1
|
Liu H, Mo Q, Yang J, Jia Y, Ma R, Wu X, Huang Y, Wang X. Evaluation of riboflavin concentrations and light intensities on bacteria reduction in platelets using visible light. Transfus Apher Sci 2024; 63:104006. [PMID: 39303454 DOI: 10.1016/j.transci.2024.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Bacterial contamination in platelets has been a major concern over the years. In this study, we showed that treatment with 420 nm visible light with various concentrations of riboflavin in platelets reduced E. coli and S. aureus by 0-1.56 and 0.3-2.02 logs (50 mW/cm2), 2.24-4.77 and 0.73-3.26 logs (75 mW/cm2), and ≥ 5.14 and ≥ 5.27 logs (100 mW/cm2). Treatment with high-intensity light (100 mW/cm2) and high concentrations of riboflavin (400 µM and 500 µM) effectively reduced both bacteria in platelets by over 4 logs. The study also found a positive correlation between bacterial reduction and light intensity, as well as riboflavin concentration in a dose-dependent manner. These results demonstrate the potential of using riboflavin and visible light to reduce the risk of bacterial contamination in platelets, and support the need for further exploration of pathogen reduction using 420 nm visible light and riboflavin.
Collapse
Affiliation(s)
- Hong Liu
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Qin Mo
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Jianhao Yang
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Yao Jia
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Rongna Ma
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Xiaofei Wu
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Yuwen Huang
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China
| | - Xun Wang
- Department of Transfusion-transmitted Infectious Disease, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai 200051, China.
| |
Collapse
|
2
|
Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K. Platelet Storage-Problems, Improvements, and New Perspectives. Int J Mol Sci 2024; 25:7779. [PMID: 39063021 PMCID: PMC11277025 DOI: 10.3390/ijms25147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.
Collapse
Affiliation(s)
- Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur 416006, India;
| | - Julia Mikolas
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Krystian Kubica
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
3
|
Baek JH, Shin HKH, Xu F, Zhang X, Williams MC, Gao Y, Vostal JG, Buehler PW, Villa C, D'Agnillo F. Ultraviolet light and riboflavin accelerates red blood cell dysfunction in vitro and in a guinea pig transfusion model. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2024; 22:316-327. [PMID: 38814883 PMCID: PMC11251826 DOI: 10.2450/bloodtransfus.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Quality assessment of modified or processed red blood cell (RBC) components, such as pathogen-reduced RBCs, using only in vitro testing may not always be predictive of in vivo performance. Mouse or rat in vivo models are limited by a lack of applicability to certain aspects of human RBC biology. Here, we used a guinea pig model to study the effects of riboflavin combined with UV light on the integrity of RBCs in vitro and following transfusion in vivo. MATERIALS AND METHODS Guinea pig RBCs were collected from whole blood (WB) treated with varying UV doses (10, 20, 40 or 80 J/mL) in the presence of riboflavin (UVR-RBCs). In vitro tests for UVR-RBCs included hemolysis, osmotic fragility, and cellular morphology by scanning electron microscopy. Guinea pigs transfused with one-day post-treatment UVR-RBCs were evaluated for plasma hemoglobin (Hb), non-transferrin bound iron (NTBI), total iron and Perls-detectable hemosiderin deposition in the spleen and kidney, and renal uptake of Hb. RESULTS Acute RBC injury was dose dependently accelerated after treatment with UV light in the presence of riboflavin. Aberrant RBC morphology was evident at 20, 40, and 80 J/mL, and membrane lysis with Hb release was prominent at 80 J/mL. Guinea pigs transfused with 40 and 80 J/mL UVR-RBCs showed increased plasma Hb levels, and plasma NTBI was elevated in all UVR-RBC groups (10-80 J/mL). Total iron levels and Perls-hemosiderin staining in spleen and kidney as well as Hb uptake in renal proximal tubules were increased 8 hours post-transfusion with 40 and 80 J/mL UVR-RBCs. DISCUSSION UVR-RBCs administered to guinea pigs increased markers of intravascular and extravascular hemolysis in a UV dose-dependent manner. This model may allow for the discrimination of RBC injury during testing of extensively processed RBCs intended for transfusion.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Hye Kyung H Shin
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Fei Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Xiaoyuan Zhang
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Matthew C Williams
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jaroslav G Vostal
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Paul W Buehler
- University of Maryland School of Medicine, Center for Blood Oxygen Transport and Hemostasis and the Department of Pathology, Baltimore, MD, United States of America
| | - Carlos Villa
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
4
|
Zhu L, Li C, Wang D. Photodynamic inactivation of antibiotic-resistant bacteria in whole blood using riboflavin photodynamic method. Front Microbiol 2024; 15:1404468. [PMID: 39015739 PMCID: PMC11250595 DOI: 10.3389/fmicb.2024.1404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Treating bacteremia caused by antibiotic-resistant bacteria is a global concern. Antibacterial photodynamic inactivation is a promising strategy to combat it. However, it's challenging to achieve the inactivation of antibiotic-resistant bacteria in whole blood because of its opacity and complexity. We investigated a riboflavin photodynamic method to effectively inactivate antibiotic-resistant bacteria in whole blood. Four strains of antibiotic-resistant bacteria were isolated, identified, and cultured in this research: methicillin-resistant Staphylococcus aureus (MRSA), pan-drug-resistant Acinetobacter baumannii (PDRAB), ESBLs-producing Escherichia coli (EPEC) and pan-drug-resistant Klebsiella pneumoniae (PDRKP). To simulate bacteremia, antibiotic-resistant bacteria was added into whole blood. Whole blood was treated using riboflavin photodynamic method with ultraviolet irradiation (308 nm and 365 nm). The ultraviolet irradiation dose was divided into 18 J/cm2, 36 J/cm2, and 54 J/cm2. Microbial count of antibiotic-resistant bacteria in whole blood was used for evaluating inactivation effectiveness. The roles of red blood cells, lymphocytes, coagulation factors, and platelets in whole blood were assessed. In results, inactivation effectiveness increased as the ultraviolet dose increased from 18 J/cm2 to 54 J/cm2. At the dose of 18 J/cm2, inactivation effectiveness of four antibiotic-resistant bacteria were more than 80%, while only 67% of MRSA. The antibacterial effect was enhanced by the combination of riboflavin photodynamic treatment and antibiotic. The red blood cell function was susceptible to ultraviolet dose. At the dose of 18 J/cm2, hemolysis rate was less than 0.8% and there was no change in levels of ATP and 2,3-DPG. At the same dose, the proliferation, cell killing, and cytokine secretion activities of lymphocytes decreased 20-70%; Factor V and Factor VIII activities decreased 50%; Fibrinogen and platelet function loss significantly but reparable. Consequently, we speculated that riboflavin photodynamic method with a ultraviolet dose of 18 J/cm2 was effective in inactivating four antibiotic-resistant bacteria in whole blood while whole blood function was preserved. We also provided a novel extracorporeal circulation phototherapy mode for treating bacteremia caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, Chengdu, China
| | - Deqing Wang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
6
|
Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34:2242708. [PMID: 37578045 DOI: 10.1080/09537104.2023.2242708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junyan Feng
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, China
| | - Nian Dong
- Department of Clinical Laboratory, Gulin People's Hospital, Guilin, China
| | - Pan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Sun J, Dahiya N, Schmitt T, Stewart C, Anderson J, MacGregor S, Maclean M, Beger RD, Atreya CD. Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates. Metabolomics 2023; 19:88. [PMID: 37855954 DOI: 10.1007/s11306-023-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas Schmitt
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
8
|
Cardoso M, Ragan I, Hartson L, Goodrich RP. Emerging Pathogen Threats in Transfusion Medicine: Improving Safety and Confidence with Pathogen Reduction Technologies. Pathogens 2023; 12:911. [PMID: 37513758 PMCID: PMC10383627 DOI: 10.3390/pathogens12070911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Emerging infectious disease threats are becoming more frequent due to various social, political, and geographical pressures, including increased human-animal contact, global trade, transportation, and changing climate conditions. Since blood products for transfusion are derived from donated blood from the general population, emerging agents spread by blood contact or the transfusion of blood products are also a potential risk. Blood transfusions are essential in treating patients with anemia, blood loss, and other medical conditions. However, these lifesaving procedures can contribute to infectious disease transmission, particularly to vulnerable populations. New methods have been implemented on a global basis for the prevention of transfusion transmissions via plasma, platelets, and whole blood products. Implementing proactive pathogen reduction methods may reduce the likelihood of disease transmission via blood transfusions, even for newly emerging agents whose transmissibility and susceptibility are still being evaluated as they emerge. In this review, we consider the Mirasol PRT system for blood safety, which is based on a photochemical method involving riboflavin and UV light. We provide examples of how emerging threats, such as Ebola, SARS-CoV-2, hepatitis E, mpox and other agents, have been evaluated in real time regarding effectiveness of this method in reducing the likelihood of disease transmission via transfusions.
