1
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
2
|
Prasad MP, Detchou DKE, Wang F, Ledwidge LL, Kingston SE, Wilson Horch H. Transcriptional expression changes during compensatory plasticity in the terminal ganglion of the adult cricket Gryllus bimaculatus. BMC Genomics 2021; 22:742. [PMID: 34649498 PMCID: PMC8518198 DOI: 10.1186/s12864-021-08018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Damage to the adult central nervous system often leads to long-term disruptions in function due to the limited capacity for neurological recovery. The central nervous system of the Mediterranean field cricket, Gryllus bimaculatus, shows an unusual capacity for compensatory plasticity, most obviously in the auditory system and the cercal escape system. In both systems, unilateral sensory disruption leads the central circuitry to compensate by forming and/or strengthening connections with the contralateral sensory organ. While this compensatory plasticity in the auditory system relies on robust dendritic sprouting and novel synapse formation, the compensatory plasticity in the cercal escape circuitry shows little obvious dendritic sprouting and instead may rely on shifts in excitatory and inhibitory synaptic strength. RESULTS In order to better understand what types of molecular pathways might underlie this compensatory shift in the cercal system, we used a multiple k-mer approach to assemble a terminal ganglion transcriptome that included ganglia collected one, three, and 7 days after unilateral cercal ablation in adult, male animals. We performed differential expression analysis using EdgeR and DESeq2 and examined Gene Ontologies to identify candidates potentially involved in this plasticity. Enriched GO terms included those related to the ubiquitin-proteosome protein degradation system, chromatin-mediated transcriptional pathways, and the GTPase-related signaling system. CONCLUSION Further exploration of these GO terms will provide a clearer picture of the processes involved in compensatory recovery of the cercal escape system in the cricket and can be compared and contrasted with the distinct pathways that have been identified upon deafferentation of the auditory system in this same animal.
Collapse
Affiliation(s)
- Meera P Prasad
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Donald K E Detchou
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Felicia Wang
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Lisa L Ledwidge
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Sarah E Kingston
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
- Present address: School of Marine Sciences and Darling Marine Center, University of Maine, 193 Clarks Cove Rd, Walpole, ME, 04573, USA
- University of California Santa Cruz, Ecology and Evolutionary Biology Department and UC Natural Reserves, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Hadley Wilson Horch
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA.
| |
Collapse
|
3
|
De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS One 2018; 13:e0199070. [PMID: 29995882 PMCID: PMC6040699 DOI: 10.1371/journal.pone.0199070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood. We hypothesize that well-conserved developmental guidance cues may recapitulate their guidance functions in the adult in order to facilitate this compensatory growth. As a first step in testing this hypothesis, we have generated a de novo assembly of a prothoracic ganglion transcriptome derived from control and deafferented adult individuals. We have mined this transcriptome for orthologues of guidance molecules from four well-conserved signaling families: Slit, Netrin, Ephrin, and Semaphorin. Here we report that transcripts encoding putative orthologues of most of the candidate developmental ligands and receptors from these signaling families were present in the assembly, indicating expression in the adult G. bimaculatus prothoracic ganglion.
Collapse
|
4
|
Isaacson MD, Hedwig B. Electrophoresis of polar fluorescent tracers through the nerve sheath labels neuronal populations for anatomical and functional imaging. Sci Rep 2017; 7:40433. [PMID: 28084413 PMCID: PMC5233955 DOI: 10.1038/srep40433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 11/09/2022] Open
Abstract
The delivery of tracers into populations of neurons is essential to visualize their anatomy and analyze their function. In some model systems genetically-targeted expression of fluorescent proteins is the method of choice; however, these genetic tools are not available for most organisms and alternative labeling methods are very limited. Here we describe a new method for neuronal labelling by electrophoretic dye delivery from a suction electrode directly through the neuronal sheath of nerves and ganglia in insects. Polar tracer molecules were delivered into the locust auditory nerve without destroying its function, simultaneously staining peripheral sensory structures and central axonal projections. Local neuron populations could be labelled directly through the surface of the brain, and in-vivo optical imaging of sound-evoked activity was achieved through the electrophoretic delivery of calcium indicators. The method provides a new tool for studying how stimuli are processed in peripheral and central sensory pathways and is a significant advance for the study of nervous systems in non-model organisms.
Collapse
Affiliation(s)
- Matthew D Isaacson
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| |
Collapse
|
5
|
Deng L, Ruan Y, Chen C, Frye CC, Xiong W, Jin X, Jones K, Sengelaub D, Xu XM. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 2015; 277:103-114. [PMID: 26730519 DOI: 10.1016/j.expneurol.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Abstract
After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline acetyltransferase (ChAT), glycine, and GABA was performed in the T7-9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90% of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10% of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment.
Collapse
Affiliation(s)
- Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute for CNS Regeneration (GHMICR), Jinan University, Guangzhou,China, 510632
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christian Corbin Frye
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kathryn Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
6
|
Pfister A, Johnson A, Ellers O, Horch HW. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus. Front Physiol 2013; 3:367. [PMID: 23986706 PMCID: PMC3750946 DOI: 10.3389/fphys.2012.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.
Collapse
Affiliation(s)
- Alexandra Pfister
- Department of Invertebrate Zoology, American Museum of Natural History New York, NY, USA
| | | | | | | |
Collapse
|
7
|
Lakes-Harlan R. Lesion-induced insights in the plasticity of the insect auditory system. Front Physiol 2013; 4:48. [PMID: 23986709 PMCID: PMC3750944 DOI: 10.3389/fphys.2013.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/28/2013] [Indexed: 12/04/2022] Open
Abstract
The auditory networks of Orthoptera offer a model system uniquely suited to the study of neuronal connectivity and lesion-dependent neural plasticity. Monaural animals, following the permanent removal of one ear in nymphs or adults, adjust their auditory pathways by collateral sprouting of afferents and deafferented interneurons which connect to neurons on the contralateral side. Transient lesion of the auditory nerve allows us to study regeneration as well as plasticity processes. After crushing the peripheral auditory nerve, the lesioned afferents regrow and re-establish new synaptic connections which are relevant for auditory behavior. During this process collateral sprouting occurs in the central nervous networks, too. Interestingly, after regeneration a changed neuronal network will be maintained. These paradigms are now been used to analyze molecular mechanism in neuronal plasticity on the level of single neurons and small networks.
Collapse
Affiliation(s)
- Reinhard Lakes-Harlan
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-University Gießen Gießen, Germany
| |
Collapse
|