1
|
Torres MDT, Cesaro A, de la Fuente-Nunez C. Peptides from non-immune proteins target infections through antimicrobial and immunomodulatory properties. Trends Biotechnol 2024:S0167-7799(24)00251-8. [PMID: 39472252 DOI: 10.1016/j.tibtech.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 11/06/2024]
Abstract
Encrypted peptides (EPs) have been recently described as a new class of antimicrobial molecules. They have been found in numerous organisms and have been proposed to have a role in host immunity and as alternatives to conventional antibiotics. Intriguingly, many of these EPs are found embedded in proteins unrelated to the immune system, suggesting that immunological responses extend beyond traditional host immunity proteins. To test this idea, we synthesized and analyzed representative peptides derived from non-immune human proteins for their ability to exert antimicrobial and immunomodulatory properties. Most of the tested peptides from non-immune proteins, derived from structural proteins as well as proteins from the nervous and visual systems, displayed potent in vitro antimicrobial activity. These molecules killed bacterial pathogens by targeting their membrane, and those originating from the same region of the body exhibited synergistic effects when combined. Beyond their antimicrobial properties, nearly 90% of the peptides tested exhibited immunomodulatory effects, modulating inflammatory mediators, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). Moreover, eight of the peptides identified, collagenin-3 and 4, zipperin-1 and 2, and immunosin-2, 3, 12, and 13, displayed anti-infective efficacy in two different preclinical mouse models, reducing bacterial infections by up to four orders of magnitude. Altogether, our results support the hypothesis that peptides from non-immune proteins may have a role in host immunity. These results potentially expand our notion of the immune system to include previously unrecognized proteins and peptides that may be activated upon infection to confer protection to the host.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Cesaro
- Machine Biology Group, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Torres MDT, Cesaro A, de la Fuente-Nunez C. Peptides from non-immune proteins target infections through antimicrobial and immunomodulatory properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586636. [PMID: 38585860 PMCID: PMC10996515 DOI: 10.1101/2024.03.25.586636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Encrypted peptides have been recently described as a new class of antimicrobial molecules. They have been proposed to play a role in host immunity and as alternatives to conventional antibiotics. Intriguingly, many of these peptides are found embedded in proteins unrelated to the immune system, suggesting that immunological responses may extend beyond traditional host immunity proteins. To test this idea, here we synthesized and tested representative peptides derived from non-immune proteins for their ability to exert antimicrobial and immunomodulatory properties. Our experiments revealed that most of the tested peptides from non-immune proteins, derived from structural proteins as well as proteins from the nervous and visual systems, displayed potent in vitro antimicrobial activity. These molecules killed bacterial pathogens by targeting their membrane, and those originating from the same region of the body exhibited synergistic effects when combined. Beyond their antimicrobial properties, nearly 90% of the peptides tested exhibited immunomodulatory effects, modulating inflammatory mediators such as IL-6, TNF-α, and MCP-1. Moreover, eight of the peptides identified, collagenin 3 and 4, zipperin-1 and 2, and immunosin-2, 3, 12, and 13, displayed anti-infective efficacy in two different preclinical mouse models, reducing bacterial infections by up to four orders of magnitude. Altogether, our results support the hypothesis that peptides from non-immune proteins may play a role in host immunity. These results potentially expand our notion of the immune system to include previously unrecognized proteins and peptides that may be activated upon infection to confer protection to the host.
