1
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
2
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
3
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
4
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Giatti S, Diviccaro S, Garcia-Segura LM, Melcangi RC. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J Neuroendocrinol 2019; 31:e12736. [PMID: 31102564 DOI: 10.1111/jne.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
The brain is a steroidogenic tissue. It expresses key molecules involved in the synthesis and metabolism of neuroactive steroids, such as steroidogenic acute regulatory protein (StAR), translocator protein 18 kDa (TSPO), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenases (3β-HSD), 5α-reductases (5α-R) and 3α-hydroxysteroid oxidoreductases (3α-HSOR). Previous studies have shown that the levels of brain steroids are different in male and female rats under basal conditions and after gonadectomy. In the present study, we assessed gene expression of key neurosteroidogenic molecules in the cerebral cortex and cerebellum of gonadally intact and gonadectomised adult male and female rats. In the cerebellum, the basal mRNA levels of StAR and 3α-HSOR were significantly higher in females than in males. By contrast, the mRNA levels of TSPO and 5α-R were significantly higher in males. In the cerebral cortex, all neurosteroidogenic molecules analysed showed similar mRNA levels in males and females. Gonadectomy increased the expression of 5α-R in the brain of both sexes, although it affected the brain expression of StAR, TSPO, P450scc and 3α-HSOR in females only and with regional differences. Although protein levels were not investigated in the present study, our findings indicate that mRNA expression of steroidogenic molecules in the adult rat brain is sexually dimorphic and presents regional specificity, both under basal conditions and after gonadectomy. Thus, local steroidogenesis may contribute to the reported sex and regional differences in the levels of brain neuroactive steroids and may be involved in the generation of sex differences in the adult brain function.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC. Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol 2018; 176:1-17. [PMID: 29981391 DOI: 10.1016/j.pneurobio.2018.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The nervous system is a target and a source of steroids. Neuroactive steroids are steroids that target neurons and glial cells. They include hormonal steroids originated in the peripheral glands, steroids locally synthesized by the neurons and glial cells (neurosteroids) and synthetic steroids, some of them used in clinical practice. Here we review the mechanisms of synthesis, metabolism and action of neuroactive steroids, including the role of epigenetic modifications and the mitochondria in their sex specific actions. We examine sex differences in neuroactive steroid levels under physiological conditions and their role in the establishment of sex dimorphic structures in the nervous system and sex differences in its function. In addition, particular attention is paid to neuroactive steroids under pathological conditions, analyzing how pathology alters their levels and their role as neuroprotective factors, considering the influence of sex in both cases.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Abstract
Neural steroids, as well as the enzymes that produce these hormones, are important for sexual differentiation of the brain during development. Aromatase converts testosterone into oestradiol. 5α-reductase converts testosterone to 5α-dihydrotestosterone and occurs in two isozymes: type 1 (5αR1) and type 2 (5αR2). Each of these enzymes is present in the developing brain in many species, although no work has been carried out examining the expression of all three enzymes in non-avian reptiles with genetic sex determination. In the present study, we evaluated mRNA expression of neural aromatase, 5αR1 and 5αR2, on the day of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymes throughout the brain and the quantification of mRNA expression in three regions that control adult sexual behaviours: the preoptic area (POA) and ventromedial amygdala (AMY), which are involved in male displays, as well as the ventromedial hypothalamus, which regulates female receptivity. Younger animals had a greater number (POA) and density (AMY) of 5αR1 mRNA expressing cells. We detected no effects of sex or age on aromatase or 5αR2. In comparison with data from adults, the present results support the idea that the green anole forebrain has not completely differentiated by 50 days after hatching and that 5αR1 may play a role in the early development of regions important for masculine function.
Collapse
Affiliation(s)
- R E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
10
|
Wade J. Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 2012; 176:456-60. [PMID: 22202602 DOI: 10.1016/j.ygcen.2011.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/15/2022]
Abstract
Morphology parallels function on a variety of levels in reproductive circuits in anole lizards, as in many vertebrate groups. For example, across species within the anole genus the muscle fibers regulating extension of a throat fan used in courtship are larger in males than females. Endocrine factors controlling behavior and morphology have been studied in detail in one species, the green anole (Anolis carolinensis). This review briefly describes the results that have been obtained and highlights key areas for future investigation that will provide insights on mechanisms from a comparative perspective.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Program in Neuroscience, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| |
Collapse
|
11
|
Cohen RE, Wade J. Aromatase and 5α-reductase type 2 mRNA in the green anole forebrain: an investigation of the effects of sex, season and testosterone manipulation. Gen Comp Endocrinol 2012; 176:377-84. [PMID: 22326351 PMCID: PMC3334470 DOI: 10.1016/j.ygcen.2012.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
Abstract
Aromatase and 5α-reductase (5αR) catalyze the synthesis of testosterone (T) metabolites: estradiol and 5α-dihydrotestosterone, respectively. These enzymes are important in controlling sexual behaviors in male and female vertebrates. To investigate factors contributing to their regulation in reptiles, male and female green anole lizards were gonadectomized during the breeding and non-breeding seasons and treated with a T-filled or blank capsule. In situ hybridization was used to examine main effects of and interactions among sex, season, and T on expression of aromatase and one isozyme of 5αR (5αR2) in three brain regions that control reproductive behaviors: the preoptic area, ventromedial nucleus of the amygdala and ventromedial hypothalamus (VMH). Patterns of mRNA generally paralleled previous evaluations of intact animals. Although no main effects of T were detected, interactions were present in the VMH. Specifically, the density of 5αR2 expressing cells was greater in T-treated than control females in this region, regardless of season. Among breeding males, blank-treated males had a denser population of 5αR2 positive cells than T-treated males. Overall, T appears to have less of a role in the regulation of these enzymes than in other vertebrate groups, which is consistent with the primary role of T (rather than its metabolites) in regulation of reproductive behaviors in lizards. However, further investigation of protein and enzyme activity levels are needed before specific conclusions can be drawn.
Collapse
Affiliation(s)
- Rachel E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
12
|
The distribution of estrogen receptor β mRNA in male and female green anole lizards. Brain Res 2012; 1430:43-51. [DOI: 10.1016/j.brainres.2011.10.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/30/2022]
|