Collapse
Affiliation(s)
- Marcia Cardoso
- Terumo BCT, Inc., TERUMO Böood and Cell Technologies, Zaventem, 41 1930 Brussels, Belgium
| | - Izabela Ragan
- Infectious Disease Research Center, Department of Biomedical Science, Colorado State University, Fort Collins, CO 80521, USA
| | - Lindsay Hartson
- Infectious Disease Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Raymond P Goodrich
- Infectious Disease Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
9
|
Adane T, Enawgaw B. Human leukocyte antigen alloimmunization prevention mechanisms in blood transfusion. Asian J Transfus Sci 2023; 17:264-272. [PMID: 38274979 PMCID: PMC10807525 DOI: 10.4103/ajts.ajts_144_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 12/05/2021] [Indexed: 11/04/2022] Open
Abstract
In many fields of clinical medicine and blood transfusion, the human leukocyte antigen (HLA) system is crucial. Alloimmunization happens as a result of an immune response to foreign antigens encountered during blood transfusion. This gives rise to alloantibodies against red blood cells (RBCs), HLA, or human platelet antigen (HPA). HLA alloimmunization following allogeneic transfusion was shown to be a result of contaminating white blood cells (WBCs) present in the product. It is a common complication of transfusion therapy that leads to difficulties in clinical intolerance and refractoriness to platelet transfusion during patient management. Single-donor platelets, prophylactic HLA matching, leukoreduction, and irradiation of cellular blood products are some of the mechanisms to prevent HLA alloimmunization during a blood transfusion. Now, the best approach to reduce the occurrence of primary HLA alloimmunization is the removal of WBCs from the blood by filtration.
Collapse
Affiliation(s)
- Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
10
|
Mciteka LP. A Synthesis Review of Vitamins Involved in the Fight against Covid‐19. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lulama P. Mciteka
- University of the Western Cape Department of Chemistry Private Bag X17, Bellville 7535 Cape Town South Africa
| |
Collapse
|
11
|
Gabriel C, Marks DC, Henschler R, Schallmoser K, Burnouf T, Koh MBC. Eye drops of human origin-Current status and future needs: Report on the workshop organized by the ISBT Working Party for Cellular Therapies. Vox Sang 2023; 118:301-309. [PMID: 36847186 DOI: 10.1111/vox.13413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Serum eye drops (SEDs) are used to treat ocular surface disease (OSD) and to promote ocular surface renewal. However, their use and production are not standardized, and several new forms of human eye drops have been developed. MATERIALS AND METHODS The International Society for Blood Transfusion Working Party (ISBT WP) for Cellular Therapies held a workshop to review the current types of eye drops of human origin (EDHO) status and provide guidance. RESULTS The ISBT WP for Cellular Therapies introduced the new terminology 'EDHO' to emphasize that these products are analogous to 'medical products of human origin'. This concept encompasses their source (serum, platelet lysate, and cord blood) and the increasingly diverse spectrum of clinical usage in ophthalmology and the need for traceability. The workshop identified the wide variability in EDHO manufacturing, lack of harmonized quality and production standards, distribution issues, reimbursement schemes and regulations. EDHO use and efficacy is established for the treatment of OSD, especially for those refractory to conventional treatments. CONCLUSION Production and distribution of single-donor donations are cumbersome and complex. The workshop participants agreed that allogeneic EDHO have advantages over autologous EDHO although more data on clinical efficacy and safety are needed. Allogeneic EDHOs enable more efficient production and, when pooled, can provide enhanced standardization for clinical consistency, provided optimal margin of virus safety is ensured. Newer products, including platelet-lysate- and cord-blood-derived EDHO, show promise and benefits over SED, but their safety and efficacy are yet to be fully established. This workshop highlighted the need for harmonization of EDHO standards and guidelines.
Collapse
Affiliation(s)
- Christian Gabriel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Denese C Marks
- Research and Development, The Australian Red Cross Lifeblood, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital and Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria.,Department of Blood Group Serology and Transfusion Medicine, Universitätsklinikum, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mickey B C Koh
- Institute for Infection and Immunity, St. George's University of London, Cranmer Terrace, Jenner Wing, London, UK
| |
Collapse
|
12
|
Valsami S, Grouzi E, Mochandreou D, Pouliakis A, Piroula-Godoy M, Kokori S, Pittaras T, Raikou A, Politou M. Effect of mirasol pathogen reduction technology system on immunomodulatory molecules of apheresis platelets. Transfus Apher Sci 2023; 62:103523. [PMID: 36041977 DOI: 10.1016/j.transci.2022.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
Pathogen inactivation for platelets by riboflavin system (MIRASOL) efficiently reduces transfusion related pathogen transmission. However little is known about its impact on platelets' immunomodulatory biochemical profile. We aimed was to assess the effects of MIRASOL treatment on platelet quality parameters and immunomodulatory molecules CD62P, RANTES, and CD40L in Single Donor Platelets (SDPs) resuspended in plasma (SDP-P) or T-PAS and additive solution (SDP-A). Twenty nine SDPs (15 SDP-P and 14 SDP-A) were included in the study. Samples were collected before, after MIRASOL treatment and just before transfusion. P-selectin (CD62P), RANTES, and CD40L were tested by ELISA. Platelet products quality assays were also performed. Platelet count/unit decreased after Mirasol treatment by 13 %. The pH of all units decreased over the 5-day storage period but remained above expected limits and the swirling test was positive throughout storage. P-selectin levels were not different between the three different time points in both SDPs-P and SDPs-A while RANTES levels were found to differ statistically significantly at the three different time points in all units and in the SPD-A subgroup. CD40L levels in all SDP products increased slightly during storage but this was not statistically significant. CD62P, RANTES, and CD40L in all time points were elevated in SDPs-A compared to SDPs-P but not at a statistically significant level. In conclusion MIRASOL treatment apart from RANTES increase does not seem to substantially affect platelets associated other cytokines and immunomodulatory molecules namely P-selectin and sCD40L which are implicated in immune transfusion reactions.
Collapse
Affiliation(s)
- S Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - E Grouzi
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - D Mochandreou
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - A Pouliakis
- Department of Cytopathology, University of Athens, "ATTIKON" University Hospital, Athens, Greece
| | - M Piroula-Godoy
- Masters of Science Programme "Thrombosis-Haemorrhage-Transfusion Medicine" of the National and Kapodistrian University of Athens, Greece
| | - S Kokori
- Laboratory of Haematology & Blood Bank Unit, "Attikon" University Hospital, National and Kapodistrian Athens, Athens, Greece
| | - T Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Raikou
- Department of Transfusion Service and Clinical Hemostasis, "Agios Savvas" Regional Cancer Hospital, Athens, Greece
| | - M Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece; Masters of Science Programme "Thrombosis-Haemorrhage-Transfusion Medicine" of the National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
13
|
Mechanism of selective induction of apoptosis of HCT116 tumor cells in circulating blood by riboflavin photochemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112588. [DOI: 10.1016/j.jphotobiol.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
14
|
Assessing quality of blood components derived from whole blood treated with riboflavin and ultraviolet light and separated with a fully automated device. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2022; 20:395-403. [PMID: 35175188 PMCID: PMC9480972 DOI: 10.2450/2022.0278-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Combining pathogen reduction and automated separation of whole blood (WB), together with the use of improved additive solutions, may increase reproducibility and extend shelf-life of blood components. MATERIALS AND METHODS Forty WB units were collected from volunteer donors and randomised 1:1 into two groups: 1) pathogen reduction with riboflavin and ultraviolet light (PRT); or 2) no treatment (Control). After two hours (h) at room temperature, all units underwent fully automated separation into red blood cell concentrate (RBCC), plasma and leukopack components. RBCCs were leukoreduced and stored in phosphate-adenine-glucose-guanosine-saline-mannitol (PAGGSM) solution while plasma units were shock frozen within 8 h of collection and stored at ≤ -25°C. RBCCs were sampled on day 1 and weekly thereafter until day 42, while plasma was sampled on days 1 and 30. The main study objective was to assess the in vitro quality of separated RBCCs using biochemical and haematological parameters. Plasma protein content after one cycle of freeze-thaw was also analysed. RESULTS The quality of RBCCs was largely comparable between the PRT and Control groups, except for a significantly higher degree of haemolysis and extracellular potassium levels in the PRT group after 35 days of storage. While potassium concentration was significantly higher in the PRT group at all timepoints, the degree of haemolysis exceeded the accepted European threshold (i.e., <0.8% of red cell mass in ≥ 90.0% of tested units) after day 35. Most plasma protein levels were significantly lower in the PRT than the Control group at both day 1 and day 30. DISCUSSION Pathogen reduction with riboflavin and ultraviolet light treatment of WB can be combined with fully automated separation to obtain RBCCs that may be stored for up to 35 days in PAGGSM solution with acceptable quality, comparable to that of RBCCs from untreated blood. The relative differences between factor concentrations in plasma from the PRT and the Control groups were similar during the 30-day storage.
