1
|
Im SA, Tomita E, Oh MY, Kim SY, Kang HM, Youn YA. Volumetric changes in brain MRI of infants with hypoxic-ischemic encephalopathy and abnormal neurodevelopment who underwent therapeutic hypothermia. Brain Res 2024; 1825:148703. [PMID: 38101694 DOI: 10.1016/j.brainres.2023.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a severe neonatal complication that can result in 40-60 % of long-term morbidity. Magnetic Resonance Imaging (MRI) is a noninvasive method which is usually performed before discharge to visually assess acquired cerebral lesions associated with HIE and severity of lesions possibly providing a guide for detecting adverse outcomes. This study aims to evaluate the impact of HIE on brain volume changes observed in MRI scans performed at a mean 10 days of life, which can serve as a prognostic indicator for abnormal neurodevelopmental (ND) outcomes at 18-24 months among HIE infants. METHODS We retrospectively identified a cohort of HIE patients between June 2013 and March 2017. The inclusion criteria for therapeutic hypothermia (TH) were a gestational age ≥35 weeks, a birth weight ≥1800 g, and the presence of ≥ moderate HIE. Brain MRI was performed at a mean 10 days of life and brain volumes (total brain volume, cerebral volume, cerebellar volume, brain stem volume, and ventricle volume) were measured for quantitative assessment. At 18-24 months, the infants returned for follow-up evaluations, during which their cognitive, language, and motor skills were assessed using the Bayley Scales of Infant and Toddler Development III. RESULTS The study recruited a total of 240 infants between 2013 and 2017 for volumetric brain MRI evaluation. Among these, 83 were normal control infants, 107 were TH-treated HIE infants and 37 were HIE infants who did not receive TH due to contraindications. Clinical evaluation was further proceeded. We compared the brain volumes between the normal control infants (n = 83) with normal ND but TH-treated HIE infants (n = 76), abnormal ND TH-treated HIE infants (n = 31), and the severe HIE MRI group with no TH (n = 37). The abnormal ND TH-treated HIE infants demonstrated a significant decrease in brainstem volume and an increase in ventricle size (p < 0.001) (Table 4). Lastly, the severe brain MRI group who did not receive TH showed significantly smaller brain stem (p = 0.006), cerebellar (p = 0.006) and cerebrum volumes (p = 0.027), accompanied by larger ventricular size (p = 0.013) compared to the normal control group (Table 5). CONCLUSION In addition to assessing the location of brain injuries in MRI scans, the reduction in brain stem volume coupled with an increase in ventricular volume in HIE infants may serve as a biomarker indicating severe HIE and adverse long-term ND outcomes among HIE infants who either received therapeutic hypothermia (TH) treatment or not.
Collapse
Affiliation(s)
- Soo-Ah Im
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Emi Tomita
- Artificial Intelligence Research Center, JLK Inc, Republic of Korea
| | - Moon Yeon Oh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Yun Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Ah Youn
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Abdel-Haq M, Ojha SK, Hamoudi W, Kumar A, Tripathi MK, Khaliulin I, Domb AJ, Amal H. Effects of extended-release 7-nitroindazole gel formulation treatment on the behavior of Shank3 mouse model of autism. Nitric Oxide 2023; 140-141:41-49. [PMID: 37714296 DOI: 10.1016/j.niox.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral deficits such as abnormalities in communication, social interaction, anxiety, and repetitive behavior. We have recently shown that the Shank3 mutation in mice representing a model of ASD causes excessive nitric oxide (NO) levels and aberrant protein S-nitrosylation. Further, 10-day daily injections of 7-NI, a neuronal nitric oxide synthase inhibitor, into Shank3Δ4-22 and Cntnap2(-/-) mutant mice (models of ASD) at a dose of 80 mg/kg reversed the manifestations of ASD phenotype. In this study, we proposed an extended release of 7-NI using a novel drug system. Importantly, unlike the intraperitoneal injections, our new preparation of poly (sebacic acid-co-ricinoleic acid) (PSARA) gel containing 7-NI was injected subcutaneously into the mutant mice only once. The animals underwent behavioral testing starting from day 3 post-injection. It should be noted that the developed PSARA gel formulation allowed a slow release of 7-NI maintaining the plasma level of the drug at ∼45 μg/ml/day. Further, we observed improved memory and social interaction and reduced anxiety-like behavior in Shank3 mutant mice. This was accompanied by a reduction in 3-nitrotyrosine levels (an indicator of nitrative/nitrosative stress) in plasma. Overall, we suggest that our single-dose formulation of PSARA gel is very efficient in rendering a therapeutic effect of 7-NI for at least 10 days. This approach may provide in the future a rational design of an effective ASD treatment using 7-NI and its clinical translation.