Collapse
|
3
|
Costa ISD, Junot T, Silva FL, Felix W, Cardozo Fh JL, Pereira de Araujo AF, Pais do Amaral C, Gonçalves S, Santos NC, Leite JRSA, Bloch C, Brand GD. Occurrence and evolutionary conservation analysis of α-helical cationic amphiphilic segments in the human proteome. FEBS J 2024; 291:547-565. [PMID: 37945538 DOI: 10.1111/febs.16997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Collapse
Affiliation(s)
- Igor S D Costa
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Tiago Junot
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Wanessa Felix
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Antonio F Pereira de Araujo
- Laboratório de Biofísica Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| |
Collapse
|
4
|
Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, Puthia M, Schmidtchen A. Selective protein aggregation confines and inhibits endotoxins in wounds: Linking host defense to amyloid formation. iScience 2023; 26:107951. [PMID: 37817942 PMCID: PMC10561040 DOI: 10.1016/j.isci.2023.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces rapid protein aggregation in human wound fluid. We aimed to characterize these LPS-induced aggregates and their functional implications using a combination of mass spectrometry analyses, biochemical assays, biological imaging, cell experiments, and animal models. The wound-fluid aggregates encompass diverse protein classes, including sequences from coagulation factors, annexins, histones, antimicrobial proteins/peptides, and apolipoproteins. We identified proteins and peptides with a high aggregation propensity and verified selected components through Western blot analysis. Thioflavin T and Amytracker staining revealed amyloid-like aggregates formed after exposure to LPS in vitro in human wound fluid and in vivo in porcine wound models. Using NF-κB-reporter mice and IVIS bioimaging, we demonstrate that such wound-fluid LPS aggregates induce a significant reduction in local inflammation compared with LPS in plasma. The results show that protein/peptide aggregation is a mechanism for confining LPS and reducing inflammation, further emphasizing the connection between host defense and amyloidogenesis.
Collapse
Affiliation(s)
- Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Jeremy Chun Hwee Lim
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sunil Shankar Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Dermatology, Skane University Hospital, 22185 Lund, Sweden
| |
Collapse
|
5
|
de Oliveira Costa B, Franco OL. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr Top Med Chem 2021; 20:1274-1290. [PMID: 32209042 DOI: 10.2174/1568026620666200325112425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.
Collapse
Affiliation(s)
- Bruna de Oliveira Costa
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.,Department of Genomic Sciences and Biotechnology, Center for Analysis of Proteomics and Biochemistry, Catholic University of Brasília, Brasília, DF, Brazil.,Department of Molecular Pathology, Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
6
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|
7
|
Bosso A, Di Maro A, Cafaro V, Di Donato A, Notomista E, Pizzo E. Enzymes as a Reservoir of Host Defence Peptides. Curr Top Med Chem 2021; 20:1310-1323. [PMID: 32223733 DOI: 10.2174/1568026620666200327173815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
8
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
9
|
Cryptides Identified in Human Apolipoprotein B as New Weapons to Fight Antibiotic Resistance in Cystic Fibrosis Disease. Int J Mol Sci 2020; 21:ijms21062049. [PMID: 32192076 PMCID: PMC7139702 DOI: 10.3390/ijms21062049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from CF patients. Peptides have been also found to be able to act in combination with the antibiotic ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells. These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung infections associated with CF disease.
Collapse
|
10
|
Gaglione R, Cesaro A, Dell'Olmo E, Della Ventura B, Casillo A, Di Girolamo R, Velotta R, Notomista E, Veldhuizen EJA, Corsaro MM, De Rosa C, Arciello A. Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains. Sci Rep 2019; 9:6728. [PMID: 31040323 PMCID: PMC6491590 DOI: 10.1038/s41598-019-43063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/12/2019] [Indexed: 12/03/2022] Open
Abstract
Cationic Host Defense Peptides (HDPs) are endowed with a broad variety of activities, including direct antimicrobial properties and modulatory roles in the innate immune response. Even if it has been widely demonstrated that bacterial membrane represents the main target of peptide antimicrobial activity, the molecular mechanisms underlying membrane perturbation by HDPs have not been fully clarified yet. Recently, two cryptic HDPs have been identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, and with anti-biofilm, wound healing and immunomodulatory properties. Moreover, ApoB derived HDPs are able to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, by using a multidisciplinary approach, including time killing curves, Zeta potential measurements, membrane permeabilization assays, electron microscopy analyses, and isothermal titration calorimetry studies, the antimicrobial effects of ApoB cryptides have been analysed on bacterial strains either susceptible or resistant to peptide toxicity. Intriguingly, it emerged that even if electrostatic interactions between negatively charged bacterial membranes and positively charged HDPs play a key role in mediating peptide toxicity, they are strongly influenced by the composition of negatively charged bacterial surfaces and by defined extracellular microenvironments.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Eliana Dell'Olmo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | | | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Raffaele Velotta
- Department of Physics, University of Naples Federico II, 80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Claudio De Rosa
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy.
| |
Collapse
|
11
|
Influence of pH on the activity of thrombin-derived antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2374-2384. [DOI: 10.1016/j.bbamem.2018.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 01/11/2023]
|
12
|
Abdillahi SM, Maaß T, Kasetty G, Strömstedt AA, Baumgarten M, Tati R, Nordin SL, Walse B, Wagener R, Schmidtchen A, Mörgelin M. Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1007-1020. [PMID: 29925677 DOI: 10.4049/jimmunol.1700602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/01/2018] [Indexed: 11/19/2022]
Abstract
Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A-like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI-derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.
