1
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Balini LC, Fernandes CA, Portela-Castro ALDB, Melo RFD, Zawadzki CH, Borin-Carvalho LA. Initial Steps of XY Sex Chromosome Differentiation in the Armored Catfish Hypostomus albopunctatus (Siluriformes: Loricariidae) Revealed by Heterochromatin Accumulation. Zebrafish 2024; 21:265-273. [PMID: 38386543 DOI: 10.1089/zeb.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
In fish species, heterochromatinization is one process that could trigger sex chromosome differentiation. The present article describes a nascent XX/XY sex chromosome system evidenced by heterochromatin accumulation and microsatellite (GATA)8 in Hypostomus albopunctatus from two populations of the Paraná River basin. The specimens of H. albopunctatus from the Campo and Bossi Rivers share the same karyotype. The species exhibits 74 chromosomes (8m+14sm +16st +36a, fundamental number = 112). The C-banding technique suggests male heterogamety in H. albopunctatus, where the Y-chromosome is morphologically like the X-chromosome but differs from it for having long arms that are entirely heterochromatic. Double fluorescence in situ hybridization (FISH) with 18S and 5S rDNA probes confirmed the Ag-nucleolus organizer region sites in a single pair for both populations, and minor rDNA clusters showed interpopulational variation. FISH with the microsatellite (GATA)8 probe showed a dispersed pattern in the karyotype, accumulating these sequences of sex chromosomes of both populations. FISH with microsatellite (CGC)10 probe showed interpopulational variation. The absence of differentiated sex chromosomes in H. albopunctatus is described previously, and a new variant is documented herein where XY chromosomes can be seen in an early stage of differentiation.
Collapse
Affiliation(s)
- Ligia Carla Balini
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Carlos Alexandre Fernandes
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
| | - Rafael Fernando de Melo
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Cláudio Henrique Zawadzki
- Limnology, Ichthyology and Aquaculture Research Nucleus (NUPELIA), Biological Sciences Center, State University of Maringá, Maringá, Paraná, Brazil
- Department of Biology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
3
|
Souza KL, Melo S, Peixoto MA, Travenzoli NM, Feio RN, Dergam JA. Repetitive DNA Mapping in Five Genera of Tree Frogs (Amphibia: Anura) from the Atlantic Forest: New Highlights on Genomic Organization in Hylidae. Cytogenet Genome Res 2024; 163:317-326. [PMID: 38368863 DOI: 10.1159/000537875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION The tribes Cophomantini, Scinaxini, and Dendropsophini are anurans that belong to Hylidae, with wide distribution in tropical and subtropical regions around the world. The taxonomy and systematics of this family remain in a state of ongoing revision. Previous cytogenetic analyses of genera Boana, Bokermannohyla, Ololygon, Scinax, and Dendropsophus described some karyotypic characters such as conventional staining, C-banding and NORs, and FISH with specific probes. METHODS This study describes for the first time the karyotypes of four species: Bokermannohyla ibitipoca, Ololygon luizotavioi, Dendropsophus bipunctatus, and Dendropsophus ruschii. Furthermore, we map CA(15) and CAT(10) microsatellite sites for the aforementioned species and six more species from the same genera for insight into the chromosomal evolution within the subfamily Hyalinae. RESULTS B. ibitipoca and O. luizotavioi had 2n = 24 and karyotypic formulas 18m + 4sm + 2st and 8m + 12sm + 4st, while D. bipunctatus and D. ruschii showed 2n = 30 and karyotypic formulas 12m + 12sm + 4st + 2t and 10m + 10sm + 6st + 4t, respectively. The diploid numbers and karyotypic formulas revealed here follow the previously reported trend for Hylidae, except B. ibitipoca has a particularity of eight metacentric chromosomes, more than what is commonly found in species of this genus. The microsatellites probes CA(15) and CAT(10) had markings accumulated in blocks in the centromeric, pericentromeric, and terminal regions that were more specific for some species, as well as markings scattered along the chromosomes. We present a comprehensive review table of current data on cytogenetics of these genera. CONCLUSION Our findings showed that the karyotypes of the hylids studied here majority fit the postulated conserved diploid number (2n = 24) and morphological chromosome patterns, while the mapping of the microsatellites enabled us to detect differences between species that share similar chromosomal morphologies.
Collapse
Affiliation(s)
- Késsia Leite Souza
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Silvana Melo
- Department of Structural and Functional Biology, Laboratory of Fish Biology and Genetics, Botucatu Institute of Biosciences, Paulista State University, Botucatu, Brazil
| | - Marco Antônio Peixoto
- Department of General Biology, Biometrics Laboratory, Federal University of Viçosa, Vicosa, Brazil
| | - Natália Martins Travenzoli
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Renato Neves Feio
- Department of Animal Biology, Museum of Zoology João Moojen (MZUFV), Federal University of Viçosa, Vicosa, Brazil
| | - Jorge Abdala Dergam
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| |
Collapse
|
4
|
Rasoarahona R, Wattanadilokchatkun P, Panthum T, Jaisamut K, Lisachov A, Thong T, Singchat W, Ahmad SF, Han K, Kraichak E, Muangmai N, Koga A, Duengkae P, Antunes A, Srikulnath K. MicrosatNavigator: exploring nonrandom distribution and lineage-specificity of microsatellite repeat motifs on vertebrate sex chromosomes across 186 whole genomes. Chromosome Res 2023; 31:29. [PMID: 37775555 DOI: 10.1007/s10577-023-09738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.
Collapse
Affiliation(s)
- Ryan Rasoarahona
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pish Wattanadilokchatkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kitipong Jaisamut
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixes, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007, Porto, Portugal
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok, 10900, Thailand.
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Khensuwan S, Supiwong W, Suwannapoom C, Buasriyot P, Jantarat S, Thongnetr W, Muanglen N, Kaewmad P, Saenjundaeng P, Seetapan K, Liehr T, Tanomtong A. A comparative cytogenetic study of Hypsibarbusmalcolmi and H.wetmorei (Cyprinidae, Poropuntiini). COMPARATIVE CYTOGENETICS 2023; 17:181-194. [PMID: 37794860 PMCID: PMC10547057 DOI: 10.3897/compcytogen.17.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Cyprininae are a highly diversified but demonstrably monophyletic lineage of cypriniform fishes. Here, the karyotype and chromosomal characteristics of Hypsibarbusmalcolmi (Smith, 1945) and H.wetmorei (Smith, 1931) were examined using conventional, nucleolus organizing regions (NORs) and molecular cytogenetic protocols. The diploid chromosome number (2n) of H.malcolmi was 50, the fundamental number (FN) was equal to 62, and the karyotype displayed 8m + 4sm + 38a with NORs located at the centromeric and telomeric positions of the short arms of chromosome pairs 1 and 2, respectively. 2n of H.wetmorei was 50, FN 78, karyotype 14m + 14sm + 22a with the NORs at the telomeric position of the short arm of chromosome pair 2. 2n and FN in males and females were identical. Fluorescence in situ hybridization using different microsatellite motifs as probes also showed substantial genomic divergence between both studied species. In H.wetmorei, (CAG)n and (CAC)n microsatellites accumulated in the telomeric regions of all chromosomes, while in H.malcolmi, they had scattered signals on all chromosomes. Besides, the (GAA)n microsatellites were distributed along all chromosomes of H.malcolmi, but there was a strong hybridization pattern in the centromeric region of a single pair in H.wetmorei. These cytogenomic difference across the genomes of these Hypsibarbus Rainboth, 1996 species are markers for specific evolutionary differentiation within these two species.