Collapse
Affiliation(s)
- Muhammad Abdel-Haq
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Awanish Kumar
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Hu Z, Liu Q, Ni Z. Facilitating the drug repurposing with iC/E strategy: A practice on novel nNOS inhibitor discovery. J Bioinform Comput Biol 2023; 21:2350018. [PMID: 37675491 DOI: 10.1142/s021972002350018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Over the past decades, many existing drugs and clinical/preclinical compounds have been repositioned as new therapeutic indication from which they were originally intended and to treat off-target diseases by targeting their noncognate protein receptors, such as Sildenafil and Paxlovid, termed drug repurposing (DRP). Despite its significant attraction in the current medicinal community, the DRP is usually considered as a matter of accidents that cannot be fulfilled reliably by traditional drug discovery protocol. In this study, we proposed an integrated computational/experimental (iC/E) strategy to facilitate the DRP within a framework of rational drug design, which was practiced on the identification of new neuronal nitric oxide synthase (nNOS) inhibitors from a structurally diverse, functionally distinct drug pool. We demonstrated that the iC/E strategy is very efficient and readily feasible, which confirmed that the phosphodiesterase inhibitor DB06237 showed a high inhibitory potency against nNOS synthase domain, while other two general drugs, i.e. DB02302 and DB08258, can also inhibit the synthase at nanomolar level. Structural bioinformatics analysis revealed diverse noncovalent interactions such as hydrogen bonds, hydrophobic forces and van der Waals contacts across the complex interface of nNOS active site with these identified drugs, conferring both stability and specificity for the complex recognition and association.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qingsen Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
4
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
5
|
Agrawal S, Kumari R, Sophronea T, Kumari N, Luthra PM. Design and synthesis of benzo[d]thiazol-2-yl-methyl-4-(substituted)-piperazine-1-carbothioamide as novel neuronal nitric oxide inhibitors and evaluation of their neuroprotecting effect in 6-OHDA-induced unilateral lesioned rat model of Parkinson's disease. Biomed Pharmacother 2022; 156:113838. [DOI: 10.1016/j.biopha.2022.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
|
6
|
Shi Z, Luo K, Jani S, February M, Fernandes N, Venkatesh N, Sharif N, Tan S. Mimicking partial to total placental insufficiency in a rabbit model of cerebral palsy. J Neurosci Res 2022; 100:2138-2153. [PMID: 34173261 PMCID: PMC8709884 DOI: 10.1002/jnr.24901] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
All placental abruptions begin as partial abruptions, which sometimes manifest as fetal bradycardia. The progression from partial to total abruption was mimicked by a new rabbit model of placental insufficiency, and we compared it, with sufficient statistical power, with the previous model mimicking total placental abruption. The previous model uses total uterine ischemia at E22 or E25 (70% or 79% term, respectively), in pregnant New Zealand white rabbits for 40 min (Full H-I). The new model, Partial+Full H-I, added a 30-min partial ischemia before the 40-min total ischemia. Fetuses were delivered either at E31.5 (full term) vaginally for neurobehavior testing, or by C-section at E25 for ex vivo brain cell viability evaluation. The onset of fetal bradycardia was within the first 2 min of either H-I protocol. There was no difference between Full H-I (n = 442 for E22, 312 for E25) and Partial+Full H-I (n = 154 and 80) groups in death or severely affected kits at E22 (76% vs. 79%) or at E25 (66% vs. 64%), or normal kits at E22 or E25, or any of the individual newborn neurobehavioral tests at any age. No sex differences were found. Partial+Full H-I (n = 6) showed less cell viability than Full H-I (n = 8) at 72-hr ex vivo in the brain regions studied. Partial+Full H-I insult produced similar cerebral palsy phenotype as our previous Full H-I model in a sufficiently powered study and may be more suitable for testing of potential neuroprotectants.