Collapse
Affiliation(s)
- Suado M Abdillahi
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Tobias Maaß
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gopinath Kasetty
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Ramesh Tati
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sara L Nordin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Björn Walse
- Saromics Biostructures AB, 223 63 Lund, Sweden
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark and
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Colzyx AB, 223 81 Lund, Sweden
| |
Collapse
|
13
|
Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M, Cabras T. Cryptides: latent peptides everywhere. Crit Rev Biochem Mol Biol 2018; 53:246-263. [PMID: 29564928 DOI: 10.1080/10409238.2018.1447543] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Proteomic surveys with top-down platforms are today revealing thousands of naturally occurring fragments of bigger proteins. Some of them have not functional meaning because they derive from pathways responsible for protein degradation, but many have specific functions, often completely different from that one of the parent proteins. These peptides encrypted in the protein sequence are nowadays called cryptides. They are frequent in the animal and plant kingdoms and represent a new interesting -omic field of investigation. To point out how much widespread is their presence, we describe here the most studied cryptides from very common sources such as serum albumin, immunoglobulins, hemoglobin, and from saliva and milk proteins. Given its vastness, it is unfeasible to cover the topic exhaustively, therefore only several selected examples of cryptides from other sources are thereafter reported. Demanding is the development of new -omic platforms for the functional screening of new cryptides, which could provide suggestion for peptides and peptido-mimetics with variegate fields of application.
Collapse
Affiliation(s)
- Federica Iavarone
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Claudia Desiderio
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Alberto Vitali
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Irene Messana
- b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Claudia Martelli
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy
| | - Massimo Castagnola
- a Istituto di Biochimica e Biochimica Clinica, Università Cattolica , Roma , Italy.,b Istituto di Chimica del Riconoscimento Molecolare, CNR , Roma , Italy
| | - Tiziana Cabras
- c Dipartimento di Scienze della Vita e dell'Ambiente , Università di Cagliari , Cagliari , Italy
| |
Collapse
|
14
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Khorattanakulchai N, Amparyup P, Tassanakajon A. Binding of PmClipSP2 to microbial cell wall components and activation of the proPO-activating system in the black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:38-45. [PMID: 28735961 DOI: 10.1016/j.dci.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Clip domain serine proteinases (ClipSPs) play an important role in the prophenoloxidase-activating (proPO) system. In the shrimp Penaeus monodon, the ClipSP PmClipSP2 has been previously shown to bind to microbial polysaccharides (LPS and β-1,3-glucan) and likely activates the proPO system. To reveal the binding site of the PmClipSP2 protein, the N-terminal clip domain (Clip-PmClipSP) and C-terminal SP domain (SP-PmClipSP2) were separately cloned. The recombinant proteins were then assayed for their binding properties and involvement in proPO activation. According to the ELISA-based binding assay, rSP-PmClipSP2, but not rClip-PmClipSP, can bind immobilized LPS and β-1,3-glucan as well as significantly activate PO activity. The binding site at the SP domain is proposed to have a pattern sequence (X-[PFY]-X-[AFILV]-[AFY]-[AITV]-X-[ILV]-X(5)-W-[IL]-X) that is located at the C-terminal region of the SP domain of PmClipSP2. Deletion of the pattern sequence abolished binding to LPS and β-1,3-glucan. Conversely, a recombinant protein containing the pattern sequence (rPT-PmClipSP2-TRX) had the ability to bind to cell wall components, confirming that the pattern sequence at the C-terminus of PmClipSP2 is responsible for binding to microbes, subsequently leading to activation of the proPO cascade.
Collapse
Affiliation(s)
- Narach Khorattanakulchai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc Natl Acad Sci U S A 2017; 114:E791-E800. [PMID: 28096329 DOI: 10.1073/pnas.1613405114] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.