Collapse
|
15
|
Hoad VC, Kiely P, Seed CR, Viennet E, Gosbell IB. An Outbreak of Japanese Encephalitis Virus in Australia; What Is the Risk to Blood Safety? Viruses 2022; 14:1935. [PMID: 36146742 PMCID: PMC9501196 DOI: 10.3390/v14091935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
A widespread outbreak of Japanese encephalitis virus (JEV) was detected in mainland Australia in 2022 in a previous non-endemic area. Given JEV is known to be transfusion-transmissible, a rapid blood-safety risk assessment was performed using a simple deterministic model to estimate the risk to blood safety over a 3-month outbreak period during which 234,212 donors attended. The cumulative estimated incidence in donors was 82 infections with an estimated 4.26 viraemic components issued, 1.58 resulting in transfusion-transmission and an estimated risk of encephalitis of 1 in 4.3 million per component transfused over the risk period. Australia has initiated a robust public health response, including vector control, animal control and movement, and surveillance. Unlike West Nile virus, there is an effective vaccine that is being rolled-out to those at higher risk. Risk evaluation considered options such as restricting those potentially at risk to plasma for fractionation, which incorporates additional pathogen reduction, introducing a screening test, physicochemical pathogen reduction, quarantine, post donation illness policy changes and a new donor deferral. However, except for introducing a new deferral to potentially cover rare flavivirus risks, no option resulted in a clear risk reduction benefit but all posed threats to blood sufficiency or cost. Therefore, the blood safety risk was concluded to be tolerable without specific mitigations.
Collapse
Affiliation(s)
- Veronica C. Hoad
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Philip Kiely
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Clive R. Seed
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Elvina Viennet
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Iain B. Gosbell
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
16
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022; 10:908250. [PMID: 36082161 PMCID: PMC9445835 DOI: 10.3389/fbioe.2022.908250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
- *Correspondence: Mónica Santos González,
| |
Collapse
|
17
|
Zhang S, Gao L, Wang P, Ma Y, Wang X, Wen J, Cheng Y, Liu C, Zhang C, Liu C, Yan Y, Zhao C. A minimally manipulated preservation and virus inactivation method for amnion/chorion. Front Bioeng Biotechnol 2022; 10:952498. [PMID: 36032718 PMCID: PMC9403546 DOI: 10.3389/fbioe.2022.952498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Allogeneic amnion tissues have been widely used in tissue repair and regeneration, especially a remarkable trend of clinical uses in chronic wound repair. The virus inactivation procedures are necessary and required to be verified for the clinical use and approval of biological products. Cobalt-60 (Co-60) or electron-beam (e-beam) is the common procedure for virus and bacterial reduction, but the excessive dose of irradiation was reported to be harmful to biological products. Herein, we present a riboflavin (RB)-ultraviolet light (UV) method for virus inactivation of amnion and chorion tissues. We used the standard in vitro limiting dilution assay to test the viral reduction capacity of the RB-UV method on amnion or chorion tissues loaded with four types of model viruses. We found RB-UV was a very effective procedure for inactivating viruses of amnion and chorion tissues, which could be used as a complementary method to Co-60 irradiation. In addition, we also screened the washing solutions and drying methods for the retention of growth factors.
Collapse
Affiliation(s)
- Shang Zhang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
- *Correspondence: Shang Zhang,
| | - Lichang Gao
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Pin Wang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Yuyan Ma
- Department of Gynecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoliang Wang
- Liangchen Biotechnology (Suzhou) Co., Ltd., Suzhou, China
| | - Jie Wen
- Liangchen Biotechnology (Suzhou) Co., Ltd., Suzhou, China
| | - Yu Cheng
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Changlin Liu
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Chunxia Zhang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Changfeng Liu
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Yongli Yan
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Chengru Zhao
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| |
Collapse
|
18
|
González MB, Cuerva RC, Muñoz BF, Rosell-Valle C, López MM, Arribas BA, Montiel MÁ, Sánchez GC, González MS. Optimization of human platelet lysate production and pathogen reduction in a public blood transfusion center. Transfusion 2022; 62:1839-1849. [PMID: 35924726 DOI: 10.1111/trf.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human platelet lysate (HPL) has been proposed as a safe and efficient xeno-free alternative to fetal bovine serum (FBS) for large-scale culturing of cell-based medicinal products. However, the use of blood derivatives poses a potential risk of pathogen transmission. To mitigate this risk, different pathogen reduction treatment (PRT) practices can be applied on starting materials or on final products, but these methods might modify the final composition and the quality of the products. STUDY DESIGN AND METHODS We evaluated the impact of applying a PRT based on riboflavin and ultraviolet irradiation on the raw materials used to manufacture an improved Good Manufacturing Practices (GMP)-grade HPL product in a public blood center. Growth promotion and the levels of growth factors and proteins were compared between an inactivated product (HPL4-i) and a non-inactivated product (HPL4). Stability studies were performed at 4°C, -20°C, and -80°C. RESULTS The application of a PRT on the starting materials significantly altered the protein composition of HPL4-i as compared with HPL4. Despite this, the growth promoting rates were unaffected when compared with FBS used as a control. While all products were stable at -20°C and -80°C for 24 months, a significant decrease in the activity of HPL4-i was observed when stored at 4°C. CONCLUSION Our results show that the application of a PRT based on riboflavin and ultraviolet light on starting materials used in the manufacture of HPL modifies the final composition of the product, yet its cell growth promoting activity is maintained at levels similar to those of non-inactivated products.
Collapse
Affiliation(s)
- María Bermejo González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Migue Ángel Montiel
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
19
|
Seroprevalence of Transfusion Transmissible Infections and Associated Risk Factors in Hospitalized Patients before Transfusion in Jinling Hospital Nanjing University: A Three-Year Retrospective Study. Pathogens 2022; 11:pathogens11060710. [PMID: 35745563 PMCID: PMC9227149 DOI: 10.3390/pathogens11060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022] Open
Abstract
Transfusion-transmitted infections (TTIs), such as hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and treponema pallidum (TP), must be detected before blood transfusion. However, few studies have been conducted on the prevalence and accuracy of positive results in hospitalized patients. The purpose of this study was to investigate the real seroprevalence of TTIs among patients before blood transfusion and analyze the characteristics of false-positive results in Jinling Hospital, Nanjing University, China. TTI results were collected from medical records and analyzed retrospectively. Additionally, we also used confirmatory assays to verify the accuracy of positive results. The overall prevalence of TTI was 8.96%, which was related to gender and age. The real positive rates were 86.67% (HBV), 35.09% (HCV), 20.75% (HIV), and 100% (TP). Our results also showed that high-speed centrifugation can reduce the false-positive rate of HBsAg. In summary, the results demonstrated that the positive rates of TTIs in hospitalized patients are higher than those in the general population. We also confirmed the existence of false-positive results in serological screening for TTIs. The method of processing specimens through high-speed centrifugation could reduce the false-positive results of detecting antigens effectively.