Collapse
Affiliation(s)
- Zhongjie Shi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Kehuan Luo
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Sanket Jani
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Melissa February
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Nithi Fernandes
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | | | | | - Sidhartha Tan
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| |
Collapse
|
7
|
Gutziet O, Iluz R, Ben Asher H, Segal L, Ben Zvi D, Ginsberg Y, Khatib N, Zmora O, Ross MG, Weiner Z, Beloosesky R. Maternal N-Acetyl-Cysteine Prevents Neonatal Hypoxia-Induced Brain Injury in a Rat Model. Int J Mol Sci 2021; 22:ijms222413629. [PMID: 34948425 PMCID: PMC8709193 DOI: 10.3390/ijms222413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Perinatal hypoxia is a major cause of infant brain damage, lifelong neurological disability, and infant mortality. N-Acetyl-Cysteine (NAC) is a powerful antioxidant that acts directly as a scavenger of free radicals. We hypothesized that maternal-antenatal and offspring-postnatal NAC can protect offspring brains from hypoxic brain damage.Sixty six newborn rats were randomized into four study groups. Group 1: Control (CON) received no hypoxic intervention. Group 2: Hypoxia (HYP)-received hypoxia protocol. Group 3: Hypoxia-NAC (HYP-NAC). received hypoxia protocol and treated with NAC following each hypoxia episode. Group 4: NAC Hypoxia (NAC-HYP) treated with NAC during pregnancy, pups subject to hypoxia protocol. Each group was evaluated for: neurological function (Righting reflex), serum proinflammatory IL-6 protein levels (ELISA), brain protein levels: NF-κB p65, neuronal nitric oxide synthase (nNOS), TNF-α, and IL-6 (Western blot) and neuronal apoptosis (histology evaluation with TUNEL stain). Hypoxia significantly increased pups brain protein levels compared to controls. NAC administration to dams or offspring demonstrated lower brain NF-κB p65, nNOS, TNF-α and IL-6 protein levels compared to hypoxia alone. Hypoxia significantly increased brain apoptosis as evidenced by higher grade of brain TUNEL reaction. NAC administration to dams or offspring significantly reduce this effect. Hypoxia induced acute sensorimotor dysfunction. NAC treatment to dams significantly attenuated hypoxia-induced acute sensorimotor dysfunction. Prophylactic NAC treatment of dams during pregnancy confers long-term protection to offspring with hypoxia associated brain injury, measured by several pathways of injury and correlated markers with pathology and behavior. This implies we may consider prophylactic NAC treatment for patients at risk for hypoxia during labor.
Collapse
Affiliation(s)
- Ola Gutziet
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
- Correspondence: ; Tel.: +972-543088220; Fax: +972-4-7772453
| | - Roee Iluz
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Hila Ben Asher
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Linoy Segal
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Dikla Ben Zvi
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Osnat Zmora
- Department of Pediatric Surgery, Shamir Medical Center, Tzrifin 7073001, Israel;
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael G. Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 92270, USA;
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| |
Collapse
|
8
|
Wen L, Sun J, Chen X, Du R. miR-135b-dependent downregulation of S100B promotes neural stem cell differentiation in a hypoxia/ischemia-induced cerebral palsy rat model. Am J Physiol Cell Physiol 2020; 319:C955-C966. [PMID: 32491925 DOI: 10.1152/ajpcell.00481.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebral palsy (CP) is frequently caused by brain injury during pregnancy, delivery, or the immediate postnatal period. The differentiation potential of neural stem cell (NSC) makes them effective in restoring injured tissues and organs with minimal risks of side effects. In this study, we identified a novel microRNA-135b (miR-135b) in CP and investigated its functional role in mediating NSC differentiation. CP models were established in Wistar rats and validated with the Y-maze test. Gain- and loss-of-function experimentation was performed on CP rats. Then NSCs were isolated and the expression patterns of miR-135b and S100B were altered in NSCs. S100B exhibited high expression in the hippocampus tissues of CP models, which was targeted by miR-135b. miR-135b elevation or S100B silencing resulted in promoted NSC differentiation, alleviated brain injury, and inhibited NSC apoptosis in hippocampus tissues of CP rats. S100B downregulation targeted by miR-135b overexpression contributed to the inactivation of the signal transducer and activator of transcription-3 (STAT3) pathway, which promoted NSC differentiation and proliferation but inhibited NSC apoptosis. Our results highlight the suppressor role played by miR-135b in CP by inducing NSC differentiation via inactivation of S100B-dependent STAT3 pathway.