Collapse
|
17
|
van der Plas MJA, Bhongir RKV, Kjellström S, Siller H, Kasetty G, Mörgelin M, Schmidtchen A. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nat Commun 2016; 7:11567. [PMID: 27181065 PMCID: PMC4873665 DOI: 10.1038/ncomms11567] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21, which inhibits pro-inflammatory responses to several pathogen-associated molecular patterns in vitro and in vivo by preventing toll-like receptor dimerization and subsequent activation of down-stream signalling pathways. Thus, P. aeruginosa 'hijacks' an endogenous anti-inflammatory peptide-based mechanism, thereby enabling modulation and circumvention of host responses.
Collapse
Affiliation(s)
- Mariena J A van der Plas
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden
| | - Ravi K V Bhongir
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, Lund SE-22362, Sweden
| | - Helena Siller
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden
| | - Gopinath Kasetty
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, BMC, Tornavägen 10, Lund SE-22184, Sweden.,Dermatology and Venereology, Skane University Hospital, Lasarettsgatan 15, Lund SE-22185, Sweden.,Dermatology, LKCMedicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
18
|
Pane K, Sgambati V, Zanfardino A, Smaldone G, Cafaro V, Angrisano T, Pedone E, Di Gaetano S, Capasso D, Haney EF, Izzo V, Varcamonti M, Notomista E, Hancock REW, Di Donato A, Pizzo E. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J 2016; 283:2115-31. [PMID: 27028511 DOI: 10.1111/febs.13725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Abstract
Cationic antimicrobial peptides (AMPs) possess fast and broad-spectrum activity against both Gram-negative and Gram-positive bacteria, as well as fungi. It has become increasingly evident that many AMPs, including those that derive from fragments of host proteins, are multifunctional and able to mediate various immunomodulatory functions and angiogenesis. Among these, synthetic apolipoprotein-derived peptides are safe and well tolerated in humans and have emerged as promising candidates in the treatment of various inflammatory conditions. Here, we report the characterization of a new AMP corresponding to residues 133-150 of human apolipoprotein E. Our results show that this peptide, produced either by chemical synthesis or by recombinant techniques in Escherichia coli, possesses a broad-spectrum antibacterial activity. As shown for several other AMPs, ApoE (133-150) is structured in the presence of TFE and of membrane-mimicking agents, like SDS, or bacterial surface lipopolysaccharide (LPS), and an anionic polysaccharide, alginate, which mimics anionic capsular exo-polysaccharides of several pathogenic microorganisms. Noteworthy, ApoE (133-150) is not toxic toward several human cell lines and triggers a significant innate immune response, assessed either as decreased expression levels of proinflammatory cytokines in differentiated THP-1 monocytic cells or by the induction of chemokines released from PBMCs. This novel bioactive AMP also showed a significant anti-inflammatory effect on human keratinocytes, suggesting its potential use as a model for designing new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, University of Naples Federico II, Naples, Italy.,Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Valeria Sgambati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Domenica Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Evan F Haney
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Viviana Izzo
- Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Alberto Di Donato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Kallikreins - The melting pot of activity and function. Biochimie 2015; 122:270-82. [PMID: 26408415 DOI: 10.1016/j.biochi.2015.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered.
Collapse
|
20
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Schmidtchen A, Malmsten M. (Lipo)polysaccharide interactions of antimicrobial peptides. J Colloid Interface Sci 2014; 449:136-42. [PMID: 25490856 DOI: 10.1016/j.jcis.2014.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
Abstract
Due to rapidly increasing resistance development against conventional antibiotics, as well as problems associated with diseases either triggered or deteriorated by infection, antimicrobial and anti-inflammatory peptides have attracted considerable interest during the last few years. While there is an emerging understanding of the direct antimicrobial function of such peptides through bacterial membrane destabilization, the mechanisms of their anti-inflammatory function are less clear. We here summarize some recent results obtained from our own research on anti-inflammatory peptides, with focus on peptide-(lipo)polysaccharide interactions.
Collapse
Affiliation(s)
- Artur Schmidtchen
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden; Dermatology, LKCMedicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
22
|
Kalle M, Papareddy P, Kasetty G, van der Plas MJA, Mörgelin M, Malmsten M, Schmidtchen A. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102577. [PMID: 25047075 PMCID: PMC4105479 DOI: 10.1371/journal.pone.0102577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections.
