1
|
Sanders KL, Manuel AM, Liu A, Leng B, Chen X, Zhao Z. Unveiling Gene Interactions in Alzheimer's Disease by Integrating Genetic and Epigenetic Data with a Network-Based Approach. EPIGENOMES 2024; 8:14. [PMID: 38651367 PMCID: PMC11036294 DOI: 10.3390/epigenomes8020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex disease and the leading cause of dementia in older people. We aimed to uncover aspects of AD's pathogenesis that may contribute to drug repurposing efforts by integrating DNA methylation and genetic data. Implementing the network-based tool, a dense module search of genome-wide association studies (dmGWAS), we integrated a large-scale GWAS dataset with DNA methylation data to identify gene network modules associated with AD. Our analysis yielded 286 significant gene network modules. Notably, the foremost module included the BIN1 gene, showing the largest GWAS signal, and the GNAS gene, the most significantly hypermethylated. We conducted Web-based Cell-type-Specific Enrichment Analysis (WebCSEA) on genes within the top 10% of dmGWAS modules, highlighting monocyte as the most significant cell type (p < 5 × 10-12). Functional enrichment analysis revealed Gene Ontology Biological Process terms relevant to AD pathology (adjusted p < 0.05). Additionally, drug target enrichment identified five FDA-approved targets (p-value = 0.03) for further research. In summary, dmGWAS integration of genetic and epigenetic signals unveiled new gene interactions related to AD, offering promising avenues for future studies.
Collapse
Affiliation(s)
- Keith L. Sanders
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Boyan Leng
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
2
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
3
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Iulita MF, Garzón Chavez D, Klitgaard Christensen M, Valle Tamayo N, Plana-Ripoll O, Rasmussen SA, Roqué Figuls M, Alcolea D, Videla L, Barroeta I, Benejam B, Altuna M, Padilla C, Pegueroles J, Fernandez S, Belbin O, Carmona-Iragui M, Blesa R, Lleó A, Bejanin A, Fortea J. Association of Alzheimer Disease With Life Expectancy in People With Down Syndrome. JAMA Netw Open 2022; 5:e2212910. [PMID: 35604690 PMCID: PMC9127560 DOI: 10.1001/jamanetworkopen.2022.12910] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE People with Down syndrome have a high risk of developing Alzheimer disease dementia. However, penetrance and age at onset are considered variable, and the association of this disease with life expectancy remains unclear because of underreporting in death certificates. OBJECTIVE To assess whether the variability in symptom onset of Alzheimer disease in Down syndrome is similar to autosomal dominant Alzheimer disease and to assess its association with mortality. DESIGN, SETTING, AND PARTICIPANTS This study combines a meta-analysis with the assessment of mortality data from US death certificates (n = 77 347 case records with a International Classification of Diseases code for Down syndrome between 1968 to 2019; 37 900 [49%] female) and from a longitudinal cohort study (n = 889 individuals; 46% female; 3.2 [2.1] years of follow-up) from the Down Alzheimer Barcelona Neuroimaging Initiative (DABNI). MAIN OUTCOMES AND MEASURES A meta-analysis was conducted to investigate the age at onset, age at death, and duration of Alzheimer disease dementia in Down syndrome. PubMed/Medline, Embase, Web of Science, and CINAHL were searched for research reports, and OpenGray was used for gray literature. Studies with data about the age at onset or diagnosis, age at death, and disease duration were included. Pooled estimates with corresponding 95% CIs were calculated using random-effects meta-analysis. The variability in disease onset was compared with that of autosomal dominant Alzheimer disease. Based on these estimates, a hypothetical distribution of age at death was constructed, assuming fully penetrant Alzheimer disease. These results were compared with real-world mortality data. RESULTS In this meta-analysis, the estimate of age at onset was 53.8 years (95% CI, 53.1-54.5 years; n = 2695); the estimate of age at death, 58.4 years (95% CI, 57.2-59.7 years; n = 324); and the estimate of disease duration, 4.6 years (95% CI, 3.7-5.5 years; n = 226). Coefficients of variation and 95% prediction intervals of age at onset were comparable with those reported in autosomal dominant Alzheimer disease. US mortality data revealed an increase in life expectancy in Down syndrome (median [IQR], 1 [0.3-16] years in 1968 to 57 [49-61] years in 2019), but with clear ceiling effects in the highest percentiles of age at death in the last decades (90th percentile: 1990, age 63 years; 2019, age 65 years). The mortality data matched the limits projected by a distribution assuming fully penetrant Alzheimer disease in up to 80% of deaths (corresponding to the highest percentiles). This contrasts with dementia mentioned in 30% of death certificates but is in agreement with the mortality data in DABNI (78.9%). Important racial disparities persisted in 2019, being more pronounced in the lower percentiles (10th percentile: Black individuals, 1 year; White individuals, 30 years) than in the higher percentiles (90th percentile: Black individuals, 64 years; White individuals, 66 years). CONCLUSIONS AND RELEVANCE These findings suggest that the mortality data and the consistent age at onset were compatible with fully penetrant Alzheimer disease. Lifespan in persons with Down syndrome will not increase until disease-modifying treatments for Alzheimer disease are available.