Collapse
|
20
|
Kim DK, Shin M, Kim HS, Kang DH. Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. Typhimurium in apple juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Grégoire Y, Delage G, Custer B, Rochette S, Renaud C, Lewin A, Germain M. Cost-effectiveness of pathogen reduction technology for plasma and platelets in Québec: A focus on potential emerging pathogens. Transfusion 2022; 62:1208-1217. [PMID: 35560238 DOI: 10.1111/trf.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The last economic evaluation of pathogen reduction technology (PRT) in Canada was conducted in 2007. We reassessed the cost-effectiveness of PRT in the province of Québec (which has its own blood supplier) and included an evaluation of the potential impact of emerging pathogens on cost-effectiveness. STUDY DESIGN AND METHODS Decision analytic Markov models were developed to simulate the costs and quality-adjusted life-years (QALY) associated with PRT as an addition to existing safety measures for plasma and platelet products (except for bacterial culture). Models accounted for several infectious and noninfectious transfusion reactions, recipients' productivity losses ensuing from these reactions, and the impact of PRT on platelet function. Scenario analyses were conducted to evaluate the impact of a new highly contagious human immunodeficiency virus (HIV)-like or West Nile virus (WNV)-like pathogen, assuming various epidemiological scenarios. RESULTS In the base case, the incremental cost-effectiveness ratio (ICER) of PRT was estimated at $8,088,974/QALY gained. Assuming the presence of an HIV-like pathogen, the ICER was $265,209/QALY gained in the "average transmission" scenario, $1,274,445/QALY gained in the "rapid testing scenario," and $123,063/QALY gained in the "highly contagious" scenario. Assuming the presence of a WNV-like pathogen, the ICER was $7,469,167/QALY gained in the "average transmission" scenario and $6,652,769/QALY gained in the "highly contagious" scenario. CONCLUSION The cost-effectiveness of PRT may substantially improve in the event of a new, blood-borne pathogen. Given their significant impact on cost-effectiveness, the emergence of new pathogens should be considered when deciding whether to adopt PRT.
Collapse
Affiliation(s)
- Yves Grégoire
- Medical Affairs and Innovation, Héma-Québec, Québec city, Canada
| | | | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | | | | | | | - Marc Germain
- Medical Affairs and Innovation, Héma-Québec, Québec city, Canada
| |
Collapse
|
22
|
Crocker LB, Lee JH, Mital S, Mills GC, Schack S, Bistrović-Popov A, Franck CO, Mela I, Kaminski CF, Christie G, Fruk L. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci Rep 2022; 12:6580. [PMID: 35449377 PMCID: PMC9022420 DOI: 10.1038/s41598-022-10394-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.
Collapse
Affiliation(s)
- Leander B Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ju Hyun Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabrielle C Mills
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sina Schack
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Andrea Bistrović-Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Christoph O Franck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
23
|
Ghosh S, Puranik M. Initial Excited State Dynamics of Lumichrome upon Ultraviolet Excitation. Photochem Photobiol 2022; 98:1270-1283. [PMID: 35380739 DOI: 10.1111/php.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Lumichrome (LC) is the major photodegradation product of biologically important flavin cofactors. Since LC serves as a structural comparison to the flavins; understanding excited states of LC is fundamentally important to establish a connection with photophysics of different flavins, such as lumiflavin (LF), riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Herein, we deduce the initial excited state structural dynamics of LC using UV resonance Raman (UVRR) intensity analysis. The UVRR spectra at wavelengths across the 260 nm absorption band of LC were measured and resulting Raman excitation profiles and absorption spectrum were self consistently simulated using a time-dependent wave packet formalism to extract the initial excited state structural and solvent broadening parameters. These results are compared with those obtained for other flavins following UV excitations. We find that LC undergoes a very distinct instantaneous charge redistribution than flavins, which is attributed to the extended π-conjugation present in flavins but missing in LC. The homogeneous broadening linewidth of LC appears to be lower than that of LF, while the inhomogeneous broadening values are comparable, indicating greater solvent interaction with excited flavin on ultrafast timescale compared to LC, whereas on longer timescale these interactions are almost similar.
Collapse
Affiliation(s)
- Sudeb Ghosh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| |
Collapse
|
24
|
Cloutier M, De Korte D. Residual risks of bacterial contamination for
pathogen‐reduced
platelet components. Vox Sang 2022; 117:879-886. [DOI: 10.1111/vox.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Marc Cloutier
- Medical Affairs and Innovation Héma‐Québec Québec Canada
- Biochemistry, Microbiology and Bio‐informatics Université Laval Québec Canada
| | - Dirk De Korte
- Blood Cell Research Sanquin Research Amsterdam The Netherlands
- Product and Process Development Sanquin Blood Bank Amsterdam The Netherlands
| | | |
Collapse
|
25
|
Li M, Irsch J, Corash L, Benjamin RJ. Is pathogen reduction an acceptable alternative to irradiation for risk mitigation of transfusion-associated graft versus host disease? Transfus Apher Sci 2022; 61:103404. [DOI: 10.1016/j.transci.2022.103404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Abstract
The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it is an open question to what extent the applied media, and especially their riboflavin concentration, can influence the results. A literature search identified appropriate virus photoinactivation publications and, where possible, viral light susceptibility was quantitatively determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue) light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively. Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin, have so far produced results with the greatest viral susceptibilities. It should be critically evaluated whether the currently published virus sensitivities are really only intrinsic properties of the virus, or whether the medium played a significant role. In future experiments, irradiation should be carried out in solutions with the lowest possible riboflavin concentration.
Collapse
|
27
|
Fonseca S, Cayer MP, Ahmmed KMT, Khadem-Mohtaram N, Charette SJ, Brouard D. Characterization of the Antibacterial Activity of an SiO2 Nanoparticular Coating to Prevent Bacterial Contamination in Blood Products. Antibiotics (Basel) 2022; 11:antibiotics11010107. [PMID: 35052984 PMCID: PMC8773057 DOI: 10.3390/antibiotics11010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Technological innovations and quality control processes within blood supply organizations have significantly improved blood safety for both donors and recipients. Nevertheless, the risk of transfusion-transmitted infection remains non-negligible. Applying a nanoparticular, antibacterial coating at the surface of medical devices is a promising strategy to prevent the spread of infections. In this study, we characterized the antibacterial activity of an SiO2 nanoparticular coating (i.e., the “Medical Antibacterial and Antiadhesive Coating” [MAAC]) applied on relevant polymeric materials (PM) used in the biomedical field. Electron microscopy revealed a smoother surface for the MAAC-treated PM compared to the reference, suggesting antiadhesive properties. The antibacterial activity was tested against selected Gram-positive and Gram-negative bacteria in accordance with ISO 22196. Bacterial growth was significantly reduced for the MAAC-treated PVC, plasticized PVC, polyurethane and silicone (90–99.999%) in which antibacterial activity of ≥1 log reduction was reached for all bacterial strains tested. Cytotoxicity was evaluated following ISO 10993-5 guidelines and L929 cell viability was calculated at ≥90% in the presence of MAAC. This study demonstrates that the MAAC could prevent bacterial contamination as demonstrated by the ISO 22196 tests, while further work needs to be done to improve the coating processability and effectiveness of more complex matrices.
