1
|
Shi W, Liu X, Cao Q, Ma P, Le W, Xie L, Ye J, Wen W, Tang H, Su W, Zheng Y, Liu Y. High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L84-L98. [PMID: 33146564 PMCID: PMC7869955 DOI: 10.1152/ajplung.00355.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a global pandemic in March 2020. Pathogenic T cells and inflammatory monocytes are regarded as the central drivers of the cytokine storm associated with the severity of COVID-19. In this study, we explored the characteristic peripheral cellular profiles of patients with COVID-19 in both acute and convalescent phases by single-cell mass cytometry (CyTOF). Using a combination of algorithm-guided data analyses, we identified peripheral immune cell subsets in COVID-19 and revealed CD4+ T-cell depletion, T-cell differentiation, plasma cell expansion, and the reduced antigen presentation capacity of innate immunity. Notably, COVID-19 induces a dysregulation in the balance of monocyte populations by the expansion of the monocyte subsets. Collectively, our results represent a high-dimensional, single-cell profile of the peripheral immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiqi Cao
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenqing Le
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen Wen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
Iwamura C, Nakayama T. Role of CD1d- and MR1-Restricted T Cells in Asthma. Front Immunol 2018; 9:1942. [PMID: 30210497 PMCID: PMC6121007 DOI: 10.3389/fimmu.2018.01942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Innate T lymphocytes are a group of relatively recently identified T cells that are not involved in either innate or adaptive immunity. Unlike conventional T cells, most innate T lymphocytes express invariant T cell receptor to recognize exogenous non-peptide antigens presented by a family of non-polymorphic MHC class I-related molecules, such as CD1d and MHC-related molecule-1 (MR1). Invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells quickly respond to the antigens bound to CD1d and MR1 molecules, respectively, and immediately exert effector functions by secreting various cytokines and granules. This review describes the detrimental and beneficial roles of iNKT cells in animal models of asthma and in human asthmatic patients and also addresses the mechanisms through which iNKT cells are activated by environmental or extracellular factors. We also discuss the potential for therapeutic interventions of asthma by specific antibodies against NKT cells. Furthermore, we summarize the recent reports on the role of MAIT cells in allergic diseases.
Collapse
Affiliation(s)
- Chiaki Iwamura
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
McKnight CG, Morris SC, Perkins C, Zhu Z, Hildeman DA, Bendelac A, Finkelman FD. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma. PLoS One 2017; 12:e0188221. [PMID: 29182669 PMCID: PMC5705134 DOI: 10.1371/journal.pone.0188221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2–3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.
Collapse
Affiliation(s)
- Christopher G. McKnight
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Suzanne C. Morris
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Charles Perkins
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Zhenqi Zhu
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Albert Bendelac
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Fred D. Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
4
|
Abos Gracia B, López Relaño J, Revilla A, Castro L, Villalba M, Martín Adrados B, Regueiro JR, Fernández-Malavé E, Martínez Naves E, Gómez Del Moral M. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen. Int Arch Allergy Immunol 2017; 173:12-22. [PMID: 28486236 DOI: 10.1159/000467394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). METHODS Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. RESULTS Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. CONCLUSIONS Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses.
Collapse
Affiliation(s)
- Beatriz Abos Gracia
- Department of Immunology, Faculty of Medicine, and 12 de Octubre Health Research Institute (imas12), Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hodge S, Hodge G, Simpson JL, Yang IA, Upham J, James A, Gibson PG, Reynolds PN. Blood cytotoxic/inflammatory mediators in non-eosinophilic asthma. Clin Exp Allergy 2016; 46:60-70. [PMID: 26767492 DOI: 10.1111/cea.12634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Non-eosinophilic asthma (NEA) is a distinct, often corticosteroid-resistant inflammatory asthma phenotype. NK and NKT-like cells are effector lymphocytes that we have shown, like CD28null T cells, to be relatively resistant to steroids and major sources of pro-inflammatory/cytotoxic mediators. We hypothesized that these cells and mediators would be increased in peripheral blood in NEA. METHODS Adults with severe asthma and variable airflow obstruction, poorly controlled despite maintenance therapy with inhaled glucocorticosteroids and long-acting bronchodilators, were recruited. Blood was assessed in those with eosinophilic asthma (n = 12), NEA (n = 25) and healthy non-smoking controls (n = 30). We applied flow cytometry to measure T, CD28null, NK and NKT-like cells and their expression of granzyme B, perforin, and killer inhibitory/activating receptors CD94(Kp43), CD158b and CD107A. Intracellular pro-inflammatory cytokine production (IFN-γ and TNF-α) was assessed in 18 controls and 10 patients with asthma/group. RESULTS In NEA, there was increased expression of granzyme B by CD8+ T cells vs. CONTROLS There was increased expression of granzyme B and CD158 and decreased CD94 on NK cells, vs. healthy controls and those with eosinophilic asthma. IFN-γ production by NK cells and TNF-α production by NKT-like cells in NEA were significantly increased vs. CONTROLS In both eosinophilic and NEA phenotypes, there were significant increases in CD4+28null T cells (72% and 81% increases, respectively, vs. controls) and their expression of pro-inflammatory cytokines. Significant correlations were noted between blood CD4+28null T cells and neutrophil numbers in induced sputum, and between corticosteroid dose and blood NKT-like cells, and their production of granzyme B and TNF-α and NK IFN-γ. CONCLUSION AND CLINICAL RELEVANCE In poorly controlled asthma, altered expression of cytotoxic/pro-inflammatory mediators can be seen on a variety of lymphocyte subsets in the peripheral blood; these changes are most apparent in NEA. Whether this pattern of expression is a marker of treatment responsiveness and future risk of exacerbations remains to be determined.
