung cancer tissues and rarely presented in non-cancerous lung tissues, the sensitivity and specificity of Nanog mRNA reached 63.4% and 66.7%, respectively. Nanog therefore possessed high diagnostic value, however, CD44, Bmi1 and CD133 showed poor diagnostic value in lung cancer. Conclusion Nanog may serve as a promising diagnostic marker of lung cancer and potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Laodong Li
- Division of Respiratory Diseases, Guilin Medical University Hospital, Guilin, Guangxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Amsterdam A, Raanan C, Schreiber L, Freyhan O, Fabrikant Y, Melzer E, Givol D. Differential localization of LGR5 and Nanog in clusters of colon cancer stem cells. Acta Histochem 2013; 115:320-9. [PMID: 23098761 DOI: 10.1016/j.acthis.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 12/19/2022]
Abstract
One paradigm of cancer development claims that cancer emerges at the niche of tissue stem cells and these cells continue to proliferate in the tumor as cancer stem cells. LGR5, a membrane receptor, was recently found to be a marker of normal colon stem cells in colon polyps and is also expressed in colon cancer stem cells. Nanog, an embryonic stem cell nuclear factor, is expressed in several embryonic tissues, but Nanog expression is not well documented in cancerous stem cells. Our aim was to examine whether both LGR5 and Nanog are expressed in the same clusters of colon stem cells or cancer stem cells, using immunocytochemistry with specific antibodies to each antigen. We analyzed this aspect using paraffin embedded tumor tissue sections obtained from 18 polyps and 36 colon cancer specimens at stages I-IV. Antibodies to LGR5 revealed membrane and cytoplasm immunostaining of scattered labeled cells in normal crypts, with no labeling of Nanog. However, in close proximity to the tumors, staining to LGR5 was much more intensive in the crypts, including that of the epithelial cells. In cancer tissue, positive LGR5 clusters of stem cells were observed mainly in poorly differentiated tumors and in only a few scattered cells in the highly differentiated tumors. In contrast, antibodies to Nanog mainly stained the growing edges of carcinoma cells, leaving the poorly differentiated tumor cells unlabeled, including the clustered stem cells that could be detected even by direct morphological examination. In polyp tissues, scattered labeled cells were immunostained with antibodies to Nanog and to a much lesser extent with antibodies to LGR5. We conclude that expression of LGR5 is probably specific to stem cells of poorly differentiated tumors, whereas Nanog is mainly expressed at the edges of highly differentiated tumors. However, some of the cell layers adjacent to the carcinoma cell layers that still remained undifferentiated, expressed mainly Nanog with only a few cells labeled with antibodies to LGR5. Considering the different sites and pattern of expression in the tumor, our data imply that targeting the clustered stem cells expressing LGR5 in poorly differentiated colon cancer may require different strategies than targeting the stem cells expressing Nanog in the highly differentiated tumors. Alternatively, combined application of specific inhibitory miRNAs to Nanog and to LGR5 expression may assist therapeutically.
Collapse
Affiliation(s)
- Abraham Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234, Herzl Street, Rehovot 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
27
|
Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis. PLoS One 2013; 8:e57799. [PMID: 23536770 PMCID: PMC3594231 DOI: 10.1371/journal.pone.0057799] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/29/2013] [Indexed: 01/04/2023] Open
Abstract
Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable in the clinical management or treatment of ovarian cancer.