Collapse
Affiliation(s)
- Sahra Fonseca
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Marie-Pierre Cayer
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
| | | | | | - Steve J. Charette
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Danny Brouard
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Chemistry, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
28
|
Rosell-Valle C, Martín-López M, Campos F, Chato-Astrain J, Campos-Cuerva R, Alaminos M, Santos González M. Inactivation of human plasma alters the structure and biomechanical properties of engineered tissues. Front Bioeng Biotechnol 2022. [PMID: 36082161 DOI: 10.3389/fbioe.2022.908250/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Fibrin is widely used for tissue engineering applications. The use of blood derivatives, however, carries a high risk of transmission of infectious agents, necessitating the application of pathogen reduction technology (PRT). The impact of this process on the structural and biomechanical properties of the final products is unknown. We used normal plasma (PLc) and plasma inactivated by riboflavin and ultraviolet light exposure (PLi) to manufacture nanostructured cellularized fibrin-agarose hydrogels (NFAHs), and then compared their structural and biomechanical properties. We also measured functional protein C, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and coagulation factors [fibrinogen, Factor (F) V, FVIII, FX, FXI, FXIII] in plasma samples before and after inactivation. The use of PLi to manufacture cellularized NFAHs increased the interfibrillar spacing and modified their biomechanical properties as compared with cellularized NFAH manufactured with PLc. PLi was also associated with a significant reduction in functional protein C, FV, FX, and FXI, and an increase in the international normalized ratio (derived from the PT), APTT, and TT. Our findings demonstrate that the use of PRT for fibrin-agarose bioartificial tissue manufacturing does not adequately preserve the structural and biomechanical properties of the product. Further investigations into PRT-induced changes are warranted to determine the applications of NFAH manufactured with inactivated plasma as a medicinal product.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín-López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Escuela Internacional de Doctorado Universidad de Sevilla, Seville, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rafael Campos-Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
- Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
29
|
Arcas Otero C, Pereira Saavedra A, Castrillo Fernández A, Vilariño López MD. Comparison of transfusion-outcome in patients with massive bleeding receiving pathogen-reduced platelets prepared with two different technologies. Transfus Apher Sci 2022; 61:103359. [DOI: 10.1016/j.transci.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
30
|
A comparative study of pathogen inactivation technologies in human platelet lysate and its optimal efficiency in human placenta-derived stem cells culture. J Virol Methods 2022; 302:114478. [DOI: 10.1016/j.jviromet.2022.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
31
|
Liu H, Wang X. Pathogen reduction technology for blood component: A promising solution for prevention of emerging infectious disease and bacterial contamination in blood transfusion services. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Hosseini E, Kianinodeh F, Ghasemzadeh M. Irradiation of platelets in Transfusion Medicine: risk and benefit judgments. Platelets 2021; 33:666-678. [PMID: 34697994 DOI: 10.1080/09537104.2021.1990250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Irradiation of platelet products is generally used to prevent transfusion-associated graft-versus-host disease (TA-GvHD) as well as transfusion-transmitted infections. As an essential prerequisite, gamma-irradiation of blood products prior to transfusion is required in patients who may develop TA-GVHD. Most studies suggest that gamma irradiation has no significant effect on the quality of platelet products; however, more recent studies have shown that the oxidative effects of gamma irradiation can lead to the induction of platelet storage lesion (PSL) and to some extent reduce the efficiency of transfused platelets. As the second widely used irradiation technique, UV-illumination was primarily introduced to reduce the growth of infectious agents during platelet storage, with the advantage that this method can also prevent TA-GvHD. However, the induction of oxidative conditions and platelet pre-activation that lead to PSL is more pronounced after UV-based methods of pathogen reduction. Since these lesions are large enough to clearly affect the post-transfusion platelet recovery and survival, more studies are needed to improve the safety and effectiveness of pathogen reduction technologies (PRTs). Therefore, pointing to other benefits of PRTs, such as preventing TA-GvHD or prolonging the shelf life of products by eliminating the possibility of pathogen growth during storage, does not yet seem to justify their widespread use due to above-mentioned effects. Even for gamma-irradiated platelets, some researchers have suggested that due to decreased 1-hour post-transfusion increments and increased risk of platelet refractoriness, their use should be limited to the patients who may develop TA-GVHD. It is noteworthy that due to the effect of X-rays in preventing TA-GvHD, some recent studies are underway to examine its effects on the quality and effectiveness of platelet products and determine whether X-rays can be used as a more appropriate and cost-effective alternative to gamma radiation. The review presented here provides a detailed description about irradiation-based technologies for platelet products, including their applications, mechanistic features, advantages, and disadvantages.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Kianinodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
33
|
Trufanov SV, Shakhbazyan NP, Zaitsev AV, Rozinova VN. [Surgical management of infectious keratitis]. Vestn Oftalmol 2021; 137:128-135. [PMID: 34410068 DOI: 10.17116/oftalma2021137041128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infectious keratitis is one of the most common causes of blindness worldwide. Despite the existence of a wide arsenal of quite effective antimicrobial drugs, some forms of bacterial and viral keratitis are resistant. Advanced acanthamoeba and mycotic lesions of the cornea, as well as mixed forms of infection usually do not respond well to conservative treatment. In the absence of positive dynamics from the applied etiotropic therapy with observed further progression of the microbial process, there is a risk of corneal perforation and spread of infection to the sclera or deep ocular structures with a high probability of irreversible functional disorders or anatomical death of the eye. In such cases, a timely transition to surgical treatment is necessary in order to maintain structural integrity of the eyeball. For this purpose, corneal crosslinking, microdiathermocoagulation, tissue adhesive, autoconjunctival plasty, amniotic membrane, corneoscleral flap coating, various combinations of these methods, as well as therapeutic keratoplasty are used most often in clinical practice. The choice depends on the etiology, size and depth of the lesion, its localization, prognosis of visual outcomes, somatic status of the patient. Therapeutic keratoplasty is the most radical and effective method of surgical intervention that allows eradication of the infectious focus and best possible restoration of the structural integrity of the eyeball. However, in some cases due to inaccessibility of donor material or high risks of the surgery and non-transparent graft engraftment, it is advised to use alternative surgical approaches, and keratoplasty, if necessary, should be carried out for optical purposes at a further, "quiet" period.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | | | - A V Zaitsev
- Research Institute of Eye Diseases, Moscow, Russia
| | - V N Rozinova
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
34
|
Malvaux N, Schuhmacher A, Defraigne F, Jacob R, Bah A, Cardoso M. Remodelling whole blood processing through automation and pathogen reduction technology at the Luxembourg Red Cross. Transfus Apher Sci 2021; 60:103195. [PMID: 34147359 DOI: 10.1016/j.transci.2021.103195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
In 2014-2015, the Luxembourg Red Cross (LRC) implemented a fully automated system (FAS) able to process 4 whole blood units simultaneously, and a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light to improve safety of platelet concentrates (PCs). In this observational study, the impact of both technologies to enable this centralised blood transfusion centre to provide safe and timely blood components supply for the whole country was analysed. Standard quality control parameters for blood components, productivity and safety were compared from data collected with the conventional semi- automated buffy coat method and with FAS/PRT. The FAS decreased processing time when compared with the buffy coat method and facilitated the daily routine at the LRC. Red blood cell concentrates, plasma units and PCs prepared with both methods were conform to the European Directorate for the Quality of Medicines & HealthCare specifications. PCs prepared by FAS showed high yields, with decreased variability when the device-related software (T-Pool Select) was used. PRT had minimal impact on platelet yields and product quality and induced no increase in transfusion reaction notifications. The FAS and PRT transformed the daily routine of blood component manufacture by allowing increased productivity and efficiency, notwithstanding resource containment and without impacting quality, yet promoting safety.
Collapse
Affiliation(s)
- Nicolas Malvaux
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | - Anne Schuhmacher
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | | | - Remy Jacob
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | - Aicha Bah
- Terumo BCT Europe, Ikaroslaan 41, 1930 Zaventem, Belgium.
| | - Marcia Cardoso
- Terumo BCT Europe, Ikaroslaan 41, 1930 Zaventem, Belgium.
| |
Collapse
|
35
|
McCullough J. Pathogen Reduced Blood Products. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Antivirale Photodynamische Therapie bei Covid-19: Ein neuer Ansatz zur Behandlung in frühen Krankheitsstadien. AKUPUNKTUR & AURIKULOMEDIZIN 2021. [PMCID: PMC7986140 DOI: 10.1007/s15009-021-5701-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aufgrund der weiterhin akuten Covid-19-Pandemie wurde in der hier präsentierten Studie untersucht, ob die Photodynamische Therapie (PDT) mit Riboflavin (Vitamin B2) und einem speziell entwickelten Laser/LED-Behandlungsset eingesetzt werden kann, um an Covid-19 erkrankte Patienten in frühen Krankheitsstadien therapieren zu können. Alle 20 Patienten in der Versuchsgruppe zeigten innerhalb der 5 Tage der PDT-Behandlung eine signifikante Verbesserung der klinischen Symptome sowie eine Reduktion der Viruslast. 14 von 20 Patienten hatten bereits nach 5 Tagen der Behandlung mit PDT einen negativen QPCR-Test, während die anderen 6 Patienten ebenfalls eine signifikant reduzierte Viruslast aufwiesen. 20 Patienten in der Kontrollgruppe mit konventioneller Versorgung wurden innerhalb von 5 Tagen 3-mal getestet und es konnte keine signifikante Verbesserung festgestellt werden, weder klinisch noch bei der Beurteilung der Viruslast. Die angewandte Behandlung ist einfach zu Hause durchführbar und kosteneffektiv. Sie kann zur Vorbeugung nach Kontakt mit infizierten Personen oder bei positivem Test, aber auch in frühen Fällen mit leichten bis mittelschweren klinischen Symptomen eingesetzt werden.