Collapse
Affiliation(s)
- Sudarat Khensuwan
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand
| | - Chatmongkon Suwannapoom
- Department of Fishery, School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand
| | - Phichaya Buasriyot
- Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Mueang Nonthaburi, Nonthaburi 11000, Thailand
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Weera Thongnetr
- Division of Biology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Nawarat Muanglen
- Department of Fisheries, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Puntivar Kaewmad
- Faculty of Science and Technology, Mahasarakham Rajabhat University, Muang, Maha Sarakham 44000, Thailand
| | - Pasakorn Saenjundaeng
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand
| | - Kriengkrai Seetapan
- Department of Fishery, School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand
| | - Thomas Liehr
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang District, Phayao Province, 56000 Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLoS One 2023; 18:e0285388. [PMID: 37310952 DOI: 10.1371/journal.pone.0285388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/22/2023] [Indexed: 06/15/2023] Open
Abstract
The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.
Collapse
Affiliation(s)
| | | | - Josiane Baccarin Traldi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| |
Collapse
|
7
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. Karyotypic variation of two populations of the small freshwater stingray Potamotrygon wallacei Carvalho, Rosa & Araújo 2016: A classical and molecular approach. PLoS One 2023; 18:e0278828. [PMID: 36662738 PMCID: PMC9858463 DOI: 10.1371/journal.pone.0278828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 01/21/2023] Open
Abstract
Potamotrygoninae comprises a group of Neotropical fishes with an ancient relationship with marine environments. In the last few years, 11 new Potamotrygon species were described, including Potamotrygon wallacei Carvalho, Araújo e Rosa 2016. Cytogenetic data about this species are limited to classical markers (Giemsa, C-Banding and Ag-NOR techniques), these studies highlighted a rare sexual chromosome system XX/X0 with males presenting 67 chromosomes and females 68 chromosomes. The classical analyses performed here reveled populational variation in the karyotype formula, as well as, in the heterochromatin regions. Besides the classical markers, our molecular experiments showed multiple sites for 18S rDNA sequence (including in the X chromosomes) and single sites for 5S rDNA sequence, we did not find interstitial telomeric sequences. In addition, (AC)15, (AG)15, and (CAC)15 microsatellites showed association with the several autosome pair, and the (GT)15 clutters were found in only one population. On the other hand, (GATA)4 sequence showed association with the sexual chromosomes X in all males and females analyzed. Our results showed that pericentric inversions, in addition to fusions, shaped the karyotype of P. wallacei once we found two populations with distinct karyotype formula and this could be a result of the past events recovered by our modeling experiments. Besides, here we described the association of 18S and (GATA)4 motifs with sexual chromosomes, which indicated that these sequences had a novel in the differentiation of sexual chromosomes in P. wallacei.
Collapse
Affiliation(s)
- Alex M. V. Ferreira
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Leandro Marajó
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| |
Collapse
|
8
|
Comparative molecular cytogenetics in five species of stingless bees (Hymenoptera, Apidae). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Glugoski L, Nogaroto V, Deon GA, Azambuja M, Moreira-Filho O, Vicari MR. Enriched tandemly repeats in chromosomal fusion points of Rineloricaria latirostris (Boulenger, 1900) (Siluriformes: Loricariidae). Genome 2022; 65:479-489. [PMID: 35939838 DOI: 10.1139/gen-2022-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences are scattered on the chromosomes, while A/G-rich microsatellites units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) are clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which also are enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposon, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may have facilitated chromosome fusion events in R. latirostris rather than work as a double-strand breakpoint site.
Collapse
Affiliation(s)
- Larissa Glugoski
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Viviane Nogaroto
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil;
| | - Geize Aparecida Deon
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Matheus Azambuja
- Universidade Federal do Paraná, Departamento de Genética, Curitiba, PR, Brazil;
| | - Orlando Moreira-Filho
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Sao Carlos, São Paulo, Brazil;
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil.,Universidade Federal do Paraná, Departamento de Genética, Curitiba, PR, Brazil;
| |
Collapse
|
10
|
Deon GA, Glugoski L, Sassi FDMC, Hatanaka T, Nogaroto V, Bertollo LAC, Liehr T, Al-Rikabi A, Moreira-Filho O, Cioffi MDB, Vicari MR. Chromosomal Rearrangements and Origin of the Multiple XX/XY 1Y 2 Sex Chromosome System in Harttia Species (Siluriformes: Loricariidae). Front Genet 2022; 13:877522. [PMID: 35386289 PMCID: PMC8977651 DOI: 10.3389/fgene.2022.877522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The Neotropical genus Harttia comprises species with extensive chromosomal remodeling and distinct sex chromosome systems (SCSs). So far, three different SCSs with male heterogamety have been characterized in the group. In some species, the presence of the XX/XY1Y2 SCS is associated with a decrease in diploid numbers and several chromosomal rearrangements, although a direct relation to sex chromosome differentiation has not been shown yet. Here, we aimed to investigate the differentiation processes that have led to the establishment of the rare XX/XY1Y2 SCS and track its evolutionary history among other Harttia species. For that, four whole chromosome painting probes derived from chromosome 1 of H. torrenticola (HTO-1), chromosomes 9 and X of H. carvalhoi (HCA-9 and HCA-X), and chromosome X from H. intermontana (HIN-X) were applied in nine Harttia species. Homeologous chromosome blocks were located in Harttia species and demonstrated that Robertsonian (Rb) fusions originated HTO-1, HCA-9, and HCA-X chromosomes, while Rb fissions explain Y1 and Y2 sex chromosomes. Specifically, in H. intermontana, HCA-X, HCA-9, and the NOR-bearing chromosome demonstrated that homeologous blocks were used in the HIN-X and metacentric pair 2 origins. Consequently, diploid numbers changed between the studied species. Overall, the data also reinforce the existence of unstable genomic sites promoting chromosomal differentiation and remodeling within the genus Harttia.
Collapse
Affiliation(s)
- Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| | - Larissa Glugoski
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| | | | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| | | | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| |
Collapse
|
11
|
Silva DMZDA, Araya-Jaime C, Yamashita M, Vidal MR, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. Meiotic self-pairing of the Psalidodon (Characiformes, Characidae) iso-B chromosome: A successful perpetuation mechanism. Genet Mol Biol 2021; 44:e20210084. [PMID: 34617950 PMCID: PMC8495774 DOI: 10.1590/1678-4685-gmb-2021-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
B chromosomes are non-essential additional genomic elements present in several animal and plant species. In fishes, species of the genus Psalidodon (Characiformes, Characidae) harbor great karyotype diversity, and multiple populations carry different types of non-essential B chromosomes. This study analyzed how the dispensable supernumerary B chromosome of Psalidodon paranae behaves during meiosis to overcome checkpoints and express its own meiosis-specific genes. We visualized the synaptonemal complexes of P. paranae individuals with zero, one, or two B chromosomes using immunodetection with anti-medaka SYCP3 antibody and fluorescence in situ hybridization with a (CA)15 microsatellite probe. Our results showed that B chromosomes self-pair in cells containing only one B chromosome. In cells with two identical B chromosomes, these elements remain as separate synaptonemal complexes or close self-paired elements in the nucleus territory. Overall, we reveal that B chromosomes can escape meiotic silencing of unsynapsed chromatin through a self-pairing process, allowing expression of their own genes to facilitate regular meiosis resulting in fertile individuals. This behavior, also seen in other congeneric species, might be related to their maintenance throughout the evolutionary history of Psalidodon.