Collapse
Affiliation(s)
- S Hodge
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - G Hodge
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - J L Simpson
- Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - I A Yang
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,The Prince Charles Hospital, Brisbane, QLD, Australia
| | - J Upham
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - A James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - P G Gibson
- Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - P N Reynolds
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
6
|
Shim JU, Rhee JH, Jeong JU, Koh YI. Flagellin Modulates the Function of Invariant NKT Cells From Patients With Asthma via Dendritic Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:206-15. [PMID: 26922930 PMCID: PMC4773208 DOI: 10.4168/aair.2016.8.3.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Invariant natural killer T (iNKT) cells play a critical role in the pathogenesis of asthma. We previously reported the association between circulating Th2-like iNKT cells and lung function in asthma patients and the suppressive effect of Toll-like receptor 5 ligand flagellin B (FlaB) on asthmatic in a mouse model. Thus, we investigated whether FlaB modulates the function of circulating iNKT cells in asthmatic patients. METHODS Peripheral blood mononuclear cells (PBMCs) were treated with FlaB, and the secreted and intracellular cytokines of iNKT cells were evaluated by using ELISA and flow cytometry, respectively, following stimulation with α-galactosylceramide. Foxp3⁺ iNKT cells were also measured. To determine the effect of FlaB-treated dendritic cells (DCs) on iNKT cells, we co-cultured CD14⁺ monocyte-derived DCs and T cells from patients with house dust mite-sensitive asthma and analyzed intracellular cytokines in iNKT cells. RESULTS A reduction of IL-4 and IL-17 production by iNKT cells in PBMCs after FlaB treatment was alleviated following blocking of IL-10 signaling. A decrease in the frequencies of IL-4⁺ and IL-17⁺ iNKT cells by FlaB-treated DCs was reversed after blocking of IL-10 signaling. Simultaneously, an increase in Foxp3⁺ iNKT cells induced by FlaB treatment disappeared after blocking of IL-10. CONCLUSIONS FlaB may inhibit Th2- and Th17-like iNKT cells and induce Foxp3⁺ iNKT cells by DCs via an IL-10-dependent mechanism in asthmatic patients. In patients with a specific asthma phenotype associated with iNKT cells, FlaB may be an effective immunomodulator for iNKT cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Jae Uoong Shim
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Ji Ung Jeong
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Young Il Koh
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea.
| |
Collapse
|
7
|
Shim JU, Koh YI. Increased Th2-like Invariant Natural Killer T cells in Peripheral Blood From Patients With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:444-8. [PMID: 25229002 PMCID: PMC4161686 DOI: 10.4168/aair.2014.6.5.444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/28/2013] [Accepted: 01/02/2014] [Indexed: 01/05/2023]
Abstract
Purpose Invariant natural killer T (iNKT) cells might play an important role in asthma pathogenesis in humans. Our previous study found no difference in the number of blood iNKT cells between asthma patients and controls. However, few studies have examined the function of blood iNKT cells in human asthma. Methods Twenty asthma patients and eight controls were included in this study. Blood iNKT cells were identified using double staining with anti-Vα24 and anti-Vβ11 monoclonal antibodies (mAbs) or with 6B11 and anti-Vβ11 mAbs. Intracellular IL-4, IL-10, and IFN-γ cytokines were stained in blood iNKT cells using their respective mAbs and isotypes. In addition, their relationships with clinical parameters were analyzed. Results The number of Vα24+Vβ11+ iNKT cells or 6B11+Vβ11+ iNKT cells did not differ between asthma patients and controls. However, among Vα24+Vβ11+iNKT cells, the proportion of IL-4+iNKT cells was increased in asthma patients compared to controls (7.0±3.0% vs 0.5%±0.4%, P<0.05). There were no differences in the proportions of IL-10+or IFN-γ+iNKT cells between the groups. The proportion of IL-4+ cells among 6B11+Vβ11+iNKT cells inversely correlated with FEV1, expressed as a percentage predicted value in asthma patients (Rs=-0.64, P<0.05, n=19). Conclusions Blood iNKT cells are thought to be Th2-like, and IL-4-producing iNKT cells may be associated with lung function in human asthma.