Collapse
Affiliation(s)
- Linbao Wen
- Department of Neurosurgery, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| | - Jingwei Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| | - Xionggao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| | - Ruili Du
- Department of Radiology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| |
Collapse
|
9
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
12
|
Faustino-Mendes T, Machado-Pereira M, Castelo-Branco M, Ferreira R. The Ischemic Immature Brain: Views on Current Experimental Models. Front Cell Neurosci 2018; 12:277. [PMID: 30210301 PMCID: PMC6123378 DOI: 10.3389/fncel.2018.00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Marta Machado-Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Miguel Castelo-Branco
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal.,Hospital Center of Cova da Beira, Covilhã, Portugal
| | - Raquel Ferreira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Favié LMA, Cox AR, van den Hoogen A, Nijboer CHA, Peeters-Scholte CMPCD, van Bel F, Egberts TCG, Rademaker CMA, Groenendaal F. Nitric Oxide Synthase Inhibition as a Neuroprotective Strategy Following Hypoxic-Ischemic Encephalopathy: Evidence From Animal Studies. Front Neurol 2018; 9:258. [PMID: 29725319 PMCID: PMC5916957 DOI: 10.3389/fneur.2018.00258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy following perinatal asphyxia is a leading cause of neonatal death and disability worldwide. Treatment with therapeutic hypothermia reduced adverse outcomes from 60 to 45%. Additional strategies are urgently needed to further improve the outcome for these neonates. Inhibition of nitric oxide synthase (NOS) is a potential neuroprotective target. This article reviews the evidence of neuroprotection by nitric oxide (NO) synthesis inhibition in animal models. METHODS Literature search using the EMBASE, Medline, Cochrane, and PubMed databases. Studies comparing NOS inhibition to placebo, with neuroprotective outcome measures, in relevant animal models were included. Methodologic quality of the included studies was assessed. RESULTS 26 studies were included using non-selective or selective NOS inhibition in rat, piglet, sheep, or rabbit animal models. A large variety in outcome measures was reported. Outcome measures were grouped as histological, biological, or neurobehavioral. Both non-selective and selective inhibitors show neuroprotective properties in one or more outcome measures. Methodologic quality was either low or moderate for all studies. CONCLUSION Inhibition of NO synthesis is a promising strategy for additional neuroprotection. In humans, intervention can only take place after the onset of the hypoxic-ischemic event. Therefore, combined inhibition of neuronal and inducible NOS seems the most likely candidate for human clinical trials. Future studies should determine its safety and effectiveness in neonates, as well as a potential sex-specific neuroprotective effect. Researchers should strive to improve methodologic quality of animal intervention studies by using a systematic approach in conducting and reporting of these studies.
Collapse
Affiliation(s)
- Laurent M. A. Favié
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Arlette R. Cox
- Department of Pharmacy, Academic Medical Center, Amsterdam, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cora H. A. Nijboer
- Laboratory of NeuroImmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine C. G. Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Carin M. A. Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Shi Z, Vasquez-Vivar J, Luo K, Yan Y, Northington F, Mehrmohammadi M, Tan S. Ascending Lipopolysaccharide-Induced Intrauterine Inflammation in Near-Term Rabbits Leading to Newborn Neurobehavioral Deficits. Dev Neurosci 2018; 40:534-546. [PMID: 31163416 PMCID: PMC9873358 DOI: 10.1159/000499960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/26/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Chorioamnionitis from ascending bacterial infection through the endocervix is a potential risk factor for cerebral palsy. Tetrahydrobiopterin, an essential cofactor for nitric oxide synthase (NOS) and amino acid hydroxylases, when augmented in the fetal brain, prevents some of the cerebral palsy-like deficits in a rabbit hypoxia-ischemia model. OBJECTIVES To study the effect of lipopolysaccharide (LPS)-induced intrauterine inflammation in preterm gestation on motor deficits in the newborn, and whether biosynthesis of tetrahydrobiopterin or inflammatory mediators is affected in the fetal brain. METHODS Pregnant rabbits at 28 days gestation (89% term) were administered either saline or LPS into both endocervical openings. One group underwent spontaneous delivery, and neurobehavioral tests were performed at postnatal day (P) 1 and P11, with some kits being sacrificed at P1 for histological analysis. Another group underwent Cesarean section 24 h after LPS administration. Gene sequences for rabbit biosynthetic enzymes of tetra-hydrobiopterin pathways were determined and analyzed in addition to cytokines, using quantitative real-time polymerase chain reaction. RESULTS Exposure to 200 μg/kg/mL LPS caused a locomotion deficit and mild hypertonia at P1. By P11, most animals turned into normal-appearing kits. There was no difference in neuronal cell death in the caudate between hypertonic and nonhypertonic kits at P1 (n = 3-5 in each group). Fetal brain GTP cyclohydrolase I was increased, whereas sepiapterin reductase and 6-pyruvoyltetrahydropterin synthase were decreased, 24 h after LPS administration. Neuronal NOS was also increased. Regardless of the position in the uterus or the brain region, expression of TNF-α and TGF-β was decreased, whereas that of IL-1β, IL-6, and IL-8 was increased (n = 3-4 in each group). CONCLUSIONS This is the first study using an ascending LPS-induced intrauterine inflammation model in rabbits, showing mostly transient hypertonia and mainly locomotor deficits in the kits. Not all proinflammatory cytokines are increased in the fetal brain following LPS administration. Changes in key tetrahydro-biopterin biosynthetic enzymes possibly indicate different effects of the inflammatory insult.
