1
|
Khan M, Halim SA, Waqas M, Golmohammadi F, Balalaie S, Csuk R, Uddin J, Khan A, Al-Harrasi A. Substrate-like novel inhibitors of prolyl specific oligo peptidase for neurodegenerative disorders. J Biomol Struct Dyn 2024; 42:8454-8472. [PMID: 37608559 DOI: 10.1080/07391102.2023.2246577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Prolyl specific oligopeptidase (POP), is one of the highly expressed enzymes in the brain and is a prime target to treat disorders related to the central nervous system. Here, we describe the structure-based design of the tacrine derivatives, selective, and brain-permeable POP inhibitors. These compounds inactivate POP in-vitro specifically and sustainably at very low concentrations (nano molar). Among this series, compound 6b (IC50 = 0.81 ± 0.04 µM) exhibited most potent inhibition. Furthermore, kinetic study revealed that these molecules target active site of POP which is further confirmed by in-silico molecular interaction analysis. The computational docking results indicates that the compounds are well fitted in the active site with high binding score (i.e., > -7 to > -4 kcal/mol) where Trp595, Arg643, Tyr473, and Ser554 plays important role in binding with the active compounds. The molecular dynamic simulation of most active compounds (6a, 6b, 6d, and 6f) displayed higher free energy binding, when compared to the standard drug in MM-PBSA based binding free energy calculation. In addition, the predicted pharmacokinetic profile suggests that these compounds can serve as excellent inhibitors upon additional optimization which makes them prime choice for further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Farhad Golmohammadi
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Julku UH, Jäntti M, Svarcbahs R, Myöhänen TT. Prolyl Oligopeptidase Regulates Dopamine Transporter Oligomerization and Phosphorylation in a PKC- and ERK-Independent Manner. Int J Mol Sci 2021; 22:1777. [PMID: 33579026 PMCID: PMC7916783 DOI: 10.3390/ijms22041777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK.
Collapse
Affiliation(s)
- Ulrika H. Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E (P.O. Box 56), FI-00014 Helsinki, Finland; (U.H.J.); (M.J.); (R.S.)
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E (P.O. Box 56), FI-00014 Helsinki, Finland; (U.H.J.); (M.J.); (R.S.)
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E (P.O. Box 56), FI-00014 Helsinki, Finland; (U.H.J.); (M.J.); (R.S.)
| | - Timo T. Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E (P.O. Box 56), FI-00014 Helsinki, Finland; (U.H.J.); (M.J.); (R.S.)
- Integrative Physiology and Pharmacology Unit/Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
3
|
García-Horsman JA. The role of prolyl oligopeptidase, understanding the puzzle. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:983. [PMID: 32953783 PMCID: PMC7475498 DOI: 10.21037/atm-20-3412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
5
|
Xu P, Bao R, Zhang Y, Lu E, Feng F, Zhang L, Li J, Wang J, Tan X, Tang M, Hu C, Li G, Zhang C. Prolyl oligopeptidase regulates progesterone secretion via the ERK signaling pathway in murine luteal cells. Mol Reprod Dev 2019; 86:714-726. [PMID: 30990944 DOI: 10.1002/mrd.23149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Prolyl oligopeptidase (POP), one of the most widely distributed serine endopeptidases, is highly expressed in the ovaries. However, the physiological role of POP in the ovaries is not clear. In this study, we investigated the significance of POP in the corpus luteum. Murine luteal cells were cultured in vitro and treated with a POP selective inhibitor, (2S)-1[[(2 S)-1-(1-oxo-4-phenylbutyl)-2-pyrrolidinyl carbonyl]-2-pyrrolidinecarbonitrile (KYP-2047). We found that KYP-2047 treatment decreased progesterone secretion. In contrast, POP overexpression increased progesterone secretion. Three essential steroidogenic enzymes, including p450 cholesterol side-chain cleavage enzyme (CYP11A), 3β-hydroxysteroid dehydrogenase (3β-HSD), and the steroidogenic acute regulatory protein (StAR), were regulated by POP. Further studies showed that POP overexpression increased ERK1/2 phosphorylation and increased the expression of steroidogenic factor 1 (SF1), while KYP-2047 treatment decreased ERK1/2 phosphorylation and SF1 expression. To clarify the role of ERK1/2 signaling in POP-regulated progesterone synthesis, U0126-EtOH, an inhibitor of the ERK signaling pathway, was used to treat luteal cells. We found that U0126-EtOH decreased progesterone production and the expression of steroidogenic enzymes and SF1. POP overexpression did not reverse the effects of U0126-EtOH. Overall, POP regulates progesterone secretion by stimulating the expression of CYP11A, 3β-HSD, and StAR in luteal cells. ERK signaling and downstream SF1 expression contribute to this process.