Collapse
|
28
|
Meng F, Sun G, Zhong M, Yu Y, Brewer MA. Anticancer efficacy of cisplatin and trichostatin A or 5-aza-2'-deoxycytidine on ovarian cancer. Br J Cancer 2013; 108:579-86. [PMID: 23370212 PMCID: PMC3593556 DOI: 10.1038/bjc.2013.10] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To evaluate the anticancer efficacy of the combination of epigenetic modifiers and cisplatin in human ovarian cancer. METHODS The effect of trichostatin A (TSA) and 5-aza-2'-deoxycytidine alone or in combination with low-dose cisplatin was evaluated on human ovarian cancer cell lines in vitro. We measured drug interaction by MTS assay, migration by transwell assay, expression of epithelial to mesenchymal transition (EMT) markers (Twist, Snail, Slug, E-cadherin, and N-cadherin), pluripotency markers (Oct4, Sox2, and Nanog), and epigenetic markers (DNMT3A, LSD1 and H3K4me2, H3K4me3, H3K9me2, and H3K9me3) by western blot, and the impact on and characteristics of spheroid growth when exposed to these drugs. Mouse xenografts were used to evaluate the anticancer effect of sequential drug treatment. RESULTS Combination treatment had greater efficacy than single drugs and significantly suppressed cell viability, migration, and spheroid formation and growth. Sequential treatment of cisplatin (1 mg kg(-1)) followed by TSA (0.3 mg kg(-1)) significantly suppressed tumorigenicity of HEY xenografts through inhibition of EMT and decreased pluripotency of ovarian cancer cells. CONCLUSION Epigenetic modifiers potentiate the anticancer efficacy of low-dose cisplatin in ovarian cancer through regulation of EMT and pluripotency, and may provide a promising treatment for ovarian cancer patients.
Collapse
Affiliation(s)
- F Meng
- Division of Gynecologic Oncology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
29
|
Samardzija C, Quinn M, Findlay JK, Ahmed N. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary. J Ovarian Res 2012; 5:37. [PMID: 23171809 PMCID: PMC3536609 DOI: 10.1186/1757-2215-5-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 01/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed 'cancer initiating cells' or 'cancer stem cells (CSCs)' have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.
Collapse
Affiliation(s)
- Chantel Samardzija
- Women's Cancer Research Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | |
Collapse
|
30
|
Wintzell M, Hjerpe E, Åvall Lundqvist E, Shoshan M. Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 2012; 12:359. [PMID: 22901285 PMCID: PMC3517779 DOI: 10.1186/1471-2407-12-359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/31/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In ovarian cancer, massive intraperitoneal dissemination is due to exfoliated tumor cells in ascites. Tumor-initiating cells (TICs or cancer stem cells) and cells showing epithelial-mesenchymal-transition (EMT) are particularly implicated. Spontaneous spherical cell aggregates are sometimes observed, but although similar to those formed by TICs in vitro, their significance is unclear. METHODS Cells freshly isolated from malignant ascites were separated into sphere samples (S-type samples, n=9) and monolayer-forming single-cell suspensions (M-type, n=18). Using western blot, these were then compared for expression of protein markers of EMT, TIC, and of cancer-associated fibroblasts (CAFs). RESULTS S-type cells differed significantly from M-type by expressing high levels of E-cadherin and no or little vimentin, integrin-β3 or stem cell transcription factor Oct-4A. By contrast, M-type samples were enriched for CD44, Oct-4A and for CAF markers. Independently of M- and S-type, there was a strong correlation between TIC markers Nanog and EpCAM. The CAF marker α-SMA correlated with clinical stage IV. This is the first report on CAF markers in malignant ascites and on SUMOylation of Oct-4A in ovarian cancer. CONCLUSIONS In addition to demonstrating potentially high levels of TICs in ascites, the results suggest that the S-type population is the less tumorigenic one. Nanog(high)/EpCAM(high) samples represent a TIC subset which may be either M- or S-type, and which is separate from the CD44(high)/Oct-4A(high) subset observed only in M-type samples. This demonstrates a heterogeneity in TIC populations in vivo which has practical implications for TIC isolation based on cell sorting. The biological heterogeneity will need to be addressed in future therapeutical strategies.