Collapse
Affiliation(s)
- Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Diana Garzón Chavez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Natalia Valle Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
- Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida
| | - Marta Roqué Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Susana Fernandez
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| |
Collapse
|
5
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
6
|
Ulhaq ZS, Garcia CP. Estrogen receptor beta (ESR2) gene polymorphism and susceptibility to dementia. Acta Neurol Belg 2021; 121:1281-1293. [PMID: 32335869 DOI: 10.1007/s13760-020-01360-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Strong evidence supports the involvement of sex steroid hormones in the development and progression of dementia. Attention has been largely focused on the association between genetic variants of estrogen receptor alpha (ERα, ESR1) with dementia, although several studies indicate that ERβ is predominantly expressed in the brain. Interestingly, however, a limited number of studies evaluate the role of ERβ (ESR2) in dementia. Therefore, a meta-analysis was conducted to clarify the association between ESR2 genetic polymorphisms and the risk of dementia. All the relevant studies evaluating ESR2 genetic polymorphisms and dementia were identified through online databases. In total, 14 studies including 20,609 subjects were analyzed. Collectively, it was found that a combined data set of ESR2 polymorphisms was not associated with dementia risk. Interestingly, ESR2 rs4986938 polymorphism is significantly associated with dementia in the Asian population (OR = 0.73, 95% CI 0.59-0.91, P = 0.006). The carrier of A allele in rs4986938 exhibits a protective effect against dementia (A vs. G, OR = 0.6633, P = 0.012; AA + GA vs. GG, OR = 0.6499, P = 0.014; GA vs. AA + GG, OR = 0.6672, P = 0.025; GA vs. GG, OR = 0.6617, P = 0.022). In conclusion, our study suggests that ESR2 genetic polymorphisms are not significantly associated with dementia risk. ESR2 rs4986938 may have potential as a genetic marker for dementia in the Asian population. However, further studies need to verify this conclusion.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, East Java, 65151, Indonesia.
| | - Cristian Peinado Garcia
- Department of General Surgery, Weston General Hospital, Grange Rd, Weston-super-Mare, BS23 4QT, UK
| |
Collapse
|
7
|
Abstract
During the past decades, life expectancy of subjects with Down syndrome (DS) has greatly improved, but age-specific mortality rates are still important and DS subjects are characterized by an acceleration of the ageing process, which affects particularly the immune and central nervous systems. In this chapter, we will first review the characteristics of the ageing phenomenon in brain and in immune system in DS and we will then discuss the biological hallmarks of ageing in this specific population. Finally, we will also consider in detail the knowledge on epigenetics in DS, particularly DNA methylation.
Collapse
|
8
|
Schupf N, Lee JH, Pang D, Zigman WB, Tycko B, Krinsky-McHale S, Silverman W. Epidemiology of estrogen and dementia in women with Down syndrome. Free Radic Biol Med 2018; 114:62-68. [PMID: 28843780 PMCID: PMC5748249 DOI: 10.1016/j.freeradbiomed.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
Several lines of investigation have shown a protective role for estrogen in Alzheimer's disease through a number of biological actions. This review examines studies of the role of estrogen-related factors in age at onset and risk for Alzheimer's disease in women with Down syndrome, a population at high risk for early onset of dementia. The studies are consistent in showing that early age at menopause and that low levels of endogenous bioavailable estradiol in postmenopausal women with Down syndrome are associated with earlier age at onset and overall risk for dementia. Polymorphisms in genes associated with estrogen receptor activity and in genes for estrogen biosynthesis affecting endogenous estrogen are related to age at onset and cumulative incidence of dementia, and may serve as biomarkers of risk. To date, no clinical trials of estrogen or hormone replacement therapy (ERT/HRT) have been published for women with Down syndrome. While findings from clinical trials of ERT or HRT for dementia have generally been negative among women in the neurotypical population, the short interval between menopause and onset of cognitive decline, together with a more positive balance between potential benefits and risks, suggests an opportunity to evaluate the efficacy of ERT/HRT for delaying or preventing dementia in this high risk population, although questions concerning the optimal formulation and timing of the hormone therapy are not yet resolved.