Collapse
Affiliation(s)
- Ping Xu
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yaqiong Zhang
- Department of Medical Genetics, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Fen Feng
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Luyin Zhang
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jiaheng Li
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jing Wang
- Department of Microbiology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ximin Tan
- Forth Clinical College, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Min Tang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chuan Hu
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Li
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunping Zhang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
6
|
Ali I, Van Eetveldt A, Van Elzen R, Kalathil Raju T, Van Der Veken P, Lambeir A, Dedeurwaerdere S. Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid-induced temporal lobe epilepsy in rats. Epilepsia Open 2019; 4:92-101. [PMID: 30868119 PMCID: PMC6398098 DOI: 10.1002/epi4.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory processes and neuroplasticity and has been suggested as a target for the treatment of neurodegenerative disease. The aim of this investigation was to explore the involvement of PREP in the neuropathologic mechanisms relevant to temporal lobe epilepsy (TLE) using a PREP inhibitor in a well-established rat model. METHODS PREP activity and expression was studied in Sprague-Dawley rats 2 and 12 weeks following kainic acid-induced status epilepticus (KASE). Continuous video-electroencephalography monitoring was performed for 2 weeks in the 12-week cohort to identify a relationship of PREP expression/activity with epileptic seizures. In addition, the animals included in the 2-week time point were treated with a specific inhibitor of PREP, KYP-2047, or saline continuously, starting immediately after SE. PREP activity and its expression were analyzed in rat brain by using enzyme kinetics and western blot. In addition, markers for microglial activation, astrogliosis, cell loss, and cell proliferation were evaluated. RESULTS Enzymatic activity of PREP was unchanged following induction of SE after 2 and 12 weeks in rats. PREP activity in epileptic rats did not relate to the number of seizures/day at the 12-week time point. Moreover, continuous inhibition of PREP for 2 weeks after KASE did not alter the SE-mediated neuroinflammatory response, cell loss, or cell proliferation in the hippocampal subgranule zone measured at the 2-week time point. SIGNIFICANCE PREP inhibition does not affect key pathologic mechanisms, including activation of glial cells, cell loss, and neural progenitor cell proliferation, in this KASE model of TLE. The results do not support a direct role of PREP in seizure burden during the chronic epilepsy period in this model.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational NeurosciencesUniversity of AntwerpWilrijkBelgium
- Present address:
Department of MedicineUniversity of MelbourneMelbourneAustralia
| | | | - Roos Van Elzen
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | - Tom Kalathil Raju
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | | | | | - Stefanie Dedeurwaerdere
- Laboratory of Experimental Hematology, VaxinfectioUniversity of AntwerpAntwerpBelgium
- Present address:
UCB PharmaBraine‐l'AlleudBelgium
| |
Collapse
|
7
|
Fu P, Sun W, Lai J, Shen YH, Zhang Z. Identification of two isoforms of Pop in the domestic silkworm, Bombyx mori: Cloning, characterization and expression analysis. Gene 2018; 667:101-111. [DOI: 10.1016/j.gene.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
8
|
Identification and characterization of a novel prolyl oligopeptidase in filarial parasite Setaria cervi. Biochem Biophys Res Commun 2017; 495:2235-2241. [PMID: 29273505 DOI: 10.1016/j.bbrc.2017.12.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/17/2017] [Indexed: 12/18/2022]
Abstract
A 75 kDa serine protease having prolyl oligopeptidase activity has been purified from Setaria cervi, a bovine filarial parasite. The MALDI-MS/MS analysis of the purified protein revealed 6 peptides showing nearest match S9A (prolyl oligopeptidase) family protein from Plesiocystis pacifica. The ScPOP was found to be unique compared to mammalian POP with respect to its kinetic properties. To elucidate its role, filarial parasites were exposed to specific inhibitor of POP, Z-Pro-prolinal (ZPP) for 8 h. The inhibition of POP induced calcium signaling via phospholipase c stimulation which further triggered mitochondrial mediated apoptosis in filarial parasites.