Collapse
|
37
|
Ribes J, Beztsinna N, Bailly R, Castano S, Rascol E, Taib-Maamar N, Badarau E, Bestel I. Flavin-Conjugated Nanobombs: Key Structural Requirements Governing Their Self-Assemblies' Morphologies. Bioconjug Chem 2021; 32:553-562. [PMID: 33621053 DOI: 10.1021/acs.bioconjchem.1c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to artificial molecules, natural photosensitizers have the benefit of excellent toxicity profiles and of life-compatible activating energy ranges. Flavins are such photosensitizers that were selected by nature in a plethora of light-triggered biochemical reactions. Flavin-rich nanoparticles could thus emerge as promising tools in photodynamic therapies and in active-targeting drug delivery. Self-assembled flavin-conjugated phospholipids improve the pharmacokinetics of natural flavins and, in the case of controlled morphologies, reduce photobleaching phenomena. The current article presents a proof of concept for the design of riboflavin-rich nanoparticles of tunable morphology from multilamellar patches to vesicular self-assemblies. Coarse-grained simulations of the self-assembling process revealed the key interactions governing the obtained nanomaterials and successfully guided the synthesis of new flavin-conjugates of predictable self-assembly. The obtained flavin-based liposomes had a 65 nm hydrodynamic diameter, were stable, and showed potential photosensitizer activity.
Collapse
Affiliation(s)
- Jonathan Ribes
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Nataliia Beztsinna
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Remy Bailly
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Sabine Castano
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Estelle Rascol
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Nada Taib-Maamar
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Eduard Badarau
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Isabelle Bestel
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| |
Collapse
|
38
|
Kasparova EA, Yang B, Bocharova YA, Novikov IA. [Application of visible longwave radiation for inactivation of microorganisms]. Vestn Oftalmol 2020; 136:42-49. [PMID: 33084278 DOI: 10.17116/oftalma202013606142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To perform a comparative assessment of the bactericidal and fungicidal effects of various parts of the radiation spectrum (Ultraviolet A, red, green and blue). MATERIAL AND METHODS The study included strains of the most clinically significant microorganisms, which are the most common causes of purulent keratitis - S. aureus, P. aeruginosa and fungi C. albicans. After populating the surface of Petri dishes uniformly with microorganisms of each culture, on four out of the five specimens the central zone of the surface with a diameter of 1 cm was irradiated with light of different spectrum - from ultraviolet to red, with a total radiation energy density of 5.4 J/cm2. One specimen remained as the control subject. After irradiation, scanning electron microscopy with lanthanides contrasting (SEMLC) was used to evaluate the total metabolic activity, the activity of the efflux systems and the morphological characteristics of the microorganisms. RESULTS The damaging effect of visible spectrum light and UVA radiation on S. aureus, P. aeruginosa and C. albicans cultures was proved by SEMLC. Green spectrum emission with a wavelength of 500 nm had the highest antimicrobial activity. It was manifested by a decrease in the overall level of metabolic activity (from 40-63 c.u. to 26-37 c.u. (S. aureus (p<0.01), P. aeruginosa (p<0.01) and C. albicans (p<0.05)), as well as a 2-fold increase in the proportion of S. aureus cells with active efflux systems. CONCLUSION SEMLC allows evaluation of parameters of the microorganisms` state: morphological (form and size) and functional (general metabolic activity, activation of efflux systems). Investigation of S. aureus, P. aeruginosa and C. albicans cultures using SEMLC demonstrated the antimicrobial activity of green spectrum radiation of 500 nm wavelength. This will serve as a basis for further research and development of a method of treating infectious keratitis using green light.
Collapse
Affiliation(s)
| | - Biao Yang
- Research Institute of Eye Diseases, Moscow, Russia
| | - Yu A Bocharova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Novikov
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
39
|
Analysis of the mechanism of damage produced by thiazole orange photoinactivation in apheresis platelets. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:403-412. [PMID: 32955423 DOI: 10.2450/2020.0100-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pathogen Reduction Technologies (PRTs) are broad spectrum nucleic acid replication-blocking antimicrobial treatments designed to mitigate risk of infection from blood product transfusions. Thiazole Orange (TO), a photosensitizing nucleic acid dye, was previously shown to photoinactivate several types of bacterial and viral pathogens in RBC suspensions without adverse effects on function. In this report we extended TO treatment to platelet concentrates (PCs) to see whether it is compatible with in vitro platelet functions also, and thus, could serve as a candidate technology for further evaluation. MATERIAL AND METHODS PCs were treated with TO, and an effective treatment dose for inactivation of Staphylococci was identified. Platelet function and physiology were then evaluated by various assays in vitro. RESULTS Phototreatment of PCs yielded significant reduction (≥4-log) in Staphylococci at TO concentrations ≥20 μM. However, treatment with TO reduced aggregation response to collagen over time, and platelets became unresponsive by 24 hours post-treatment (from >80% at 1 h to 0% at 24 h). TO treatment also significantly increased CD62P expression (<1% CD62P+ for untreated and >50% for TO treated at 1 h) and induced apoptosis in platelets (<1% Annexin V+ for untreated and >50% for TO treated at 1 h) and damaged mitochondrial DNA. A mitochondria-targeted antioxidant and reactive oxygen species (ROS) scavenger Mito-Tempo mitigated these adverse effects. DISCUSSION The results demonstrate that TO compromises mitochondria and perturbs internal signaling that activates platelets and triggers apoptosis. This study illustrates that protecting platelet mitochondria and its functions should be a fundamental consideration in selecting a PRT for transfusion units containing platelets, such as PCs.
Collapse
|
40
|
Yin Y, Li L, Gong L, Xu H, Liu Z. Effects of riboflavin and ultraviolet light treatment on pathogen reduction and platelets. Transfusion 2020; 60:2647-2654. [PMID: 32866308 DOI: 10.1111/trf.16053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pathogen reduction technology has become an accepted method for limiting transfusion-transmitted infections (TTIs). Riboflavin and ultraviolet light (RUV) treatment of platelets (PLTs) is an optional means of pathogen inactivation owing to its safety, effectiveness, and ease of use. However, the literature on effects of ultraviolet (UV) light spectra and doses on pathogen reduction is still contradictory. METHODS We tested the effectiveness of killing Escherichia coli following RUV exposure with one broad-spectrum and two narrow-spectrum light sources centered at 311 and 365 nm and at successively higher doses by limited dilution survival assays. After comparing the effectiveness of E coli and phage inactivation (n = 6) and the changes in PLT count and metabolism caused by RUV treatment with optimized UV light at increasing doses, we confirmed our results by using four model virus systems that represent common TTIs, as well as PLT function and activation assays at an optimized light dose. RESULTS The narrow-spectrum UV, centered at 311 nm, optimally reduced the E coli titer with a light dose ≥8.11 J/mL, resulting in the same trend of E coli and phage reduction at different light doses. At 8.11 J/mL, 311-nm narrow-spectrum UV had a good inactivation effect on E coli and phages, eliminating many viruses, and resulted in acceptable PLT quality after RUV treatment and during storage for 4 days. CONCLUSIONS Our data suggest restricting exposure to narrow-spectrum UV centered at 311 nm can increase E coli elimination and potentially optimize virus titer reduction without significantly compromising PLT quality.