Collapse
Affiliation(s)
- Martina Kalle
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- * E-mail:
| | - Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Gopinath Kasetty
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Mariena J. A. van der Plas
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | | | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
An antimicrobial helix A-derived peptide of heparin cofactor II blocks endotoxin responses in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1225-34. [DOI: 10.1016/j.bbamem.2014.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 11/18/2022]
|
24
|
van der Poll T, Herwald H. The coagulation system and its function in early immune defense. Thromb Haemost 2014; 112:640-8. [PMID: 24696161 DOI: 10.1160/th14-01-0053] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Blood coagulation has a Janus-faced role in infectious diseases. When systemically activated, it can cause serious complications associated with high morbidity and mortality. However, coagulation is also part of the innate immune system and its local activation has been found to play an important role in the early host response to infection. Though the latter aspect has been less investigated, phylogenetic studies have shown that many factors involved in coagulation have ancestral origins which are often combined with anti-microbial features. This review gives a general overview about the most recent advances in this area of research also referred to as immunothrombosis.
Collapse
Affiliation(s)
| | - Heiko Herwald
- Heiko Herwald, Department of Clinical Sciences, Lund, Division of Infection Medicine, BMC B14, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden, Tel.: +46 46 2224182, Fax: +46 46 157756, E-mail
| |
Collapse
|
25
|
Theopold U, Krautz R, Dushay MS. The Drosophila clotting system and its messages for mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:42-46. [PMID: 23545286 DOI: 10.1016/j.dci.2013.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/07/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Drosophila has been increasingly used as a model to study hemolymph clotting. Proteomics and bioinformatics identified candidate clotting-factors, several of which were tested using genetics. Mutants and lines with reduced expression of clotting-factors show subtle effects after wounding, indicating that sealing wounds may rely on redundant mechanisms. More striking effects are observed after infection, in particular when a natural infection model involving entomopathogenic nematodes is used. When translated into mammalian models these results reveal that mammalian blood clots serve a similar immune function, thus providing a new example of the usefulness of studying invertebrate models.
Collapse
Affiliation(s)
- Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Amparyup P, Promrungreang K, Charoensapsri W, Sutthangkul J, Tassanakajon A. A serine proteinase PmClipSP2 contributes to prophenoloxidase system and plays a protective role in shrimp defense by scavenging lipopolysaccharide. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:597-607. [PMID: 23817140 DOI: 10.1016/j.dci.2013.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Serine proteinases (SPs) participate in various biological processes and play vital role in immunity. In this study, we investigated the function of PmClipSP2 from shrimp Penaeus monodon in defense against bacterial infection. PmClipSP2 was identified as a clip-domain SP and its mRNA increased in response to infection with Vibrio harveyi. PmClipSP2-knockdown shrimp displayed a significantly reduced phenoloxidase (PO) activity and increased susceptibility to V. harveyi infection. Injection of LPS and/or β-1,3-glucan induced a dose-dependent mortality and a significant decrease in the number of total hemocytes, with clear morphological changes in the hemocyte surface, of the PmClipSP2-knockdown shrimp. Recombinant PmClipSP2 was shown to bind to LPS and β-1,3-glucan and to activate PO activity. These results reveal that PmClipSP2 acts as a pattern-recognition protein, binding to microbial polysaccharides and likely activating the proPO system, whilst it may play an essential role in the hemocyte homeostasis by scavenging LPS and neutralizing its toxicity.