Collapse
Affiliation(s)
- Zhongjie Shi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| | | | - Kehuan Luo
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI
| | | | | | - Sidhartha Tan
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| |
Collapse
|
15
|
Kumar G, Paliwal P, Patnaik N, Patnaik R. Withania somniferaphytochemicals confer neuroprotection by selective inhibition of nNos: An in silicostudy to search potent and selective inhibitors for human nNOS. JOURNAL OF THEORETICAL AND COMPUTATIONAL CHEMISTRY 2017; 16:1750042. [DOI: 10.1142/s0219633617500420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Neuronal nitric oxide synthase (nNOS or NOS1) is an important therapeutic target for the treatment of various neurological diseases. A major challenge faced in the design of nNOS inhibitors emphasizes on potency in humans and selectivity over other NOS isoforms — eNOS and iNOS. The present structural-based in silico study was carried out to search potent and selective inhibitor for human nNOS from a set of 40 Withania somnifera phytochemicals structure. Ten phytochemicals appear as dual-selective inhibitors of nNOS over both iNOS and eNOS. Here we report five potent and selective human nNOS inhibitors, namely, Chlorogenic Acid, Withanolide B, Withacnistin Pelletierine, and Calystegine B2 based on their selectivity, binding energy and nNOS active site residues interaction profile. These phytochemicals have nNOS selectivity higher than 4-methyl-6-(2-(5-(3-(methylamino)propyl)pyridin-3-yl)-ethyl)pyridin-2-amine inhibitor and have potential as an oral neurotherapeutic agent to combat neurological disorders mediated by nNOS activation.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pankaj Paliwal
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
16
|
Barkhuizen M, Van de Berg WDJ, De Vente J, Blanco CE, Gavilanes AWD, Steinbusch HWM. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia. Neurotox Res 2017; 31:400-409. [PMID: 28110393 PMCID: PMC5360831 DOI: 10.1007/s12640-017-9700-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022]
Abstract
Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.
Collapse
Affiliation(s)
- M Barkhuizen
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - W D J Van de Berg
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, Netherlands
| | - J De Vente
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - C E Blanco
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,Institute of Biomedicine, Faculty of Medicine, Catholic University of Guayaquil, Guayaquil, Ecuador
| | - H W M Steinbusch
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands. .,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands. .,Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 5800, 6212 AZ, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Huang L, Zhao F, Qu Y, Zhang L, Wang Y, Mu D. Animal models of hypoxic-ischemic encephalopathy: optimal choices for the best outcomes. Rev Neurosci 2017; 28:31-43. [PMID: 27559689 DOI: 10.1515/revneuro-2016-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.
Collapse
Affiliation(s)
- Lan Huang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 3Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Poulos TL, Li H. Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide 2016; 63:68-77. [PMID: 27890696 DOI: 10.1016/j.niox.2016.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Once it was discovered that the enzyme nitric oxide synthase (NOS) is responsible for the biosynthesis of NO, NOS became a drug target. Particularly important is the over production of NO by neuronal NOS (nNOS) in various neurodegenerative disorders. After the various NOS isoforms were identified, inhibitor development proceeded rapidly. It soon became evident, however, that isoform selectivity presents a major challenge. All 3 human NOS isoforms, nNOS, eNOS (endothelial NOS), and iNOS (inducible NOS) have nearly identical active site structures thus making selective inhibitor design especially difficult. Of particular importance is the avoidance of inhibiting eNOS owing to its vital role in the cardiovascular system. This review summarizes some of the history of NOS inhibitor development and more recent advances in developing isoform selective inhibitors using primarily structure-based approaches.