Collapse
Affiliation(s)
| | - Cristian Araya-Jaime
- Universidad de La Serena, Instituto de Investigación
Multidisciplinar en Ciencia y Tecnología, La Serena, Chile
- Universidad de La Serena, Departamento de Biología, Laboratorio de
Genética y Citogenética Vegetal, La Serena, Chile
| | - Masakane Yamashita
- Hokkaido University, Faculty of Science, Department of Biological
Sciences, Laboratory of Reproductive & Developmental Biology, Sapporo,
Japan
| | - Mateus Rossetto Vidal
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| | - Fábio Porto-Foresti
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências,
Departamento de Ciências Biológicas, Bauru, SP, Brazil
| | - Roberto Ferreira Artoni
- Universidade Federal de São Carlos (UFSCAR), Departamento de
Genética e Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de
Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| |
Collapse
|
12
|
Barboza VP, Costa MA. Cytogenetic Analysis in Trigona spinipes Fabricius (Hymenoptera, Meliponina) Reveals Intraspecific Variation. NEOTROPICAL ENTOMOLOGY 2021; 50:846-849. [PMID: 33646535 DOI: 10.1007/s13744-021-00853-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Trigona spinipes Fabricius is a stingless bee with wide geographical distribution. Although being sometimes considered an agricultural pest, in fact, it has great pollinating potential, and therefore economic interest. Conventional and molecular cytogenetic techniques have been little used to verify genetic diversity in this species, despite its potential to reveal information about the reorganization of the genome having been demonstrated in other species. Conventional cytogenetic techniques, fluorochrome staining, and fluorescent in situ hybridization with 18S rDNA, telomeric, and microsatellite probes (GA)15 were used in this study to characterize and compare T. spinipes from different locations. The karyotypes showed a conserved chromosome number 2n = 34; however, geographic variations were verified in the different features and cytogenetic techniques analyzed, such as karyotype formulas, fluorocrome staining, and FISH. Although the 18S rDNA probe revealed the same number of markings in five rDNA clusters, the chromosomal pairs containing these markers varied between studied locations. The probe for microsatellite (GA)15 also showed polymorphisms within this species. The results reveal that T. spinipes has many intraspecific differences, revealing a higher chromosomal variation than expected.
Collapse
Affiliation(s)
- Vilmara Pereira Barboza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Marco Antonio Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
13
|
Micolino R, Baldez BCL, Sánchez-Restrepo AF, Calcaterra L, Cristiano MP, Cardoso DC. Karyotype structure and cytogenetic markers of Amoimyrmex bruchi and Amoimyrmex silvestrii: contribution to understanding leaf-cutting ant relationships. Genome 2021; 65:1-9. [PMID: 34520688 DOI: 10.1139/gen-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leaf-cutting ants are considered the most important herbivores in terrestrial environments throughout the Neotropics. Amoimyrmex Cristiano, Cardoso, & Sandoval, 2020 is the sister clade of the remaining leaf-cutting ants from the genera Atta and Acromyrmex. Amoimyrmex striatus was the only species cytogenetically studied within the genus and shares the same chromosomal number as Atta, bearing 22 chromosomes, whereas Acromyrmex bears 38 chromosomes, with the exception of the social parasite Acromyrmex ameliae (2n = 36). Our objective here was to cytogenetically analyze the species of Amoimyrmex bruchi and Amoimyrmex silvestrii, as well as to describe the karyotype of these sister species, using an integrative approach using classical and molecular cytogenetics. We aimed to characterize the cytogenetic markers that contribute to the systematics and taxonomy of the genus. Our results showed that the karyotypes of these two species are very similar, with an identical chromosome number (2n = 22), chromosome morphology (2K = 20m + 2sm), and location of 18S rDNA and telomeric repeat TTAGG on the chromosomes. However, the microsatellite probe GA(15) showed variation across the species and populations studied. We suggest that both species diverged relatively recently and are unmistakably sisters because of the many shared characteristics, including the highly conserved karyotypes.
Collapse
Affiliation(s)
- Ricardo Micolino
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Brenda Carla Lima Baldez
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
- Programa de Pós-gradução em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Andrés F Sánchez-Restrepo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luis Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maykon Passos Cristiano
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
- Programa de Pós-gradução em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Danon Clemes Cardoso
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
- Programa de Pós-gradução em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
14
|
Elizeu AM, Travenzoli NM, de Paiva Ferreira R, Lopes DM, Tavares MG. Comparative study on the physical mapping of ribosomal genes and repetitive sequences in Friesella schrottkyi (Friese 1900) (Hymenoptera: Apidae, Meliponini). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Roco ÁS, Liehr T, Ruiz-García A, Guzmán K, Bullejos M. Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes (Basel) 2021; 12:617. [PMID: 33919402 PMCID: PMC8143290 DOI: 10.3390/genes12050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained from massive genome sequencing, basic research on repetitive sequences in these species is lacking. This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the short arm of chromosome 3L. These regions could be related by the presence of the nucleolus organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as they did not colocalize. The identification of these repeated sequences is of interest as they provide an explanation to some problems already described in the genome assemblies of these species. Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be a valuable marker to assist us in understanding the genome evolution in a group characterized by numerous polyploidization events coupled with hybridizations.
Collapse
Affiliation(s)
- Álvaro S. Roco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany;
| | - Adrián Ruiz-García
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Kateryna Guzmán
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.); (K.G.)
| |
Collapse
|
16
|
Vittorazzi SE, Lourenço LB, Zattera ML, Weber LN, Recco-Pimentel SM, Bruschi DP. Cytogenetic and genetic data support Crossodactylus aeneus Müller, 1924 as a new junior synonym of C. gaudichaudii Duméril and Bibron, 1841 (Amphibia, Anura). Genet Mol Biol 2021; 44:e20200301. [PMID: 33751017 PMCID: PMC7995990 DOI: 10.1590/1678-4685-gmb-2020-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/08/2021] [Indexed: 01/24/2023] Open
Abstract
The nominal anuran species Crossodactylus gaudichaudii Duméril and Bibron, 1841 and Crossodactylus aeneus Müller, 1924 are indistinguishable based on adult and larval morphology, being subject of taxonomic doubts. Here, we describe the karyotypes of C. gaudichaudii and C. aeneus, using classical and molecular cytogenetic markers. In addition, we used sequences of the H1 mitochondrial DNA to infer their phylogenetic relationships by Maximum Likelihood (ML) and Maximum Parsimony (MP) approaches and species delimitation test (by bPTP approach). The karyotypic data do not differentiate C. gaudichaudii and C. aeneus in any of the chromosome markers assessed. In both phylogenetic analyses, C. gaudichaudii and C. aeneus were recovered into a strongly supported clade. The species delimitation analysis recovered the specimens assigned to C. gaudichaudii and C. aeneus as a single taxonomic unit. Taken the cytogenetic and genetic results together with previous studies of internal and external morphology of tadpoles and biacoustic pattern, C. gaudichaudii and C. aeneus could not be differentiated, which supports the hypothesis that they correspond to the same taxonomic unit, with C. aeneus being a junior synonym of C. gaudichaudii.
Collapse
Affiliation(s)
- Stenio Eder Vittorazzi
- Universidade do Estado de Mato Grosso, Faculdade de Ciências
Biológicas, Agrárias e da Saúde, Departamento de Ciências Biológicas, Tangará da
Serra, MT, Brazil
- Universidade Federal do Paraná, Setor de Ciências Biológicas,
Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR,
Brazil
| | - Luciana Bolsoni Lourenço
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Biologia Estrutural e Funcional, Campinas, SP, Brazil
| | - Michelle Louise Zattera
- Universidade Federal do Paraná, Setor de Ciências Biológicas,
Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR,
Brazil
| | - Luiz Norberto Weber
- Universidade Federal do Sul da Bahia, Instituto Sosígenes Costa de
Humanidades, Artes e Ciências, Porto Seguro, BA, Brazil
| | - Shirlei Maria Recco-Pimentel
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Biologia Estrutural e Funcional, Campinas, SP, Brazil
| | - Daniel Pacheco Bruschi
- Universidade Federal do Paraná, Setor de Ciências Biológicas,
Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR,
Brazil
| |
Collapse
|
17
|
Barbosa ICDO, Schneider CH, Goll LG, Feldberg E, Carvalho-Zilse GA. Chromosomal mapping of repetitive DNA in Melipona seminigra merrillae Cockerell, 1919 (Hymenoptera, Apidae, Meliponini). COMPARATIVE CYTOGENETICS 2021; 15:77-87. [PMID: 33815685 PMCID: PMC7997856 DOI: 10.3897/compcytogen.v15i1.56430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Melipona Illiger, 1806 is represented by 74 known species of stingless bees, distributed throughout the Neotropical region. Cytogenetically it is the most studied stingless bee genus of the tribe Meliponini. Member species are divided in two groups based on the volume of heterochromatin. This study aim was to analyze the composition and organization of chromatin of the stingless bee subspecies Melipona seminigra merrillae Cockerell, 1919 using classical and molecular cytogenetic techniques, so contributing to a better understanding of the processes of chromosomal changes within the genus. We confirm that M. seminigra merrillae has a chromosome number of 2n = 22 and n = 11, results that differ from those reported for the genus in the absence of B chromosomes. The heterochromatic pattern revealed a karyotype composed of chromosomes with a high heterochromatin content, which makes it difficult to visualize the centromere. Silver nitrate impregnation (Ag-NOR) showed transcriptionally active sites on the second chromosomal pair. Staining of base-specific fluorophores DAPI-CMA3 indicated a homogeneous distribution of intensely DAPI-stained heterochromatin, while CMA3 markings appeared on those terminal portions of the chromosomes corresponding to euchromatin. Similar to Ag-NOR, fluorescence in situ hybridization (FISH) with 18S ribosomal DNA probe revealed distinct signals on the second pair of chromosomes. Microsatellite mapping (GA)15 showed markings distributed in euchromatic regions, while mapping with (CA)15 showed marking patterns in heterochromatic regions, together with a fully marked chromosome pair. Microsatellite hybridization, both in heterochromatic and euchromatic regions, may be related to the activity of transposable elements. These are capable of forming new microsatellites that can be dispersed and amplified in different regions of the genome, demonstrating that repetitive sequences can evolve rapidly, thus resulting in within-genus diversification.