Collapse
Affiliation(s)
- Yundi Yin
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, China
| | - Ling Li
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, China
| | - Li Gong
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, China
| | - Haixia Xu
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, China
| | - Zhong Liu
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, China
| |
Collapse
|
41
|
Herzig MC, Fedyk CG, Montgomery RK, Schaffer BS, Bynum JA, Pidcoke HF, Cap AP. Blood component separation of pathogen-reduced whole blood by the PRP method produces acceptable red cells but platelet yields and function are diminished. Transfusion 2020; 60 Suppl 3:S124-S133. [PMID: 32478864 DOI: 10.1111/trf.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study evaluated blood components processed by the platelet rich plasma (PRP) method from fresh whole blood (FWB) treated with a pathogen reduction technology (PRT). The effects of storage temperature on PRT treated platelet concentrates (PCs) were also examined. STUDY DESIGN AND METHODS PRT was performed using riboflavin and ultraviolet light on FWB in citrate phosphate dextrose anticoagulant. Following PRT, red blood cells (RBCs), PCs, and plasma for fresh frozen plasma (FFP), were isolated by sequential centrifugation. RBCs were stored at 4°C, FFP at -80°C, and PC at 22°C or at 4°C. Components were assayed throughout their storage times for blood gases, chemistry and CBC, hemostatic function as well as platelet (PLT) and RBC integrity. RESULTS Component processing following PRT resulted in a significant drop in platelet recovery. Most PRT-PC bags fell below AABB guidelines for platelet count. PRT-PC also showed a decrease in clot strength and decreased aggregometry response. Platelet caspases were activated by PRT. Storage at 4°C improved platelet function. In PRT-FFP, prothrombin time and partial thromboplastin time (PT and aPTT) were prolonged; factors V, VII, VIII, and XI, protein C, and fibrinogen were significantly decreased. Free hemoglobin was elevated two-fold in PRT-RBC. CONCLUSION Blood components isolated by the PRP method from PRT-treated WB result in a high percentage of PC that fail to meet AABB guidelines. FFP also shows diminished coagulation capacity. However, PRT-RBC are comparable to control-RBC. PRT-WB retains acceptable hemostatic function but alternatives to the PRP method of component separation may be more suitable.
Collapse
Affiliation(s)
- Maryanne C Herzig
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Chriselda G Fedyk
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Robbie K Montgomery
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Beverly S Schaffer
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - James A Bynum
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA.,Institute of Biomedical Studies, Baylor University, Waco, Texas, USA.,Joint Interdisciplinary Biomedical Engineering Program, UT San Antonio & UT Health San Antonio, San Antonio, Texas, USA
| | - Heather F Pidcoke
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA.,Department of Surgery, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
42
|
New strategies for the control of infectious and parasitic diseases in blood donors: the impact of pathogen inactivation methods. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Around 70 infectious agents are possible threats for blood safety.
The risk for blood recipients is increasing because of new emergent agents like West Nile, Zika and Chikungunya viruses, or parasites such as Plasmodium and Trypanosoma cruzi in non-endemic regions, for instance.
Screening programmes of the donors are more and more implemented in several Countries, but these cannot prevent completely infections, especially when they are caused by new agents.
Pathogen inactivation (PI) methods might overcome the limits of the screening and different technologies have been set up in the last years.
This review aims to describe the most widely used methods focusing on their efficacy as well as on the preservation integrity of blood components.
Collapse
|
43
|
Diallo I, Benmoussa A, Laugier J, Osman A, Hitzler WE, Provost P. Platelet Pathogen Reduction Technologies Alter the MicroRNA Profile of Platelet-Derived Microparticles. Front Cardiovasc Med 2020; 7:31. [PMID: 32266291 PMCID: PMC7096552 DOI: 10.3389/fcvm.2020.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in donor screening and increasing efforts to avoid contamination and the spread of pathogens in clinical platelet concentrates (PCs), the risks of transfusion-transmitted infections remain important. Relying on an ultraviolet photo activation system, pathogen reduction technologies (PRTs), such as Intercept and Mirasol, utilize amotosalen, and riboflavin (vitamin B2), respectively, to mediate inactivation of pathogen nucleic acids. Although they are expected to increase the safety and prolong the shelf life of clinical PCs, these PRTs might affect the quality and function of platelets, as recently reported. Upon activation, platelets release microparticles (MPs), which are involved in intercellular communications and regulation of gene expression, thereby mediating critical cellular functions. Here, we have used small RNA sequencing (RNA-Seq) to document the effect of PRT treatment on the microRNA profiles of platelets and derived MPs. PRT treatment did not affect the microRNA profile of platelets. However, we observed a specific loading of certain microRNAs into platelet MPs, which was impaired by treatment with Intercept or its Additive solution (SSP+). Whereas, Intercept had an impact on the microRNA profile of platelet-derived MPs, Mirasol did not impact the microRNA profile of platelets and derived MPs, compared to non-treated control. Considering that platelet MPs are able to transfer their microRNA content to recipient cells, and that this content may exert biological activities, those findings suggest that PRT treatment of clinical PCs may modify the bioactivity of the platelets and MPs to be transfused and argue for further investigations into PRT-induced changes in clinical PC content and function.
Collapse
Affiliation(s)
- Idrissa Diallo
- Research Center of the CHU de Québec, Quebec, QC, Canada.,Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Abderrahim Benmoussa
- Research Center of the CHU de Québec, Quebec, QC, Canada.,Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Jonathan Laugier
- Research Center of the CHU de Québec, Quebec, QC, Canada.,Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Abdimajid Osman
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Walter E Hitzler
- Transfusion Center, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Patrick Provost
- Research Center of the CHU de Québec, Quebec, QC, Canada.,Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
44
|
Zhu L, Li C, Wang D. A novel ultraviolet illumination used in riboflavin photochemical method to inactivate drug-resistant bacteria in blood components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111782. [PMID: 32062389 DOI: 10.1016/j.jphotobiol.2020.111782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) fluorescent lamp (FL) was applied in mainstream riboflavin photochemical method (RPM) to inactivate pathogens in blood components. Low UV irradiance emitted by UV-FL resulted in more time to achieve effective inactivation. MATERIALS AND METHODS A novel light emitting diode (LED) UV illumination with adjustable irradiance was developed by us. Two strains of drug-resistant bacteria (DRB), pan-drug resistant Acinetobacter baumannii (PDRAB) and methicillin-resistant Staphylococcus aureus (MRSA) were cultured and used for evaluating the inactivation effectiveness of RPM using UV-LED or UV-FL against DRB in plasma or platelets. Three plasma factors and four platelet parameters were measured after treatments. RESULTS There was a linear relationship between UV-LED irradiance and electric current, the minimum UV irradiance was 24 mW/cm2, and the maximum was 258 mW/cm2. At the same UV dose of 15 J/cm2, inactivation effectiveness of UV-LED with 258 mW/cm2 against PDRAB in plasma or platelets were comparable to that of UV-FL with 16 mW/cm2, both above 98%. UV-FL treatment required 10-15 min, but UV-LED only required 1-2 min. However, MRSA showed a resistance to UV-LED (inactivation effectiveness was around 40%) compared with UV-FL (inactivation effectiveness was above 98%). The retention of fibrinogen, factor V, factor VII in plasma and platelet counts in platelets with UV-LED treatment were significantly higher than UV-FL at the same UV dose. CONCLUSION The treatment of RPM using UV-LED with high UV irradiance was able to dramatically shorten inactivation time against PDRAB in plasma or platelets and improve retention of blood components compared with UV-FL.
Collapse
Affiliation(s)
- Liguo Zhu
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China.
| |
Collapse
|
45
|
Maclean M, Gelderman MP, Kulkarni S, Tomb RM, Stewart CF, Anderson JG, MacGregor SJ, Atreya CD. Non-ionizing 405 nm Light as a Potential Bactericidal Technology for Platelet Safety: Evaluation of in vitro Bacterial Inactivation and in vivo Platelet Recovery in Severe Combined Immunodeficient Mice. Front Med (Lausanne) 2020; 6:331. [PMID: 32010702 PMCID: PMC6974518 DOI: 10.3389/fmed.2019.00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/20/2019] [Indexed: 01/18/2023] Open
Abstract
Bacterial contamination of ex vivo stored platelets is a cause of transfusion-transmitted infection. Violet-blue 405 nm light has recently demonstrated efficacy in reducing the bacterial burden in blood plasma, and its operational benefits such as non-ionizing nature, penetrability, and non-requirement for photosensitizing agents, provide a unique opportunity to develop this treatment for in situ treatment of ex vivo stored platelets as a tool for bacterial reduction. Sealed bags of platelet concentrates, seeded with low-level Staphylococcus aureus contamination, were 405 nm light-treated (3–10 mWcm−2) up to 8 h. Antimicrobial efficacy and dose efficiency was evaluated by quantification of the post-treatment surviving bacterial contamination levels. Platelets treated with 10 mWcm−2 for 8 h were further evaluated for survival and recovery in severe combined immunodeficient (SCID) mice. Significant inactivation of bacteria in platelet concentrates was achieved using all irradiance levels, with 99.6–100% inactivation achieved by 8 h (P < 0.05). Analysis of applied dose demonstrated that lower irradiance levels generally resulted in significant decontamination at lower doses: 180 Jcm−2/10 mWcm−2 (P = 0.008) compared to 43.2 Jcm−2/3 mWcm−2 (P = 0.002). Additionally, the recovery of light-treated platelets, compared to non-treated platelets, in the murine model showed no significant differences (P = >0.05). This report paves the way for further comprehensive studies to test 405 nm light treatment as a bactericidal technology for stored platelets.