Collapse
Affiliation(s)
- Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; G.H. Sergievsky Center, Columbia University, New York, NY, United States; Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, United States.
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; G.H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, United States
| | - Deborah Pang
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Warren B Zigman
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Benjamin Tycko
- Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Sharon Krinsky-McHale
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, United States
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Maney DL. Polymorphisms in sex steroid receptors: From gene sequence to behavior. Front Neuroendocrinol 2017; 47:47-65. [PMID: 28705582 PMCID: PMC6312198 DOI: 10.1016/j.yfrne.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/09/2023]
Abstract
Sex steroid receptors have received much interest as potential mediators of human behaviors and mental disorders. Candidate gene association studies have identified about 50 genetic variants of androgen and estrogen receptors that correlate with human behavioral phenotypes. Because most of these polymorphisms lie outside coding regions, discerning their effect on receptor function is not straightforward. Thus, although discoveries of associations improve our ability to predict risk, they have not greatly advanced our understanding of underlying mechanisms. This article is intended to serve as a starting point for psychologists and other behavioral biologists to consider potential mechanisms. Here, I review associations between polymorphisms in sex steroid receptors and human behavioral phenotypes. I then consider ways in which genetic variation can affect processes such as mRNA transcription, splicing, and stability. Finally, I suggest ways that hypotheses about mechanism can be tested, for example using in vitro assays and/or animal models.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Abstract
Down syndrome (Trisomy 21; DS) is a unique disease known to be associated with early-onset Alzheimer's disease (AD). The initial presentation of AD in DS is usually difficult to recognize, owing to the underlying intellectual disabilities. Using biomarkers as a prediction tool for detecting AD in at-risk people with DS may benefit patient care. The objective of this review is to discuss the utility of biomarkers in DS on the basis of the pathophysiology of the disease and to provide an update on recent studies in this field. Only through the comprehensive assessment of clinical symptoms, imaging studies, and biomarker analyses can people with DS who are at risk for AD be diagnosed early. Studies for biomarkers of AD in DS have focused on the common pathophysiology of AD in people with DS and in the general population. The most extensively studied biomarkers are amyloid and tau. Owing to the nature of amyloid precursor protein overproduction in DS, the baseline β-amyloid (Aβ) plasma levels are higher than those in controls. Hence, the changes in Aβ are considered to be a predictive marker for AD in DS. In addition, other markers related to telomere length, neuroinflammation, and methylation have been investigated for their correlation with AD progression. Future studies including different ethnic groups may be helpful to collect sufficient data to monitor drug safety and efficacy, stratify patients at risk for AD, and quantify the benefit of treatment.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Percy ME, Lukiw WJ. Is heart disease a risk factor for low dementia test battery scores in older persons with Down syndrome? Exploratory, pilot study, and commentary. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2017; 66:22-35. [PMID: 33859818 PMCID: PMC8046177 DOI: 10.1080/20473869.2017.1301023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Certain heart conditions and diseases are common in Down syndrome (DS; trisomy 21), but their role in early onset dementia that is prevalent in older adults with DS has not been evaluated. To address this knowledge gap, we conducted a study of risk factors for low neurocognitive/behavioral scores obtained with a published dementia test battery (DTB). Participants were adults with DS living in New York (N = 29; average age 46 years). We asked three questions. 1. Does having any type of heart disease affect the association between DTB scores and chronological age? 2. Does thyroid status affect the association between heart disease and DTB scores? 3. Are the E4 or E2 alleles of apolipoprotein E (APOE) associated with DTB scores or with heart disease? METHOD The study was retrospective, pilot, and exploratory. It involved analysis of information in a database previously established for the study of aging in DS. Participants had moderate intellectual disability on average. Information for each person included: gender, age, a single DTB score obtained by combining results from individual subscales of the DTB, the presence or absence of heart disease, thyroid status (treated hypothyroidism or normal), and APOE genotype. Trends were visualized by inspection of graphs and contingency tables. Statistical methods used to evaluate associations included Pearson correlation analysis, Fisher's exact tests (2-tailed), and odds ratio analysis. P values were interpreted at the 95% confidence level without Bonferroni correction. P values >.05<.1 were considered trends. RESULTS The negative correlation between DTB scores and age was significant in those with heart disease but not in those without. Heart disease was significantly associated with DTB scores >1 SD below the sample mean; there was a strong association between heart disease and low DTB scores in those with treated hypothyroidism but not in those with normal thyroid status. The APOE genotype was weakly associated with heart disease (E4, predisposing; E2, protective) in males. CONCLUSIONS On the basis of the potentially important findings from the present study, large prospective studies are warranted to confirm and extend the observations. In these, particular heart conditions or diseases and other medical comorbidities in individuals should be documented.