Collapse
Affiliation(s)
- Ingrid Cândido de Oliveira Barbosa
- Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, Brazil
| | - Carlos Henrique Schneider
- Laboratório de Pesquisa em Ciências Médicas, Universidade Federal da Integração Latino Americana, Av. Silvio Américo Sasdelli 1842, Itaipu A, 85866-000, Foz do Iguaçu, Brazil
| | - Leonardo Gusso Goll
- Instituto de Natureza e Cultura – INC, R. Primeiro de Maio s/n, Colônia, 69630-000, Benjamin Constant, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, Brazil
| | - Gislene Almeida Carvalho-Zilse
- Grupo de Pesquisas em Abelhas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, Brazil
| |
Collapse
|
18
|
High Genetic Diversity despite Conserved Karyotype Organization in the Giant Trahiras from Genus Hoplias (Characiformes, Erythrinidae). Genes (Basel) 2021; 12:genes12020252. [PMID: 33578790 PMCID: PMC7916553 DOI: 10.3390/genes12020252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
In the fish genus Hoplias, two major general groups can be found, one of which is formed by the “common trahiras” (Hoplias malabaricus group) and the other by the “giant trahiras” (Hoplias lacerdae group, in addition to Hoplias aimara), which usually comprises specimens of larger body size. Previous investigations from the giant trahiras group recovered 2n = 50 meta/submetacentric chromosomes and no sex chromosome differentiation, indicating a probable conservative pattern for their karyotype organization. Here, we conducted comparative cytogenetic studies in six giant trahiras species, two of them for the first time. We employed standard and advanced molecular cytogenetics procedures, including comparative genomic hybridization (CGH), as well as genomic assessments of diversity levels and phylogenetic relationships among them. The results strongly suggest that the giant trahiras have a particular and differentiated evolutionary pathway inside the Hoplias genus. While these species share the same 2n and karyotypes, their congeneric species of the H. malabaricus group show a notable chromosomal diversity in number, morphology, and sex chromosome systems. However, at the same time, significant changes were characterized at their inner chromosomal level, as well as in their genetic diversity, highlighting their current relationships resulting from different evolutionary histories.
Collapse
|
19
|
Oliveira MLMD, Paim FG, Freitas ÉASD, Oliveira C, Foresti F. Cytomolecular investigations using repetitive DNA probes contribute to the identification and characterization of Characidium sp. aff. C. vidali (Teleostei: Characiformes). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Characidium sp. aff. C. vidali is a species found in coastal streams in southeastern Brazil, which has karyotypic explanatory elements as the occurrence of microstructural variations, keeping the chromosomal macrostructure of the genus. The objective of this study was to apply cytomolecular tools in the chromosomes of Characidium sp. aff. C. vidali to identify characteristics in their karyotype contributing to cytogenetic definition of this species, adding information about the evolution of the chromosomal structure of the group. The species showed 2n = 50 chromosomes and from 1 to 4 additional B microchromosomes. FISH technique showed histone H3 and H4 genes in the short arm of pair 10, and microsatellites (CA)15, (CG)15, (GA)15 and (TTA)10 clustered in the subtelomeric portions of all A chromosomes, with total accumulation by supernumerary. The telomeric probe marked terminal regions of all chromosomes, in addition to the interstitial portion of four pairs, called ITS sites, with these markings being duplicated in two pairs, hence the double-ITS classification. C-banding revealed that supernumerary chromosomes are completely heterochromatic, that ITS sites are C-banding positive, but double-ITS sites are C-banding negative. So, throughout the evolution to Characidium, genomic events are occurring and restructuring chromosomes in populations.
Collapse
Affiliation(s)
| | | | | | - Claudio Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
20
|
Ditcharoen S, Sassi FDMC, Bertollo LAC, Molina WF, Liehr T, Saenjundaeng P, Tanomtong A, Supiwong W, Suwannapoom C, Cioffi MDB. Comparative chromosomal mapping of microsatellite repeats reveals divergent patterns of accumulation in 12 Siluridae (Teleostei: Siluriformes) species. Genet Mol Biol 2020; 43:e20200091. [PMID: 33156890 PMCID: PMC7654372 DOI: 10.1590/1678-4685-gmb-2020-0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
The freshwater family Siluridae occurs in Eurasia and is especially speciose in South and Southeast Asia, representing an important aquaculture and fishery targets. However, despite the restricted cytogenetic data, a high diploid number variation (from 2n=40 to 92) characterizes this fish group. Considering the large genomic divergence among its species, silurid genomes have experienced an enormous diversification throughout their evolutionary history. Here, we aim to investigate the chromosomal distribution of several microsatellite repeats in 12 Siluridae species and infer about their possible roles in the karyotype evolution that occurred in this group. Our results indicate divergent patterns of microsatellite distribution and accumulation among the analyzed species. Indeed, they are especially present in significant chromosome locations, such as the centromeric and telomeric regions, precisely the ones associated with several kinds of chromosomal rearrangements. Our data provide pieces of evidence that repetitive DNAs played a direct role in fostering the chromosomal differentiation and biodiversity in this fish family.
Collapse
Affiliation(s)
- Sukhonthip Ditcharoen
- Khon Kaen UniversityKhon Kaen UniversityDepartment of BiologyMuangKhon KaenThailandKhon Kaen University, Faculty of Science, Department of
Biology, Toxic Substances in Livestock and Aquatic Animals Research Group, Muang, Khon Kaen,
Thailand.
| | - Francisco de Menezes Cavalcante Sassi
- Universidade Federal de São Carlos
(UFSCar)Universidade Federal de São Carlos (UFSCar)Departamento de Genética e
EvoluçãoSão CarlosSPBrazilUniversidade Federal de São Carlos (UFSCar),
Departamento de Genética e Evolução, São Carlos, SP,
Brazil.
| | - Luiz Antonio Carlos Bertollo
- Universidade Federal de São Carlos
(UFSCar)Universidade Federal de São Carlos (UFSCar)Departamento de Genética e
EvoluçãoSão CarlosSPBrazilUniversidade Federal de São Carlos (UFSCar),
Departamento de Genética e Evolução, São Carlos, SP,
Brazil.
| | - Wagner Franco Molina
- Universidade Federal do Rio Grande do NorteUniversidade Federal do Rio Grande do NorteDepartamento de Biologia Celular e GenéticaNatalRNBrazilUniversidade Federal do Rio Grande do Norte (UFRN), Centro de
Biociências, Departamento de Biologia Celular e Genética, Natal, RN,
Brazil.