Collapse
|
9
|
Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prolyl oligopeptidase (POP), also called prolyl endopeptidase, is a cytosolic enzyme investigated by several research groups. It has been proposed to play an important role in physiological processes such as modulation of the levels of several neuronal peptides and hormones containing a proline residue. Due to its proteolytic activity and physiological role in cell signaling pathways, inhibition of POP offers an emerging approach for the treatment of Alzheimer's and Parkinson's diseases as well as other diseases related to cognitive impairment. Furthermore, it may also represent an interesting target for treatment of neuropsychiatric disorders, and as an antiangiogenesis or antineoplastic agent. In this review paper, we summarized naturally occurring POP inhibitors together with peptide-like inhibitors and their biological effects. Some of them have shown promising results and interesting pharmacological profiles. However, to date, there is no POP inhibitor available on the market although several clinical trials have been undertaken.
Collapse
|
10
|
Männistö PT, García-Horsman JA. Mechanism of Action of Prolyl Oligopeptidase (PREP) in Degenerative Brain Diseases: Has Peptidase Activity Only a Modulatory Role on the Interactions of PREP with Proteins? Front Aging Neurosci 2017; 9:27. [PMID: 28261087 PMCID: PMC5306367 DOI: 10.3389/fnagi.2017.00027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined. We propose that PREP functions as a regulator of other proteins though peptide gated direct interaction. We speculate that, at least in some processes where PREP has shown to be relevant, the peptidase activity is only a consequence of the interactions, and not the main physiological activity.
Collapse
Affiliation(s)
- Pekka T Männistö
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| | - J Arturo García-Horsman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| |
Collapse
|
11
|
The prolyl oligopeptidase inhibitor SUAM-14746 attenuates the proliferation of human breast cancer cell lines in vitro. Breast Cancer 2017; 24:658-666. [DOI: 10.1007/s12282-017-0752-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
|
12
|
Hsieh CH, Wang TY, Hung CC, Hsieh YL, Hsu KC. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate. Food Funct 2016; 7:565-73. [PMID: 26574880 DOI: 10.1039/c5fo01262g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.
Collapse
Affiliation(s)
- Cheng-Hong Hsieh
- Department of Health Nutrition and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan.
| | - Tzu-Yuan Wang
- Division of Endocrine and Metabolism, China Medical University Hospital, 2 Yude Road, Taichung, 40447, Taiwan
| | - Chuan-Chuan Hung
- Food Safety and Inspection Center, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan and Department of Nutrition, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - You-Liang Hsieh
- Department of Health Nutrition and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan.
| | - Kuo-Chiang Hsu
- Department of Health Nutrition and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan. and Food Safety and Inspection Center, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
13
|
Höfling C, Kulesskaya N, Jaako K, Peltonen I, Männistö PT, Nurmi A, Vartiainen N, Morawski M, Zharkovsky A, Võikar V, Roßner S, García-Horsman JA. Deficiency of prolyl oligopeptidase in mice disturbs synaptic plasticity and reduces anxiety-like behaviour, body weight, and brain volume. Eur Neuropsychopharmacol 2016; 26:1048-61. [PMID: 26996375 DOI: 10.1016/j.euroneuro.2016.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 12/26/2022]
Abstract
Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out. This work indicates that the lack of PREP in mice causes reduced anxiety but also hyperactivity. The cortical volumes of PREP knockout mice were smaller than those of wild type littermates. Additionally, we found increased expression of diazepam binding inhibitor protein in the cortex and of the somatostatin receptor-2 in the hippocampus of PREP knockout mice. Furthermore, immunohistochemistry and tail suspension test revealed lack of response of PREP knockout mice to lipopolysaccharide insult. Further analysis revealed significantly increased levels of polysialylated-neural cell adhesion molecule in PREP deficient mice. These findings might be explained as possible alteration in brain plasticity caused by PREP deficiency, which in turn affect behaviour and brain development.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Iida Peltonen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Pekka T Männistö
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Finland
| | - Antti Nurmi
- Charles River Drug Discovery Services, Kuopio, Finland
| | | | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | | | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | |
Collapse
|
14
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Dziedzicka-Wasylewska M. Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment - Comparative proteomic study. Neuroscience 2015; 316:63-81. [PMID: 26708747 DOI: 10.1016/j.neuroscience.2015.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022]
Abstract
The complex network of anatomical connections of the nucleus accumbens (NAc) makes it an interface responsible for the selection and integration of cognitive and affective information to modulate appetitive or aversively motivated behaviour. There is evidence for NAc dysfunction in schizophrenia. NAc also seems to be important for antipsychotic drug action, but the biochemical characteristics of drug-induced alterations within NAc remain incompletely characterized. In this study, a comprehensive proteomic analysis was performed to describe the differences in the mechanisms of action of clozapine (CLO) and risperidone (RIS) in the rat NAc. Both antipsychotics influenced the level of microtubule-regulating proteins, i.e., stathmin, and proteins of the collapsin response mediator protein family (CRMPs), and only CLO affected NAD-dependent protein deacetylase sirtuin-2 and septin 6. Both antipsychotics induced changes in levels of other cytoskeleton-related proteins. CLO exclusively up-regulated proteins involved in neuroprotection, such as glutathione synthetase, heat-shock 70-kDa protein 8 and mitochondrial heat-shock protein 75. RIS tuned cell function by changing the pattern of post-translational modifications of some proteins: it down-regulated the phosphorylated forms of stathmin and dopamine and the cyclic AMP-regulated phosphoprotein (DARPP-32) isoform but up-regulated cyclin-dependent kinase 5 (Cdk5). RIS modulated the level and phosphorylation state of synaptic proteins: synapsin-2, synaptotagmin-1 and adaptor-related protein-2 (AP-2) complex.
Collapse
Affiliation(s)
- S Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - B Swiderska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - U Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Solich
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
15
|
Tenorio-Laranga J, Montoliu C, Urios A, Hernandez-Rabaza V, Ahabrach H, García-Horsman JA, Felipo V. The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients. J Neuroinflammation 2015; 12:183. [PMID: 26420028 PMCID: PMC4589196 DOI: 10.1186/s12974-015-0404-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation. Methods PREP enzymatic activity and protein levels measured with immunological techniques were determined in the brain and plasma of rats with portacaval shunt (PCS) and after treatment with ibuprofen. Those results were compared with the levels of PREP measured in plasma from cirrhotic patients with or without minimal hepatic encephalopathy (MHE). Levels of several pro-inflammatory cytokines and those of NO/cGMP homeostasis metabolites were measured in PCS rats and cirrhotic patients to conclude on the role of PREP in inflammation. Results In PCA rats, we found that PREP levels are significantly increased in the hippocampus, striatum and cerebellum, that in the cerebellum the PREP increase was significantly found in the extracellular space and that the levels were restored to those measured in control rats after administration of an anti-inflammatory agent, ibuprofen. In cirrhotic patients, circulatory PREP activity was found to correlate to systemic and neuroinflammatory markers and had a negative correlation with the severity of the disease, although no clear relation to MHE. Conclusions These results support the idea that PREP levels could be used as indicators of cirrhosis severity in humans, and using other markers, it might contribute to assessing the level of neuroinflammation in those patients. This work reports, for the first time, that PREP is secreted to the extracellular space in the cerebellum most probably due to glial activation and supports the role of the peptidase in the inflammatory response.
Collapse
Affiliation(s)
- Jofre Tenorio-Laranga
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Amparo Urios
- Fundación Investigación Hospital Clínico Universitario, INCLIVA, Valencia, Spain.
| | - Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - Hanan Ahabrach
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| | - J Arturo García-Horsman
- Real-time Imaging Laboratory, Divisions of Pharmacology and Toxicology and Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, PO Box 56, Helsinki, 00014, Finland.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avd.Autopista del Saler 16, 46012, Valencia, Spain.
| |
Collapse
|
16
|
Newton R, Wernisch L. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships. PLoS One 2014; 9:e105522. [PMID: 25148247 PMCID: PMC4141782 DOI: 10.1371/journal.pone.0105522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments.