Collapse
Affiliation(s)
- Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Huiying Li
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
19
|
Wu Q, Chen W, Sinha B, Tu Y, Manning S, Thomas N, Zhou S, Jiang H, Ma H, Kroessler DA, Yao J, Li Z, Inder TE, Wang X. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today 2015; 20:1372-81. [PMID: 26360053 DOI: 10.1016/j.drudis.2015.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/31/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Abstract
Hypoxic-ischemic (H-I) brain injury in newborns is a major cause of morbidity and mortality that claims thousands of lives each year. In this review, we summarize the promising neuroprotective agents tested on animal models and pilot clinical studies of neonatal H-I brain injury according to the different phases of the disease. These agents target various phases of injury including the early phase of excitotoxicity, oxidative stress and apoptosis as well as late-phase inflammatory reaction and neural repair. We analyze the cell survival and cell death pathways modified by these agents in neonatal H-I brain injury. We aim to 'build a bridge' between animal trials of neuroprotective agents and potential candidate treatments for future clinical applications against H-I encephalopathy.
Collapse
Affiliation(s)
- Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610091, China
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Clinical Laboratory, Dongfeng Hospital of Hubei University of Medicine, Shiyan, Hubei 442012, China
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Manning
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niranjan Thomas
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Jiang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Daphne A Kroessler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Zhipu Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Terry E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Corpas FJ, Barroso JB. Nitric oxide from a "green" perspective. Nitric Oxide 2015; 45:15-9. [PMID: 25638488 DOI: 10.1016/j.niox.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The molecule nitric oxide (NO) which is involved in practically all biochemical and physiological plant processes has become a subject for plant research. However, there remain many unanswered questions concerning how, where and when this molecule is enzymatically generated in higher plants. This mini-review aims to provide an overview of NO in plants for those readers unfamiliar with this field of research. The review will therefore discuss the importance of NO in higher plants at the physiological and biochemical levels, its involvement in designated nitro-oxidative stresses in response to adverse abiotic and biotic environmental conditions, NO emission/uptake from plants, beneficial plant-microbial interactions, and its potential application in the biotechnological fields of agriculture and food nutrition.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", Jaén E-23071, Spain
| |
Collapse
|
21
|
Muller AJ, Marks JD. Hypoxic ischemic brain injury: Potential therapeutic interventions for the future. Neoreviews 2014; 15:e177-e186. [PMID: 25177211 DOI: 10.1542/neo.15-5-e177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perinatal hypoxic-ischemic brain injury is a common problem with potentially devastating impact on neurodevelopmental outcomes. While therapeutic hypothermia, the first available treatment for this disease, reduces the risk of death or major neurodevelopmental disability, the risk of major neurologic morbidity following HI remains significant. Basic research has identified cellular mechanisms that mediate neuronal death. This article reviews the cellular processes induced that lead to brain injury following HI, and identify treatments currently under investigation for potential translation to clinical trials.