| | - Thomas Liehr
- University Hospital JenaUniversity Hospital JenaInstitute of Human GeneticsJenaGermanyUniversity Hospital Jena, Institute of Human Genetics, Jena,
Germany.
| | - Pasakorn Saenjundaeng
- Khon Kaen UniversityKhon Kaen UniversityFaculty of Applied Science and EngineeringMuangNong KhaiThailandKhon Kaen University, Faculty of Applied Science and
Engineering, Nong Khai Campus, Muang, Nong Khai, Thailand.
| | - Alongklod Tanomtong
- Khon Kaen UniversityKhon Kaen UniversityDepartment of BiologyMuangKhon KaenThailandKhon Kaen University, Faculty of Science, Department of
Biology, Toxic Substances in Livestock and Aquatic Animals Research Group, Muang, Khon Kaen,
Thailand.
| | - Weerayuth Supiwong
- Khon Kaen UniversityKhon Kaen UniversityFaculty of Applied Science and EngineeringMuangNong KhaiThailandKhon Kaen University, Faculty of Applied Science and
Engineering, Nong Khai Campus, Muang, Nong Khai, Thailand.
| | - Chatmongkon Suwannapoom
- University of PhayaoUniversity of PhayaoDepartment of FisherySchool of Agriculture and Natural ResourcesMuang PhayaoThailandUniversity of Phayao, School of Agriculture and Natural
Resources, Department of Fishery, Muang Phayao, Thailand.
| | - Marcelo de Bello Cioffi
- Universidade Federal de São Carlos
(UFSCar)Universidade Federal de São Carlos (UFSCar)Departamento de Genética e
EvoluçãoSão CarlosSPBrazilUniversidade Federal de São Carlos (UFSCar),
Departamento de Genética e Evolução, São Carlos, SP,
Brazil.
| |
Collapse
|
21
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
22
|
Clemente L, Mazzoleni S, Pensabene Bellavia E, Augstenová B, Auer M, Praschag P, Protiva T, Velenský P, Wagner P, Fritz U, Kratochvíl L, Rovatsos M. Interstitial Telomeric Repeats Are Rare in Turtles. Genes (Basel) 2020; 11:genes11060657. [PMID: 32560114 PMCID: PMC7348932 DOI: 10.3390/genes11060657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023] Open
Abstract
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
Collapse
Affiliation(s)
- Lorenzo Clemente
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Eleonora Pensabene Bellavia
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Markus Auer
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | | | | | - Petr Velenský
- Prague Zoological Garden, 17100 Prague, Czech Republic;
| | | | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
- Correspondence:
| |
Collapse
|
23
|
Lopes DM, Travenzoli NM, Fernandes A, Campos LAO. Different Levels of Chromatin Condensation in Partamona chapadicola and Partamona nhambiquara (Hymenoptera, Apidae). Cytogenet Genome Res 2020; 160:206-213. [PMID: 32485719 DOI: 10.1159/000507835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Studies in several organisms have contributed to the understanding of heterochromatin and its biological importance. In bees of the tribe Meliponini, the presence of chromosomes with totally heterochromatic arms has been attributed to the mechanism of karyotype evolution in which this group accumulated heterochromatin to maintain telomere stability after centric fission events. In the present study, the use of classical and molecular cytogenetic techniques as well as automated image analysis software for the description of the karyotypes of Partamonachapadicola and P. nhambiquara bee species revealed variability in the compaction and patterns of chromatin structure. Although both species have the same chromosome number as other species in the genus Partamona (2n = 34), C-banding and image analyses indicated the existence of chromosomes with 3 regions of different staining intensities, suggesting a chromatin structure with distinct patterns and characteristics. Repetitive DNA probes hybridized only in the euchromatic regions, whereas the regions with intermediate staining intensity did not show any hybridization signals. This suggests that these regions present features more similar to heterochromatin. Evidence of the existence of a chromatin class with intermediate condensation compared to euchromatin and heterochromatin indicates a potential mechanism for heterochromatin amplification and demonstrates the need for further studies on this topic. This previously unrecognized class of chromatin should be taken into account in the study of all Meliponini chromosomes.
Collapse
|
24
|
Ibagón N, Maldonado-Ocampo JA, Cioffi MDB, Dergam JA. Chromosomal Diversity of Hoplias malabaricus (Characiformes, Erythrinidae) Along the Magdalena River (Colombia—Northern South America) and Its Significance for the Neotropical Region. Zebrafish 2020. [DOI: 10.1089/zeb.2019.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicole Ibagón
- Departamento de Biologia Geral, Universidad Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Programa de Ecología, Fundación Universitaria de Popayán, Popayán, Cauca, Colombia
| | - Javier A. Maldonado-Ocampo
- Laboratorio de Ictiologia, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Jorge A. Dergam
- Departamento de Biologia Animal, Universidad Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
25
|
Micolino R, Cristiano MP, Cardoso DC. Population-Based Cytogenetic Banding Analysis and Phylogenetic Relationships of the Neotropical Fungus-Farming Ant Trachymyrmex holmgreni Wheeler, 1925. Cytogenet Genome Res 2019; 159:151-161. [DOI: 10.1159/000503913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 01/05/2023] Open
Abstract
Trachymyrmex is one of the most species-rich genera within fungus-farming ants and presents intraspecific cytogenetic polymorphisms as well as possible cryptic species. This ant genus is currently paraphyletic. Therefore, to unravel systematic and taxonomic misunderstandings, it is necessary to incorporate new information. We aimed to cytogenetically and genetically examine Trachymyrmex holmgreni populations from southern and northern Brazil to identify intraspecific chromosomal variations that support incipient speciation and reveal the species' position in a molecular phylogeny. Our cytogenetic approach did not show population variation in the mapping of both 18S rDNA and the TTAGG(6) motif, presenting instead a pattern characteristic of correlated species. However, the clustered pattern of the microsatellite GA(15) showed significant differences among populations: a well-defined block in each homologue, distinctly irregular signs between homologues, and blocks in 2 pairs of homologues. Our phylogenetic reconstruction yielded unexpected results, grouping representatives of 3 former morphological groups into 1 clade, namely T. urichii, T. papulatus, and T. holmgreni. Previously, it was suggested that northern and southern populations of T. holmgreni may be undergoing incipient speciation, but we can only indicate that the southernmost population differs prominently from the others in its distribution pattern of the microsatellite GA(15). Our study also supports the uniformity of karyotypes and repetitive DNA from both telomeric sequences and ribosomal DNA in Trachymyrmex studied here. In addition, we clarify some phylogenetic uncertainties within the genus and suggest further relevant systematic changes. Finally, additional studies utilizing other probes and additional populations may allow the detection of hidden genetic variation.
Collapse
|
26
|
Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch ( Macquaria ambigua) and Murray Cod ( Maccullochella peelii) (Percichthyidae). Int J Mol Sci 2019; 20:ijms20174244. [PMID: 31480228 PMCID: PMC6747191 DOI: 10.3390/ijms20174244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes' range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution.