Collapse
Affiliation(s)
- Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Monique P Gelderman
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sandhya Kulkarni
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Rachael M Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
46
|
Lu M, Dai T, Hu S, Zhang Q, Bhayana B, Wang L, Wu MX. Antimicrobial blue light for decontamination of platelets during storage. JOURNAL OF BIOPHOTONICS 2020; 13:e201960021. [PMID: 31407467 PMCID: PMC7083650 DOI: 10.1002/jbio.201960021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/28/2023]
Abstract
Platelet (PLT) storage is currently limited to 5 days in clinics in the United States, in part, due to an increasing risk for microbial contamination over time. In light of well-documented antimicrobial activity of blue light (405-470 nm), we investigated potentials to decontaminate microbes during PLT storage by antimicrobial blue light (aBL). We found that PLTs produced no detectable levels of porphyrins or their derivatives, the chromophores that specifically absorb blue light, in marked contrast to microbes that generated porphyrins abundantly. The difference formed a basis with which aBL selectively inactivated contaminated microbes prior to and during the storage, without incurring any harm to PLTs. In accordance with this, when contamination with representative microbes was simulated in PLT concentrates supplemented with 65% of PLT additive solution in a standard storage bag, all "contaminated" microbes tested were completely inactivated after exposure of the bag to 405 nm aBL at 75 J/cm2 only once. While killing microbes efficiently, this dose of aBL irradiation exerted no adverse effects on the viability, activation or aggregation of PLTs ex vivo and could be used repeatedly during PLT storage. PLT survival in vivo was also unaltered by aBL irradiation after infusion of aBL-irradiated mouse PLTs into mice. The study provides proof-of-concept evidence for a potential of aBL to decontaminate PLTs during storage.
Collapse
Affiliation(s)
- Min Lu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - TianHong Dai
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - SiSi Hu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qi Zhang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Li Wang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mei X. Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
47
|
Zhang Q, Wu C, Fan Y, Xu T, Meng Q, Wang S, Liu Q, Yao C, Jiang T. Nucleic acid-targeted pathogen reduction technique in red blood cells by UV-generated oxygen radicals for optimising recipient safety. Transfus Med 2019; 30:51-60. [PMID: 31823441 DOI: 10.1111/tme.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES A novel pathogen reduction technique based on vacuum ultraviolet (VUV) irradiation was developed to reduce pathogen numbers in red blood cell (RBC) components. BACKGROUND Contaminated blood components pose a great risk of infection in blood recipients. The continuous development of blood screening techniques and pathogen inactivating systems has significantly reduced this risk, but many limitations remain. METHODS Escherichia coli and Bacillus cereus, and bacteriophage (BP) and Lentivirus (LV) were spiked into suspended red blood cells (sRBCs) or plasma. VUV light with maximum emission at 185 nm and an average dosage of 164 μW/cm2 was placed 5 cm above the targeted products to reduce the pathogen numbers. RESULTS Treatment for 5 minutes was effective; 3 and 10 log reductions of E coli counts were observed in sRBCs and plasma, and 2 and 3 log reductions of B cereus counts were observed in sRBCs and plasma, respectively. The BP titre was reduced by two and five log points in sRBCs and plasma, respectively; the LV titre was reduced by at least three log points in both sRBCs and plasma. VUV-based irradiation of RBCs does not cause significant structural and functional harmful effects. This novel strategy provides moderate photonic energy to generate oxygen radicals from H2 O and O2 and to selectively decrease DNA integrity of the potential pathogens. CONCLUSION The VUV-based pathogen reduction technique is a simple and fast procedure with high pathogen reduction efficacy, low toxicity and limited adverse effects on cellular blood products.
Collapse
Affiliation(s)
- Qiang Zhang
- Health Management Center, Chongqing General Hospital, Chongqing, China.,Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunxi Wu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yahan Fan
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting Xu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Meng
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shichun Wang
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Liu
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianlun Jiang
- Department of Blood Transfusion, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
48
|
Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
|
49
|
Tran JQ, Muench MO, Heitman JW, Jackman RP. Pathogen reduction with riboflavin and ultraviolet light induces a quasi-apoptotic state in blood leukocytes. Transfusion 2019; 59:3501-3510. [PMID: 31599981 PMCID: PMC7391079 DOI: 10.1111/trf.15516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alloimmunization to platelet-rich plasma (PRP) transfusions can cause adverse reactions such as platelet refractoriness or transplant rejection. Pathogen reduction treatment with ultraviolet light and riboflavin (UV + R) of allogeneic PRP was shown to reduce allogeneic antibody responses and confer partial antigen-specific immune tolerance to subsequent transfusions in mice. Studies have shown that UV + R was effective at both rapidly killing donor white blood cells (WBCs) and reducing their ability to stimulate an allogeneic response in vitro. However, the manner in which UV + R induces WBC death and its associated role in the immune response to treated PRP is unknown. METHODS AND MATERIALS This study evaluates whether UV + R causes WBC apoptosis by examining phosphatidylserine exposure on the plasma membrane, membrane asymmetry, caspase activity, and chromatin condensation by flow cytometry. The immunogenicity of WBCs killed with UV + R versus apoptotic or necrotic pathways was also examined in vivo. RESULTS WBCs after UV + R exhibited early apoptotic-like characteristics including phosphatidylserine exposure on the outer leaflet of the plasma membrane and loss of membrane asymmetry, but unlike canonical apoptotic cells, caspase activity and chromatin condensation were not apparent. However, in vivo studies demonstrated, unlike untreated or necrotic WBCs, both apoptotic WBCs and UV + R-treated WBCs failed to prime alloantibody responses to subsequent untreated transfusions. CONCLUSION Overall, the mechanism of WBC death following UV + R treatment shares some membrane characteristics of early apoptosis but is distinct from classic apoptosis. Despite these differences, UV + R-treated and apoptotic WBCs both offer some protection from alloimmunization.
Collapse
Affiliation(s)
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| |
Collapse
|
50
|
Yu Y, Yang L, He C, Tai S, Ma C, Yang T, Wang D. Evaluation of riboflavin photochemical treatment for inactivation of HCT116 tumor cells mixed in simulative intraoperative salvage blood. Transfusion 2019; 59:3205-3213. [PMID: 31571260 PMCID: PMC6856795 DOI: 10.1111/trf.15499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation and filtration have achieved satisfactory results in inactivation or removal of tumor cells mixed in salvage blood, but some drawbacks remain. This study evaluated the inactivation on HCT116 cells mixed in simulative salvage blood by riboflavin photochemical treatment. METHODS HCT116 cells were added to the whole blood to simulate contaminated salvaged blood. The mixed blood was added with riboflavin of 50 μmol/L final concentration and illuminated by ultraviolet light. The samples were divided into control group and Experimental Groups 1 (18 J/cm2 ), 2 (23.4 J/cm2 ), and 3 (28.8 J/cm2 ). An autotransfusion system (Cell Saver Elite, Haemonetics) was used to simulate the intraoperative blood salvage procedure to deal with whole blood. The apoptosis rate and tumorigenicity of HCT116 cells and the superimposed damage to red blood cells (RBCs) were evaluated. RESULTS The apoptosis rates of HCT116 in Experimental Groups 1, 2, and 3 were much higher than that in the control group. Tumor growth was found in the control group, but no tumor growth was found in the three experimental groups. The hemolysis rates in the three experimental groups were significantly higher than that in the control group, but much lower than the quality standard of RBCs at the end of preservation. The concentration of adenosine triphosphate in RBCs was comparable in the control and experimental groups. CONCLUSION Riboflavin at a 50 μmol/L final concentration and 18 J/cm2 ultraviolet illumination can effectively inactivate HCT116 cells in salvaged blood, with minimum damage to the structure and function of RBCs, and the main quality indexes of salvaged RBCs were within the standard range.
Collapse
Affiliation(s)
- Yang Yu
- The Medical School of Chinese PLA, Beijing, China.,Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Yang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunyu He
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengfei Tai
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunya Ma
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianxin Yang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- The Medical School of Chinese PLA, Beijing, China.,Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|