Collapse
Affiliation(s)
- Richard Newton
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
17
|
Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells. Biochem Biophys Res Commun 2014; 443:91-6. [DOI: 10.1016/j.bbrc.2013.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022]
|
18
|
Larrinaga G, Perez I, Blanco L, Sanz B, Errarte P, Beitia M, Etxezarraga MC, Loizate A, Gil J, Irazusta J, López JI. Prolyl endopeptidase activity is correlated with colorectal cancer prognosis. Int J Med Sci 2014; 11:199-208. [PMID: 24465166 PMCID: PMC3894405 DOI: 10.7150/ijms.7178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Prolyl endopeptidase (PEP) (EC 3.4.21.26) is a serine peptidase involved in differentiation, development and proliferation processes of several tissues. Recent studies have demonstrated the increased expression and activity of this cytosolic enzyme in colorectal cancer (CRC). However, there are no available data about the impact of this peptidase in the biological aggressiveness of this tumor in patient survival. METHODS The activity of PEP in tissue (n=80) and plasma (n=40) of patients with CRC was prospectively analyzed by fluorimetric methods. Results were correlated with the most important classic pathological data related to aggressiveness, with 5-year survival rates and other clinical variables. RESULTS 1) PEP is more active in early phases of CRC; 2) Lower levels of the enzyme in tumors were located in the rectum and this decrease could be related with preoperative chemo-radiotherapy; 3) PEP activity in tissue was higher in patients with better overall and disease-free survival (log-rank p<0.01, Cox analysis p<0.01); 4) Plasmatic PEP activity was significantly higher in CRC patients than in healthy individuals and this was associated with distant metastases and with worse overall and disease-free survivals (log-rank p<0.05, Cox analysis p<0.05). CONCLUSIONS PEP activity in tissue and plasma from CRC patients is an independent prognostic factor in survival. The determination of PEP activity in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.
Collapse
Affiliation(s)
- Gorka Larrinaga
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Itxaro Perez
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Lorena Blanco
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Begoña Sanz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Peio Errarte
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Maider Beitia
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María C Etxezarraga
- 3. Department of Anatomic Pathology, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Alberto Loizate
- 4. Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Javier Gil
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jon Irazusta
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - José I López
- 5. Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
19
|
Lubin A, Zhang L, Chen H, White VM, Gong F. A human XPC protein interactome--a resource. Int J Mol Sci 2013; 15:141-58. [PMID: 24366067 PMCID: PMC3907802 DOI: 10.3390/ijms15010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC) is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP), a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.
Collapse
Affiliation(s)
- Abigail Lubin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Victoria M. White
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| |
Collapse
|
20
|
Altered peptidase activities in thyroid neoplasia and hyperplasia. DISEASE MARKERS 2013; 35:825-32. [PMID: 24379520 PMCID: PMC3860089 DOI: 10.1155/2013/970736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022]
Abstract
Background. Papillary thyroid carcinoma (PTC), follicular thyroid adenoma (FTA), and thyroid nodular hyperplasia (TNH) are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26) in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. Methods. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. Results. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP), alanyl aminopeptidase (AlaAP), prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. Conclusions. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.
Collapse
|
21
|
OsPOP5, a prolyl oligopeptidase family gene from rice confers abiotic stress tolerance in Escherichia coli. Int J Mol Sci 2013; 14:20204-19. [PMID: 24152437 PMCID: PMC3821611 DOI: 10.3390/ijms141020204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress.
Collapse
|
22
|
Tenorio-Laranga J, Peltonen I, Keskitalo S, Duran-Torres G, Natarajan R, Männistö PT, Nurmi A, Vartiainen N, Airas L, Elovaara I, García-Horsman JA. Alteration of prolyl oligopeptidase and activated α-2-macroglobulin in multiple sclerosis subtypes and in the clinically isolated syndrome. Biochem Pharmacol 2013; 85:1783-94. [PMID: 23643808 DOI: 10.1016/j.bcp.2013.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023]
Abstract
Prolyl oligopeptidase (PREP) has been considered as a drug target for the treatment of neurodegenerative diseases. In plasma, PREP has been found altered in several disorders of the central nervous system including multiple sclerosis (MS). Oxidative stress and the levels of an endogenous plasma PREP inhibitor have been proposed to decrease PREP activity in MS. In this work, we measured the circulating levels of PREP in patients suffering of relapsing remitting (RR), secondary progressive (SP), primary progressive (PP) MS, and in subjects with clinically isolated syndrome (CIS). We found a significantly lower PREP activity in plasma of RRMS as well as in PPMS patients and a trend to reduced activity in subjects diagnosed with CIS, compared to controls. No signs of oxidative inactivation of PREP, and no correlation with the endogenous PREP inhibitor, identified as activated α-2-macroglobulin (α2M*), were observed in any of the patients studied. However, a significant decrease of α2M* was recorded in MS. In cell cultures, we found that PREP specifically stimulates immune active cells possibly by modifying the levels of fibrinogen β, thymosin β4, and collagen. Our results open new lines of research on the role of PREP and α2M* in MS, aiming to relate them to the diagnosis and prognosis of this devastating disease.