Collapse
|
27
|
Utsunomia R, Silva DMZDA, Ruiz-Ruano FJ, Goes CAG, Melo S, Ramos LP, Oliveira C, Porto-Foresti F, Foresti F, Hashimoto DT. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci Rep 2019; 9:5856. [PMID: 30971780 PMCID: PMC6458115 DOI: 10.1038/s41598-019-42383-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/26/2019] [Indexed: 11/09/2022] Open
Abstract
The accumulation of repetitive DNA sequences on the sex-limited W or Y chromosomes is a well-known process that is likely triggered by the suppression of recombination between the sex chromosomes, which leads to major differences in their sizes and genetic content. Here, we report an analysis conducted on the satellitome of Megaleporinus macrocephalus that focuses specifically on the satDNAs that have been shown to have higher abundances in females and are putatively located on the W chromosome in this species. We characterized 164 satellite families in M. macrocephalus, which is, by far, the most satellite-rich species discovered to date. Subsequently, we mapped 30 satellites, 22 of which were located on the W chromosome, and 14 were shown to exist only on the W chromosome. Finally, we report two simple, quick and reliable methods that can be used for sex identification in M. macrocephalus individuals using fin clips or scales, which could be applicable to future studies conducted in the field of aquaculture.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil. .,Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.
| | | | | | - Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista - UNESP, Campus de Bauru, 17033-360, Bauru, SP, Brazil
| | - Silvana Melo
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Lucas Peres Ramos
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista - UNESP, Campus de Bauru, 17033-360, Bauru, SP, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, SP, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista - UNESP, Campus Jaboticabal, 14884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
28
|
Prizon AC, Bruschi DP, Gazolla CB, Borin-Carvalho LA, Portela-Castro ALDB. Chromosome Spreading of the Retrotransposable Rex-3 Element and Microsatellite Repeats in Karyotypes of the Ancistrus Populations. Zebrafish 2018; 15:504-514. [DOI: 10.1089/zeb.2018.1620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ana Camila Prizon
- Department of Biotechnology, Genetics and Cellular Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | | |
Collapse
|
29
|
Saenjundaeng P, de Bello Cioffi M, de Oliveira EA, Tanomtong A, Supiwong W, Phimphan S, Collares-Pereira MJ, Sember A, Bertollo LAC, Liehr T, Yano CF, Hatanaka T, Ráb P. Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Mol Cytogenet 2018; 11:51. [PMID: 30202442 PMCID: PMC6123905 DOI: 10.1186/s13039-018-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. Results Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. Conclusion Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
Collapse
Affiliation(s)
- Pasakorn Saenjundaeng
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Ezequiel Aguiar de Oliveira
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Alongklod Tanomtong
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Weerayuth Supiwong
- 4Faculty of Applied Science and Engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai Thailand
| | - Sumalee Phimphan
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Maria João Collares-Pereira
- 5Faculdade de Ciencias, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Campo Grande, PT-1749-016 Lisbon, Portugal
| | - Alexandr Sember
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | | | - Thomas Liehr
- 7Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Cassia Fernanda Yano
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Terumi Hatanaka
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Petr Ráb
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| |
Collapse
|
30
|
Utsunomia R, Melo S, Scacchetti PC, Oliveira C, Machado MDA, Pieczarka JC, Nagamachi CY, Foresti F. Particular Chromosomal Distribution of Microsatellites in Five Species of the Genus Gymnotus (Teleostei, Gymnotiformes). Zebrafish 2018; 15:398-403. [PMID: 29927722 DOI: 10.1089/zeb.2018.1570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microsatellites show great abundance in eukaryotic genomes, although distinct chromosomal distribution patterns might be observed, from small dispersed signals to strong clustered motifs. In Neotropical fishes, the chromosome mapping of distinct microsatellites was employed several times to uncover the origin and evolution of sex and supernumerary chromosomes, whereas a detailed comparative analysis considering different motifs at the chromosomal level is scarce. Here, we report the chromosomal location of several simple sequence repeats (SSRs) in distinct electric knife fishes showing variable diploid chromosome numbers to unveil the structural organization of several microsatellite motifs in distinct Gymnotus species. Our results showed that some SSRs are scattered throughout the genomes, whereas others are particularly clustered displaying intense genomic compartmentalization. Interestingly, the motifs CA, GA, and GAG exhibited a band-like pattern of hybridization, useful for the identification of homologous chromosomes. Finally, the colocalization of SSRs with multigene families is probably related to the association of microsatellites with gene spacers in this case.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Silvana Melo
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Priscilla Cardim Scacchetti
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Claudio Oliveira
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| | - Milla de Andrade Machado
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Julio Cesar Pieczarka
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Cleusa Yoshiko Nagamachi
- 2 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, PA, Brazil
| | - Fausto Foresti
- 1 Laboratório de Biologia e Genética de Peixes, Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University , Botucatu, SP, Brazil
| |
Collapse
|
31
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
32
|
Pereira TTP, dos Reis ACCC, Cardoso DC, Cristiano MP. Molecular phylogenetic reconstruction and localization of the (TTAGG)n telomeric repeats in the chromosomes of Acromyrmex striatus (Roger, 1863) suggests a lower ancestral karyotype for leafcutter ants (Hymenoptera). COMPARATIVE CYTOGENETICS 2018; 12:13-21. [PMID: 29362670 PMCID: PMC5770561 DOI: 10.3897/compcytogen.v12i1.21799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 05/24/2023]
Abstract
Chromosome counts and karyotype characterization have proved to be important features of a genome. Chromosome changes during the diversification of ants might play an important role, given the diversity and success of Formicidae. Comparative karyotype analyses on ants have enriched and helped ant systematics. Among leafcutter ants, two major chromosome counts have been described, one frequent in Atta Fabricius, 1804 (2n = 22 in all Atta spp. whose karyotype is known) and the other frequent in Acromyrmex Mayr, 1865 (2n = 38 in the majority of species whose karyotype is known). The main exception is Acromyrmex striatus (Roger, 1863), which harbors a diploid chromosome set of 22. Here we describe the use of fluorescence in situ hybridization (FISH) with telomeric probes with (TTAGG)6 repeats to describe the telomere composition of A. striatus and to recover potential interstitial non-telomeric signals that may reflect fusion events during the evolution of leafcutter lineage from 38 to 22 chromosomes. Further, we reconstruct the ancestral chromosome numbers of the leafcutter clade based on a recently proposed molecular phylogenetic hypothesis and phylogenomic tree. Distinct signals have been observed in both extremities on the telomere chromosomes of A. striatus. Non-telomeric signals have not been retrieved in our analysis. It could be supposed that the low-numbered karyotype indeed represents the ancestral chromosome number of leafcutters. The phylogenetic reconstruction also recovered a low chromosome number from the diverse approaches implemented, suggesting that n = 11 is the most likely ancestral karyotype of the leafcutter ants and is a plesiomorphic feature shared between A. striatus and Atta spp.
Collapse
Affiliation(s)
- Tássia Tatiane Pontes Pereira
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Danon Clemes Cardoso
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maykon Passos Cristiano
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
33
|
Silva AA, Braga LS, Corrêa AS, Holmes VR, Johnston JS, Oppert B, Guedes RNC, Tavares MG. Comparative cytogenetics and derived phylogenic relationship among Sitophilus grain weevils (Coleoptera, Curculionidae, Dryophthorinae). COMPARATIVE CYTOGENETICS 2018; 12:223-245. [PMID: 29997743 PMCID: PMC6037651 DOI: 10.3897/compcytogen.v12i2.26412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 05/04/2023]
Abstract
Cytogenetic characteristics and genome size are powerful tools for species characterization and identification of cryptic species, providing critical insights into phylogenetic and evolutionary relationships. Sitophilus Linnaeus, 1758 grain weevils can benefit from such tools as key pest species of stored products and also as sources of archeological information on human history and past urban environments. Moreover, the phylogenetic relationship among these weevil species remains controversial and is largely based on single DNA fragment analyses. Therefore, cytogenetic analyses and genome size determinations were performed for four Sitophilus grain weevil species, namely the granary weevil Sitophilus granarius (Linnaeus, 1758), the tamarind weevil S. linearis (Herbst, 1797), the rice weevil S. oryzae (Linnaeus, 1763), and the maize weevil S. zeamais Motschulsky, 1855. Both maize and rice weevils exhibited the same chromosome number (2n=22; 10 A + Xyp). In contrast, the granary and tamarind weevils exhibited higher chromosome number (2n=24; 11 A + Xyp and 11 A + neo-XY, respectively). The nuclear DNA content of these species was not proportionally related to either chromosome number or heterochromatin amount. Maize and rice weevils exhibited similar and larger genome sizes (0.730±0.003 pg and 0.786±0.003 pg, respectively), followed by the granary weevil (0.553±0.003 pg), and the tamarind weevil (0.440±0.001 pg). Parsimony phylogenetic analysis of the insect karyotypes indicate that S. zeamais and S. oryzae were phylogenetically closer than S. granarius and S. linearis, which were more closely related and share a more recent ancestral relationship.