Collapse
Affiliation(s)
- Aaron J Muller
- Department of Pediatrics, University of Chicago 900 East 57th Street Chicago IL 60637
| | - Jeremy D Marks
- Department of Neurology, University of Chicago 900 East 57th Street Chicago IL 60637
| |
Collapse
|
22
|
Drury PP, Davidson JO, Mathai S, van den Heuij LG, Ji H, Bennet L, Tan S, Silverman RB, Gunn AJ. nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology 2014; 83:62-70. [PMID: 24726307 DOI: 10.1016/j.neuropharm.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 12/01/2022]
Abstract
Basal ganglia injury after hypoxia-ischemia remains common in preterm infants, and is closely associated with later cerebral palsy. In the present study we tested the hypothesis that a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10, would improve survival of striatal phenotypic neurons after profound asphyxia, and that the subsequent seizure burden and recovery of EEG are associated with neural outcome. 24 chronically instrumented preterm fetal sheep were randomized to either JI-10 (3 ml of 0.022 mg/ml, n = 8) or saline (n = 8) infusion 15 min before 25 min complete umbilical cord occlusion, or saline plus sham-occlusion (n = 8). Umbilical cord occlusion was associated with reduced numbers of calbindin-28k-, GAD-, NPY-, PV-, Calretinin- and nNOS-positive striatal neurons (p < 0.05 vs. sham occlusion) but not ChAT-positive neurons. JI-10 was associated with increased numbers of calbindin-28k-, GAD-, nNOS-, NPY-, PV-, Calretinin- and ChAT-positive striatal neurons (p < 0.05 vs. saline + occlusion). Seizure burden was strongly associated with loss of calbindin-positive cells (p < 0.05), greater seizure amplitude was associated with loss of GAD-positive cells (p < 0.05), and with more activated microglia in the white matter tracts (p < 0.05). There was no relationship between EEG power after 7 days recovery and total striatal cell loss, but better survival of NPY-positive neurons was associated with lower EEG power. In summary, these findings suggest that selective nNOS inhibition during asphyxia is associated with protection of phenotypic striatal projection neurons and has potential to help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- Paul P Drury
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Haitao Ji
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA; Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
23
|
Abstract
This article explains the mechanisms underlying choices of pharmacotherapy for hypoxic-ischemic insults of both preterm and term babies. Some preclinical data are strong enough that clinical trials are now underway. Challenges remain in deciding the best combination therapies for each age and insult.
Collapse
Affiliation(s)
- Sandra E. Juul
- University of Washington, Department of Pediatrics, 1959 NE Pacific St, Box 356320, Seattle, Washington 98195, Telephone: (206) 221-6814; Fax: (206) 543-8926
| | - Donna M. Ferriero
- Neonatal Brain Disorders Laboratory, University of California, San Francisco, 675 Nelson Rising Lane, Room 494, Box 0663, San Francisco, California 94143, Phone: (415) 502-7319, Fax: (415) 486-2297
| |
Collapse
|
24
|
Traudt CM, McPherson RJ, Bauer LA, Richards TL, Burbacher TM, McAdams RM, Juul SE. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci 2013; 35:491-503. [PMID: 24192275 DOI: 10.1159/000355460] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Up to 65% of untreated infants suffering from moderate to severe hypoxic-ischemic encephalopathy (HIE) are at risk of death or major disability. Therapeutic hypothermia (HT) reduces this risk to approximately 50% (number needed to treat: 7-9). Erythropoietin (Epo) is a neuroprotective treatment that is promising as an adjunctive therapy to decrease HIE-induced injury because Epo decreases apoptosis, inflammation, and oxidative injury and promotes glial cell survival and angiogenesis. We hypothesized that HT and concurrent Epo will be safe and effective, improve survival, and reduce moderate-severe cerebral palsy (CP) in a term nonhuman primate model of perinatal asphyxia. METHODOLOGY Thirty-five Macaca nemestrina were delivered after 15-18 min of umbilical cord occlusion (UCO) and randomized to saline (n = 14), HT only (n = 9), or HT+Epo (n = 12). There were 12 unasphyxiated controls. Epo (3,500 U/kg × 1 dose followed by 3 doses of 2,500 U/kg, or Epo 1,000 U/kg/day × 4 doses) was given on days 1, 2, 3, and 7. Timed blood samples were collected to measure plasma Epo concentrations. Animals underwent MRI/MRS and diffusion tensor imaging (DTI) at <72 h of age and again at 9 months. A battery of weekly developmental assessments was performed. RESULTS UCO resulted in death or moderate-severe CP in 43% of saline-, 44% of HT-, and 0% of HT+Epo-treated animals. Compared to non-UCO control animals, UCO animals exhibit poor weight gain, behavioral impairment, poor cerebellar growth, and abnormal brain DTI. Compared to UCO saline, UCO HT+Epo improved motor and cognitive responses, cerebellar growth, and DTI measures and produced a death/disability relative risk reduction of 0.911 (95% CI -0.429 to 0.994), an absolute risk reduction of 0.395 (95% CI 0.072-0.635), and a number needed to treat of 2 (95% CI 2-14). The effects of HT+Epo on DTI included an improved mode of anisotropy, fractional anisotropy, relative anisotropy, and volume ratio as compared to UCO saline-treated infants. No adverse drug reactions were noted in animals receiving Epo, and there were no hematology, liver, or kidney laboratory effects. CONCLUSIONS/SIGNIFICANCE HT+Epo treatment improved outcomes in nonhuman primates exposed to UCO. Adjunctive use of Epo combined with HT may improve the outcomes of term human infants with HIE, and clinical trials are warranted.