Collapse
Affiliation(s)
- My Wintzell
- Department of Oncology-Pathology, Cancer Center Karolinska CCK R8:03 Karolinska Institutet, Stockholm S-171 76, Sweden.
| | | | | | | |
Collapse
|
31
|
Park SW, Do HJ, Huh SH, Sung B, Uhm SJ, Song H, Kim NH, Kim JH. Identification of a putative nuclear export signal motif in human NANOG homeobox domain. Biochem Biophys Res Commun 2012; 421:484-9. [PMID: 22516749 DOI: 10.1016/j.bbrc.2012.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ((125)MQELSNILNL(134)) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-Do, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for autologous cell therapies, but significant roadblocks remain to translating iPSCs to the bedside. For example, concerns about the presumed autologous transplantation potential of iPSCs have been raised by a recent paper demonstrating that iPSC-derived teratomas were rejected by syngeneic hosts. Additionally, the reprogramming process can alter genomic and epigenomic states, so a key goal at this point is to determine the clinical relevance of these changes and minimize those that prove to be deleterious. Finally, thus far few studies have examined the efficacy and tumorigenicity of iPSCs in clinically relevant transplantation scenarios, an essential requirement for the FDA. We discuss potential solutions to these hurdles to provide a roadmap for iPSCs to "jump the dish" and become useful therapies.
Collapse
Affiliation(s)
- Bonnie Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
33
|
Zhang Y, Wang Z, Yu J, Shi JZ, Wang C, Fu WH, Chen ZW, Yang J. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Lett 2012; 322:70-7. [PMID: 22343321 DOI: 10.1016/j.canlet.2012.02.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 12/14/2022]
Abstract
A variety of cancer stem-like cells (CSCs) have been shown to be responsible for cancer tumorigenicity, relapse and metastasis. Despite several reports demonstrating the presence of CSCs in human bladder cancer, their identities are still under debate, and few studies have examined their roles in cisplatin resistance and related tumor progression. In this study, a subpopulation of CSCs was enriched following cisplatin selection from the bladder cell line T24. The cisplatin-resistant T24 cells displayed a greater self-renewal capacity as demonstrated by higher levels of sphere formation and stem cell marker expression, contained a larger proportion of side population cells and exhibited higher tumorigenicity. They also possessed epithelial-mesenchymal transition characteristics. Furthermore, a strong correlation between the levels of Bmi1 and Nanog expression and the degree of malignancy of urothelial cell carcinomas tissues was observed. We provide the first direct evidence that CSC-like cells exist in the population of cisplatin-resistant bladder cancer cells and may play a role in the progression and drug resistance of bladder cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun 2011; 418:199-204. [PMID: 22079639 DOI: 10.1016/j.bbrc.2011.10.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 02/06/2023]
Abstract
Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.
Collapse
|
35
|
Ross AL, Leder DE, Weiss J, Izakovic J, Grichnik JM. Genomic instability in cultured stem cells: associated risks and underlying mechanisms. Regen Med 2011; 6:653-62. [DOI: 10.2217/rme.11.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cells, mesenchymal stem cells and induced pluripotent stem cells expanded in vitro exhibit genomic instability. Commonly reported abnormalities include aneuploidy, deletions and duplications (including regions also amplified in cancer). Genomic instability confers an increased risk of malignant transformation that may impact the safety of cultured stem cell transplantation. Possible mechanisms responsible for this genomic instability include DNA repair mechanism abnormalities, telomere crisis, mitotic spindle abnormalities and inappropriate induction of meiotic pathways. Prior to widespread use of these cells in regenerative medicine, it will be critical to gain an understanding of the mechanisms responsible for genomic instability to develop strategies to prevent the accrual of chromosomal defects during expansion in vitro.
Collapse
Affiliation(s)
- Andrew L Ross
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami FL 33136, USA; Department of Dermatology, Melanoma Program Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Room 912, BRB, 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel E Leder
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami FL 33136, USA; Department of Dermatology, Melanoma Program Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Room 912, BRB, 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan Weiss
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jan Izakovic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James M Grichnik
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami FL 33136, USA; Department of Dermatology, Melanoma Program Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Room 912, BRB, 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|