Collapse
Affiliation(s)
- Alexandra Avelar Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Lucas Soares Braga
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Alberto Soares Corrêa
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | | | - Brenda Oppert
- USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS 66506, USA
| | | | - Mara Garcia Tavares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
34
|
Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes. Genes (Basel) 2017; 9:genes9010005. [PMID: 29283388 PMCID: PMC5793158 DOI: 10.3390/genes9010005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
The caenophidian (assigned also as “advanced”) snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length.
Collapse
|
35
|
Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma 2017; 127:115-128. [DOI: 10.1007/s00412-017-0648-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
36
|
Conde-Saldaña CC, Barreto CAV, Villa-Navarro FA, Dergam JA. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae). Zebrafish 2017; 15:55-62. [PMID: 29090985 DOI: 10.1089/zeb.2017.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA15 and GA15) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA15 and GA15) in a differentiated sex chromosome in Neotropical fish.
Collapse
Affiliation(s)
- Cristhian Camilo Conde-Saldaña
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil .,2 Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima , Ibagué, Colombia
| | | | | | - Jorge Abdala Dergam
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil
| |
Collapse
|
37
|
Bertollo LAC, Cioffi MDB, Jr PMG, Filho OM. Contributions to the cytogenetics of the Neotropical fish fauna. COMPARATIVE CYTOGENETICS 2017; 11:665-690. [PMID: 29114360 PMCID: PMC5672326 DOI: 10.3897/compcytogen.v11i4.14713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 05/15/2023]
Abstract
Brazilian fish cytogenetics started as early as the seventies in three pioneering research groups, located at the Universidade Estadual Paulista (UNESP, Botucatu, SP), Universidade Federal de São Carlos (UFSCar, São Carlos, SP) and Universidade de São Paulo (USP, São Paulo, SP). Investigations that have been conducted in these groups led to the discovery of a huge chromosomal and genomic biodiversity among Neotropical fishes. Besides, they also provided the expansion of this research area, with the genesis of several other South American research groups, in view of a number of dissertations and doctoral theses developed over years. The current authors were encouraged to make their thesis catalog accessible from a public source, in order to share informations on the taxa and subject matter analyzed. Some of the key contributions to evolutionary fish cytogenetics are also being highligthed.
Collapse
Affiliation(s)
- Luiz Antônio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Pedro Manoel Galetti Jr
- Laboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Orlando Moreira Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
38
|
Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes. Genes (Basel) 2017; 8:genes8100258. [PMID: 28981468 PMCID: PMC5664108 DOI: 10.3390/genes8100258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Fishes exhibit the greatest diversity of species among vertebrates, offering a number of relevant models for genetic and evolutionary studies. The investigation of sex chromosome differentiation is a very active and striking research area of fish cytogenetics, as fishes represent one of the most vital model groups. Neotropical fish species show an amazing variety of sex chromosome systems, where different stages of differentiation can be found, ranging from homomorphic to highly differentiated sex chromosomes. Here, we draw attention on the impact of recent developments in molecular cytogenetic analyses that helped to elucidate many unknown questions about fish sex chromosome evolution, using excellent characiform models occurring in the Neotropical region, namely the Erythrinidae family and the Triportheus genus. While in Erythrinidae distinct XY and/or multiple XY-derived sex chromosome systems have independently evolved at least four different times, representatives of Triportheus show an opposite scenario, i.e., highly conserved ZZ/ZW system with a monophyletic origin. In both cases, recent molecular approaches, such as mapping of repetitive DNA classes, comparative genomic hybridization (CGH), and whole chromosome painting (WCP), allowed us to unmask several new features linked to the molecular composition and differentiation processes of sex chromosomes in fishes.
Collapse
|
39
|
Supiwong W, Jiwyam W, Sreeputhorn K, Maneechot N, Bertollo LAC, Cioffi MB, Getlekha N, Tanomtong A. First report on classical and molecular cytogenetics of archerfish, Toxotes chatareus (Perciformes: Toxotidae). THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Yano CF, Bertollo LAC, Liehr T, Troy WP, Cioffi MDB. W Chromosome Dynamics in Triportheus Species (Characiformes, Triportheidae): An Ongoing Process Narrated by Repetitive Sequences. J Hered 2016; 107:342-8. [PMID: 27036509 DOI: 10.1093/jhered/esw021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/26/2016] [Indexed: 11/13/2022] Open
Abstract
Characterizing the abundance and genomic distribution of repetitive DNAs provides information on genome evolution, especially regarding the origin and differentiation of sex chromosomes. Triportheus fishes offer a useful model to explore the evolution of sex chromosomes, since they represent a monophyletic group in which all species share a ZZ/ZW sex chromosome system. In this study, we analyzed the distribution of 13 classes of repetitive DNA sequences by FISH, including microsatellites, rDNAs, and transposable elements in 6 Triportheus species, in order to investigate the fate of the sex-specific chromosome among them. These findings show the dynamic differentiation process of the W chromosome concerning changes in the repetitive DNA fraction of the heterochromatin. The differential accumulation of the same class of repeats on this chromosome, in both nearby and distant species, reflects the inherent dynamism of the microsatellites, as well as the plasticity that shapes the evolutionary history of the sex chromosomes, even among closely related species sharing a same sex chromosome system.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Thomas Liehr
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Waldo Pinheiro Troy
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano).
| |
Collapse
|
41
|
da Cunha MS, Reis VJC, Dergam JA. Closely Related Syntopic Cytotypes of Astyanax taeniatus (Jenyns, 1842) from the Upper Piranga River, Upper Doce Basin in Southeastern Brazil. Zebrafish 2016; 13:112-7. [DOI: 10.1089/zeb.2015.1163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Marina Souza da Cunha
- Laboratório de Sistemática Molecular–Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil
| | - Vinícius José Carvalho Reis
- Laboratório de Sistemática Molecular–Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil
| | - Jorge Abdala Dergam
- Laboratório de Sistemática Molecular–Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil
| |
Collapse
|
42
|
de A Silva DMZ, Daniel SN, Camacho JPM, Utsunomia R, Ruiz-Ruano FJ, Penitente M, Pansonato-Alves JC, Hashimoto DT, Oliveira C, Porto-Foresti F, Foresti F. Origin of B chromosomes in the genus Astyanax (Characiformes, Characidae) and the limits of chromosome painting. Mol Genet Genomics 2016; 291:1407-18. [PMID: 26984341 DOI: 10.1007/s00438-016-1195-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryote genomes are frequently burdened with the presence of supernumerary (B) chromosomes. Their origin is frequently investigated by chromosome painting, under the hypothesis that sharing the repetitive DNA sequences contained in the painting probes is a sign of common descent. However, the intragenomic mobility of many anonymous DNA sequences contained in these probes (e.g., transposable elements) adds high uncertainty to this conclusion. Here we test the validity of chromosome painting to investigate B chromosome origin by comparing its results for seven B chromosome types in two fish species genus Astyanax, with those obtained (1) by means of the physical mapping of 18S ribosomal DNA (rDNA), H1 histone genes, the As51 satellite DNA and the (AC)15 microsatellite, and (2) by comparing the nucleotide sequence of one of these families (ITS regions from ribosomal DNA) between genomic DNA from B-lacking individuals in both species and the microdissected DNA from two metacentric B chromosomes found in these same species. Intra- and inter-specific painting suggested that all B chromosomes that were assayed shared homologous DNA sequences among them, as well as with a variable number of A chromosomes in each species. This finding would be consistent with a common origin for all seven B chromosomes analyzed. By contrast, the physical mapping of repetitive DNA sequences failed to give support to this hypothesis, as no more than two B-types shared a given repetitive DNA. Finally, sequence analysis of the ITS regions suggested that at least some of the B chromosomes could have had a common origin.