Collapse
|
25
|
Drury PP, Davidson JO, van den Heuij LG, Tan S, Silverman RB, Ji H, Blood AB, Fraser M, Bennet L, Gunn AJ. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep. Exp Neurol 2013; 250:282-92. [PMID: 24120436 DOI: 10.1016/j.expneurol.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022]
Abstract
Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function.
Collapse
Affiliation(s)
- Paul P Drury
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
27
|
Marks KA. Hypoxic–ischemic brain injury and neuroprotection in the newborn infant. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent clinical trials have confirmed that in term infants with moderate-to-severe hypoxic–ischemic encephalopathy, death and severe developmental disability can be reduced by early treatment with hypothermia. However, meta-analysis of these trials has confirmed that two-thirds of the survivors remain seriously impaired. The search for new neuroprotective interventions has therefore continued. Extensive research has identified the important biochemical pathways that result in neuronal loss, and the subsequent repair and regeneration processes. The most promising neuroprotective agents that limit the former, and promote the latter, are being tested in animal models of hypoxic–ischemic brain injury and are awaiting clinical trials. It is likely that a ‘cocktail’ of agents, affecting a number of pathways, will ultimately prove to be the most effective intervention. The latest additions to a long list of proposed substances are various stem cells that promote neurogenesis by releasing trophic substances into the injured brain. Future clinical trials are likely to employ early biomarkers, of which MRI and proton spectroscopy are probably the most predictive of long-term neurodevelopmental outcome. In conclusion, the exponential increase in knowledge in this field can be expected to provide many more neuroprotective agents within the next decade.
Collapse
Affiliation(s)
- Kyla-Anna Marks
- Department of Neonatal Medicine, Soroka University Medical Centre, PO Box 151, Beersheva, Israel
| |
Collapse
|
28
|
Antenatal insults modify newborn olfactory function by nitric oxide produced from neuronal nitric oxide synthase. Exp Neurol 2012; 237:427-34. [PMID: 22836143 DOI: 10.1016/j.expneurol.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Accepted: 07/14/2012] [Indexed: 01/09/2023]
Abstract
Newborn feeding, maternal, bonding, growth and wellbeing depend upon intact odor recognition in the early postnatal period. Antenatal stress may affect postnatal odor recognition. We investigated the exact role of a neurotransmitter, nitric oxide (NO), in newborn olfactory function. We hypothesized that olfactory neuron activity depended on NO generated by neuronal NO synthase (NOS). Utilizing in vivo functional manganese enhanced MRI (MEMRI) in a rabbit model of cerebral palsy we had shown previously that in utero hypoxia-ischemia (H-I) at E22 (70% gestation) resulted in impaired postnatal response to odorants and poor feeding. With the same antenatal insult, we manipulated NO levels in the olfactory neuron in postnatal day 1 (P1) kits by administration of intranasal NO donors or a highly selective nNOS inhibitor. Olfactory function was quantitatively measured by the response to amyl acetate stimulation by MEMRI. The relevance of nNOS to normal olfactory development was confirmed by the increase of nNOS gene expression from fetal ages to P1 in olfactory epithelium and bulbs. In control kits, nNOS inhibition decreased NO production in the olfactory system and increased MEMRI slope enhancement. In H-I kits the MEMRI slope did not increase, implicating modification of endogenous NO-mediated olfactory function by the antenatal insult. NO donors as a source of exogenous NO did not significantly change function in either group. In conclusion, olfactory epithelium nNOS in newborn rabbits probably modulates olfactory signal transduction. Antenatal H-I injury remote from delivery may affect early functional development of the olfactory system by decreasing NO-dependent signal transduction.
Collapse
|
29
|
Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, Derrick M, Back SA, Valdez RC, Northington F, Gunn AJ, Mallard C. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 2012; 160:544-552.e4. [PMID: 22325255 PMCID: PMC4048707 DOI: 10.1016/j.jpeds.2011.12.052] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/02/2011] [Accepted: 12/30/2011] [Indexed: 02/07/2023]
|