Collapse
Affiliation(s)
- Jofre Tenorio-Laranga
- Division of Pharmacology and Toxicology, University of Helsinki, Viikinkaari 5E, 00014 Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Matsuda T, Sakaguchi M, Tanaka S, Yoshimoto T, Takaoka M. Prolyl oligopeptidase is a glyceraldehyde-3-phosphate dehydrogenase-binding protein that regulates genotoxic stress-induced cell death. Int J Biochem Cell Biol 2013; 45:850-7. [PMID: 23348613 DOI: 10.1016/j.biocel.2013.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/24/2012] [Accepted: 01/14/2013] [Indexed: 01/08/2023]
Abstract
Prolyl oligopeptidase is a serine protease that cleaves peptides shorter 30-mer at carboxyl side of an internal proline. This enzyme has been proposed to be involved in the maturation and degradation of peptide hormones and neuropeptides. However, conclusive results have not yet been reported, and the primary physiological role remains to be elucidated. Here, we describe the identification of a novel protein that interacts with prolyl oligopeptidase in a human neuroblastoma cell line NB-1. Using an affinity column with immobilized recombinant human prolyl oligopeptidase as ligand, we identified glyceraldehyde-3-phosphate dehydrogenase as a novel prolyl oligopeptidase binding protein in NB-1 cell extracts. The interaction between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase was confirmed by immunoprecipitation both in vitro and in vivo. To study the functional relevance of prolyl oligopeptidase-glyceraldehyde-3-phosphate dehydrogenase interactions, we investigated whether this interaction was involved in cytosine arabinoside-induced glyceraldehyde-3-phosphate dehydrogenase nuclear translocation and cell death. Prolyl oligopeptidase inhibitor, SUAM-14746, and prolyl oligopeptidase knockdown successfully inhibited glyceraldehyde-3-phosphate dehydrogenase translocation and promoted the survival of cytosine arabinoside-treated NB-1 cells. We also found that the interactions between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase in the cytoplasm but not in nuclei of NB-1 cell treated with cytosine arabinoside using an in situ proximity ligation assay. These results indicate that the interaction between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase is required for cytosine arabinoside-induced glyceraldehyde-3-phosphate dehydrogenase nuclear translocation and cell death. Therefore, the results of the present study demonstrate a novel function for prolyl oligopeptidase in cell death.
Collapse
Affiliation(s)
- Takashi Matsuda
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
24
|
Myöhänen TT, Hannula MJ, Van Elzen R, Gerard M, Van Der Veken P, García-Horsman JA, Baekelandt V, Männistö PT, Lambeir AM. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. Br J Pharmacol 2012; 166:1097-113. [PMID: 22233220 DOI: 10.1111/j.1476-5381.2012.01846.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg(-1) a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes.
Collapse
Affiliation(s)
- T T Myöhänen
- Division of Pharmacology and Toxicology, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Harwood AJ. Prolyl oligopeptidase, inositol phosphate signalling and lithium sensitivity. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 10:333-9. [PMID: 21222625 PMCID: PMC3267164 DOI: 10.2174/187152711794653779] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/25/2010] [Indexed: 11/22/2022]
Abstract
Inhibition of prolyl oligopeptidase (PO) elevates inositol phosphate (IP) signalling and reduces cell sensitivity to lithium (Li+). This review discusses recent evidence that shows PO acts via the multiple inositol polyphosphate phosphatase (MIPP) to regulate gene expression. As a consequence, PO inhibition causes both a transient, rapid increase in I(1,4,5)P3 and a long-term elevation of IP signalling. This pathway is evolutionary conserved, being present in both the social amoeba Dictyostelium and human cell systems, and has potential implications for mental health.
Collapse
|