Collapse
Affiliation(s)
- Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathum Thani 12120, Thailand
| | | | | | | | | |
Collapse
|
27
|
Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2709-19. [DOI: 10.1016/j.bbamem.2013.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
|
28
|
Westman J, Hansen FC, Olin AI, Mörgelin M, Schmidtchen A, Herwald H. p33 (gC1q Receptor) Prevents Cell Damage by Blocking the Cytolytic Activity of Antimicrobial Peptides. THE JOURNAL OF IMMUNOLOGY 2013; 191:5714-21. [DOI: 10.4049/jimmunol.1300596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
|
30
|
Oehmcke S, Westman J, Malmström J, Mörgelin M, Olin AI, Kreikemeyer B, Herwald H. A novel role for pro-coagulant microvesicles in the early host defense against streptococcus pyogenes. PLoS Pathog 2013; 9:e1003529. [PMID: 23935504 PMCID: PMC3731245 DOI: 10.1371/journal.ppat.1003529] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/15/2013] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that stimulation of whole blood or peripheral blood mononuclear cells with bacterial virulence factors results in the sequestration of pro-coagulant microvesicles (MVs). These particles explore their clotting activity via the extrinsic and intrinsic pathway of coagulation; however, their pathophysiological role in infectious diseases remains enigmatic. Here we describe that the interaction of pro-coagulant MVs with bacteria of the species Streptococcus pyogenes is part of the early immune response to the invading pathogen. As shown by negative staining electron microscopy and clotting assays, pro-coagulant MVs bind in the presence of plasma to the bacterial surface. Fibrinogen was identified as a linker that, through binding to the M1 protein of S. pyogenes, allows the opsonization of the bacteria by MVs. Surface plasmon resonance analysis revealed a strong interaction between pro-coagulant MVs and fibrinogen with a KD value in the nanomolar range. When performing a mass-spectrometry-based strategy to determine the protein quantity, a significant up-regulation of the fibrinogen-binding integrins CD18 and CD11b on pro-coagulant MVs was recorded. Finally we show that plasma clots induced by pro-coagulant MVs are able to prevent bacterial dissemination and possess antimicrobial activity. These findings were confirmed by in vivo experiments, as local treatment with pro-coagulant MVs dampens bacterial spreading to other organs and improved survival in an invasive streptococcal mouse model of infection. Taken together, our data implicate that pro-coagulant MVs play an important role in the early response of the innate immune system in infectious diseases. The coagulation system is much more than a passive bystander in our defense against exogenous microorganisms. Over the last years there has been a growing body of evidence pointing to an integral part of coagulation in innate immunity and a special focus has been on bacterial entrapment in a fibrin network. However, thus far, pro-coagulant MVs have not been discussed in this context, though it is known that their numbers can dramatically increase in many pathological conditions, including severe infectious diseases. In the present study we see a significant increase of pro-coagulant MVs in an invasive streptococcal mouse model, suggesting that their release is an immune response to the infection. We find that pro-coagulant MVs bind to Streptococcus pyogenes and promote clotting, entrapment, and killing of the bacteria in a fibrin network. As a proof of concept pro-coagulant MVs were applied as local treatment in the streptococcal infection model, and it was demonstrated that this led to a significantly improved survival in mice.
Collapse
Affiliation(s)
- Sonja Oehmcke
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2013; 393:873-88. [PMID: 22944688 DOI: 10.1515/hsz-2012-0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/06/2012] [Indexed: 12/11/2022]
Abstract
The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.
Collapse
Affiliation(s)
- Michal Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | |
Collapse
|
32
|
Kalle M, Papareddy P, Kasetty G, Mörgelin M, van der Plas MJA, Rydengård V, Malmsten M, Albiger B, Schmidtchen A. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis. PLoS One 2012; 7:e51313. [PMID: 23272096 PMCID: PMC3521733 DOI: 10.1371/journal.pone.0051313] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 01/25/2023] Open
Abstract
Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.
Collapse
Affiliation(s)
- Martina Kalle
- Division of Dermatology and Venereology, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Singh S, Kasetty G, Schmidtchen A, Malmsten M. Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2244-51. [DOI: 10.1016/j.bbamem.2012.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
34
|
Abdillahi SM, Balvanović S, Baumgarten M, Mörgelin M. Collagen VI encodes antimicrobial activity: novel innate host defense properties of the extracellular matrix. J Innate Immun 2012; 4:371-6. [PMID: 22398575 DOI: 10.1159/000335239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/21/2011] [Indexed: 12/16/2022] Open
Abstract
Collagen type VI is a subepithelial extracellular matrix component in airways and an adhesive substrate for oral pathogens [Bober et al.: J Innate Immun 2010;2:160-166]. Here, we report that collagen VI displays a dose-dependent antimicrobial activity against group A, C, and G streptococci by membrane disruption in physiological conditions. The data disclose previously unrecognized aspects of the extracellular matrix in innate host defense.
Collapse
Affiliation(s)
- Suado M Abdillahi
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
35
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
36
|
|