Collapse
Affiliation(s)
- Duílio M Z de A Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil.
| | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | | | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | | | - Manolo Penitente
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista, Campus Jaboticabal, Jaboticabal, SP, 14884-900, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
43
|
Schmid M, Steinlein C, Yano CF, Cioffi MB. Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes. Cytogenet Genome Res 2016; 147:169-78. [PMID: 26895457 DOI: 10.1159/000444067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.
Collapse
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Wx00FC;rzburg, Wx00FC;rzburg, Germany
| | | | | | | |
Collapse
|
44
|
Peixoto MAA, Lacerda JVA, Coelho-Augusto C, Feio RN, Dergam JA. The karyotypes of five species of the Scinax perpusillus group (Amphibia, Anura, Hylidae) of southeastern Brazil show high levels of chromosomal stabilization in this taxon. Genetica 2015; 143:729-39. [PMID: 26497874 DOI: 10.1007/s10709-015-9870-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
Based on morphological, bioacoustics, and morphological traits, the genus Scinax has been subdivided into two major clades: S. catharinae and S. ruber. The first clade includes S. catharinae and S. perpusillus groups, whereas the second clade includes S. rostratus and S. uruguayus groups. Chromosome morphology, NOR and C-banding patterns of variation support these clades. This study aims the cytogenetic characterization of five species currently included in the S. perpusillus group: Scinax sp. (gr. perpusillus), S. arduous, S. belloni, S. cosenzai, and S. v-signatus, including standard cytogenetic techniques and repetitive DNA FISH probes. All species had 2n = 24 chromosomes. Nucleolar organizing regions occurred in chromosome pair 6 in all species, but differed in their locations among some species, suggesting a putative synaponomastic character for the clade. In S. belloni, the first chromosome pair was a metacentric, contrasting with the submetacentric first pair reported in all other species of the genus. Scinax sp. (gr. perpusillus) and S. v-signatus had similar karyotypic formulae, suggesting they are related species. Scinax cosenzai had a divergent C-banding pattern. Repetitive DNA probes hybridized more frequently in chromosomal subtelomeric regions in all species indicating recent cladogenesis in these species. Karyotypic evidence indicates unreported high levels of stabilization within S. perpusillus and in S. catharinae clade, resulting in a wealth of characters potentially informative for higher phylogenetic analyses.
Collapse
Affiliation(s)
- Marco Antônio Amorim Peixoto
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil. .,Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.
| | - João Victor Andrade Lacerda
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.,Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carolina Coelho-Augusto
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.,Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| | - Renato Neves Feio
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| | - Jorge Abdala Dergam
- Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| |
Collapse
|
45
|
Scacchetti PC, Utsunomia R, Pansonato-Alves JC, Vicari MR, Artoni RF, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNAs in Characidium (Teleostei, Characiformes): Genomic Organization and Diversification of ZW Sex Chromosomes. Cytogenet Genome Res 2015; 146:136-143. [PMID: 26277929 DOI: 10.1159/000437165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
The speciose neotropical genus Characidium has proven to be a good model for cytogenetic exploration. Representatives of this genus often have a conserved diploid chromosome number; some species exhibit a highly differentiated ZZ/ZW sex chromosome system, while others do not show any sex-related chromosome heteromorphism. In this study, chromosome painting using a W-specific probe and comparative chromosome mapping of repetitive sequences, including ribosomal clusters and 4 microsatellite motifs - (CA)15, (GA)15, (CG)15, and (TTA)10 -, were performed in 6 Characidium species, 5 of which possessed a heteromorphic ZW sex chromosome system. The W-specific probe showed hybridization signals on the W chromosome of all analyzed species, indicating homology among the W chromosomes. Remarkably, a single major rDNA-bearing chromosome pair was found in all species. The 18S rDNA localized to the sex chromosomes in C. lanei, C. timbuiense and C. pterostictum, while the major rDNA localized to one autosome pair in C. vidali and C. gomesi. In contrast, the number of 5S rDNA-bearing chromosomes varied. Notably, minor ribosomal clusters were identified in the W chromosome of C. vidali. Microsatellites were widely distributed across almost all chromosomes of the karyotypes, with a greater accumulation in the subtelomeric regions. However, clear differences in the abundance of each motif were detected in each species. In addition, the Z and W chromosomes showed the differential accumulation of distinct motifs. Our results revealed variability in the distribution of repetitive DNA sequences and their possible association with sex chromosome diversification in Characidium species.
Collapse
|
46
|
de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi MDB. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet 2015; 8:56. [PMID: 26225139 PMCID: PMC4518567 DOI: 10.1186/s13039-015-0161-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Erythrinidae fish family contains three genera, Hoplias, Erythrinus and Hoplerythrinus widely distributed in Neotropical region. Remarkably, species from this family are characterized by an extensive karyotype diversity, with 2n ranging from 39 to 54 chromosomes and the occurrence of single and/or multiple sex chromosome systems in some species. However, inside the Hoplias genus, while H. malabaricus was subject of many studies, the cytogenetics of other congeneric species remains poorly explored. In this study, we have investigated chromosomal characteristics of four Hoplias species, namely H. lacerdae, H. brasiliensis, H. intermedius and H. aimara. We used conventional staining techniques (C-banding, Ag-impregnation and CMA3 -fluorescence) as well as fluorescence in situ hybridization (FISH) with minor and major rDNA and microsatellite DNAs as probes in order to analyze the karyotype evolution within the genus. RESULTS All species showed invariably 2n = 50 chromosomes and practically identical karyotypes dominated only by meta- and submetacentric chromosomes, the absence of heteromorphic sex chromosomes, similar pattern of C-positive heterochromatin blocks and homologous Ag-NOR-bearing pairs. The cytogenetic mapping of five repetitive DNA sequences revealed some particular interspecific differences between them. However, the examined chromosomal characteristics indicate that their speciation was not associated with major changes in their karyotypes. CONCLUSION Such conserved karyotypes contrasts with the extensive karyotype diversity that has been observed in other Erythrinidae species, particularly in the congeneric species H. malabaricus. Nevertheless, what forces drive such particularly different modes of karyotype evolution among closely related species? Different life styles, population structure and inner chromosomal characteristics related to similar cases in other vertebrate groups can also account for the contrasting modes of karyotype evolution in Hoplias genus.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
- />SEDUC-MT, Cuiabá, MT Brazil
| | | | - Cassia Fernanda Yano
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| | - Thomas Liehr
- />Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| |
Collapse
|
47
|
Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JAM, Matsuda Y, Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 2015; 125:111-23. [DOI: 10.1007/s00412-015-0531-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/05/2023]
|
48
|
Cioffi MDB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A, Yano CF, Supiwong W, Chaveerach A. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes). PLoS One 2015; 10:e0130199. [PMID: 26067030 PMCID: PMC4466321 DOI: 10.1371/journal.pone.0130199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.
Collapse
Affiliation(s)
- Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Mateo Andres Villa
- Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Weerayuth Supiwong
- Faculty of applied science and engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai, 43000, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Muang District, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
49
|
Costa GWWF, Cioffi MDB, Bertollo LAC, Molina WF. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum). Zebrafish 2015; 12:215-20. [PMID: 25719607 DOI: 10.1089/zeb.2014.1077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes.
Collapse
Affiliation(s)
- Gideão W W F Costa
- 1 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | | | | | | |
Collapse
|
50
|
Cocca E, Petraccioli A, Morescalchi MA, Odierna G, Capriglione T. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodracohamatus (Notothenioidei, Channichthyidae). COMPARATIVE CYTOGENETICS 2015; 9:1-15. [PMID: 25893071 PMCID: PMC4387377 DOI: 10.3897/compcytogen.v9i1.8731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 05/16/2023]
Abstract
Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodracohamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodracohamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodracohamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action.
Collapse
Affiliation(s)
- Ennio Cocca
- Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy
| | - Agnese Petraccioli
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | | | - Gaetano Odierna
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| |
Collapse
|