Collapse
Affiliation(s)
- Jae-Uoong Shim
- Department of Allergy, Asthma and Clinical Immunology, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Il Koh
- Department of Allergy, Asthma and Clinical Immunology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
8
|
Kho AT, Sharma S, Qiu W, Gaedigk R, Klanderman B, Niu S, Anderson C, Leeder JS, Weiss ST, Tantisira KG. Vitamin D related genes in lung development and asthma pathogenesis. BMC Med Genomics 2013; 6:47. [PMID: 24188128 PMCID: PMC4228235 DOI: 10.1186/1755-8794-6-47] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/31/2013] [Indexed: 02/06/2023] Open
Abstract
Background Poor maternal vitamin D intake is a risk factor for subsequent childhood asthma, suggesting that in utero changes related to vitamin D responsive genes might play a crucial role in later disease susceptibility. We hypothesized that vitamin D pathway genes are developmentally active in the fetal lung and that these developmental genes would be associated with asthma susceptibility and regulation in asthma. Methods Vitamin D pathway genes were derived from PubMed and Gene Ontology surveys. Principal component analysis was used to identify characteristic lung development genes. Results Vitamin D regulated genes were markedly over-represented in normal human (odds ratio OR 2.15, 95% confidence interval CI: 1.69-2.74) and mouse (OR 2.68, 95% CI: 2.12-3.39) developing lung transcriptomes. 38 vitamin D pathway genes were in both developing lung transcriptomes with >63% of genes more highly expressed in the later than earlier stages of development. In immortalized B-cells derived from 95 asthmatics and their unaffected siblings, 12 of the 38 (31.6%) vitamin D pathway lung development genes were significantly differentially expressed (OR 3.00, 95% CI: 1.43-6.21), whereas 11 (29%) genes were significantly differentially expressed in 43 control versus vitamin D treated immortalized B-cells from Childhood Asthma Management Program subjects (OR 2.62, 95% CI: 1.22-5.50). 4 genes, LAMP3, PIP5K1B, SCARB2 and TXNIP were identified in both groups; each displays significant biologic plausibility for a role in asthma. Conclusions Our findings demonstrate a significant association between early lung development and asthma–related phenotypes for vitamin D pathway genes, supporting a genomic mechanistic basis for the epidemiologic observations relating maternal vitamin D intake and childhood asthma susceptibility.
Collapse
|
9
|
Shim JU, Rhee JH, Koh YI. TLR4, 5, and 9 Agonists Inhibit Murine Airway Invariant Natural Killer T Cells in an IL-12-Dependent Manner. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:295-304. [PMID: 22950036 PMCID: PMC3423604 DOI: 10.4168/aair.2012.4.5.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/30/2012] [Indexed: 01/03/2023]
Abstract
PURPOSE Invariant natural killer T (iNKT) cells may play an important role in the pathogenesis of asthma in mice and humans. Thus, an agent that modulates the function of iNKT cells may have therapeutic potential to control asthma. We hypothesized that lipopolysaccharide (LPS)-, flagellin-, or CpG-induced changes in the cytokine milieu may modify and even inhibit the function of airway iNKT cells in asthma. METHODS Because increased α-galactosylceramide (GalCer)-induced airway hyperreactivity (AHR) reflects the presence of airway iNKT cells, α-GalCer-induced AHR, as well as inflammatory cells and cytokines in bronchoalveolar lavage (BAL) fluid, were determined 24 hours after in vivo treatment with LPS, flagellin, or CpG in naïve BALB/c mice. Intracellular IL-4 and IFN-γ were measured in spleen iNKT cells after in vitro treatment with LPS, flagellin, or CpG. A role for IL-12 following the treatments was determined. RESULTS Intranasal administration of LPS, flagellin, or CpG reduced development of α-GalCer-induced AHR, eosinophilic airway inflammation, and Th1 and Th2 cytokine responses in BAL fluid, while producing IL-12 in BAL fluid. Intraperitoneal administration of IL-12 mAb blocked the suppressive effect of LPS, flagellin, or CpG. In vitro treatment with LPS, flagellin, or CpG reduced production of IL-4 and IFN-γ from α-GalCer-stimulated spleen iNKT cells; these effects were ameliorated by addition of anti-IL-12 mAb. CONCLUSIONS TLR4, 5, and 9 agonists may suppress the function of airway and spleen iNKT cells via IL-12-dependent mechanisms. Anergy of iNKT cells by IL-12 might play a role in suppression by these TLR agonists.
Collapse
Affiliation(s)
- Jae-Uoong Shim
- Department of Allergy, Asthma and Clinical Immunology, Chonnam National University Medical School, Gwangju, Korea
| | | | | |
Collapse
|