Collapse
Affiliation(s)
- Maire E. Percy
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Obstetrics & Gynaecology, Toronto, Canada
- Surrey Place Centre, Toronto, Canada
| | - Walter J. Lukiw
- LSU Neuroscience Center, New OrleansLA, USA
- Department of Neurology, Louisiana State University Health Sciences Center, New OrleansLA, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New OrleansLA, USA
| |
Collapse
|
12
|
Bhaumik P, Bhattacharya M, Ghosh P, Ghosh S, Kumar Dey S. Telomere length analysis in Down syndrome birth. Mech Ageing Dev 2017; 164:20-26. [PMID: 28327364 DOI: 10.1016/j.mad.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
Abstract
Human reproductive fitness depends upon telomere chemistry. Maternal age, meiotic nondisjunction error and telomere length of mother of trisomic child are someway associated. Reports exhibiting maternal inheritance of telomere length in Down syndrome child are very scanty. To investigate this, we collected peripheral blood from 170 mothers of Down syndrome child and 186 age matched mothers of euploid child with their newly born babies. Telomere length was measured by restriction digestion - southern blotting technique. Meiotic nondisjunction error was detected by STR genotyping. Subjects are classified by age (old >35 years and young ˂35 years) and by meiotic error (MI and MII). Linear regression was run to explore the age - telomere length relationship in each maternal groups. The study reveals that with age, telomere erodes in length. Old MII mothers carry the shortest (p˂0.001), control mothers have the longest telomere and MI lies in between. Babies from older mother have longer telomere (p˂0.001) moreover; telomeres are longer in Down syndrome babies than control babies (p˂0.001). To conclude, this study represents not only the relation between maternal aging and telomere length but also explore the maternal heritability of telomere length in families with Down syndrome child.
Collapse
Affiliation(s)
- Pranami Bhaumik
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Mandar Bhattacharya
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Priyanka Ghosh
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta,(Ballygunge Science college campus), 35 Ballygunge Circular Road., Kolkata, West Bengal, 700019, India
| | - Subrata Kumar Dey
- Department of Biotechnology, School of Biotechnology and Biological Sciences. Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as West Bengal University of Technology) BF-142, Salt Lake City, Sector I, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
13
|
Advances in developmental neuropsychiatry: autism spectrum disorder, Cornelia De Lange syndrome, self-injurious behavior, Down syndrome, fetal alcohol spectrum disorder, and borderline intellectual functioning. Curr Opin Psychiatry 2017; 30:65-68. [PMID: 28067728 DOI: 10.1097/yco.0000000000000318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences. J Neural Transm (Vienna) 2016; 123:1369-1379. [DOI: 10.1007/s00702-016-1620-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/05/2016] [Indexed: 01/18/2023]
|
15
|
Cerebrovascular contributions to aging and Alzheimer's disease in Down syndrome. Biochim Biophys Acta Mol Basis Dis 2015; 1862:909-14. [PMID: 26593849 DOI: 10.1016/j.bbadis.2015.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS) is a common cause of intellectual disability and is also associated with early age of onset of Alzheimer's disease (AD). Due to an extra copy of chromosome 21, most adults over 40years old with DS have beta-amyloid plaques as a result of overexpression of the amyloid precursor protein. Cerebrovascular pathology may also be a significant contributor to neuropathology observed in the brains of adults with DS. This review describes the features of cardiovascular dysfunction and cerebrovascular pathology in DS that may be modifiable risk factors and thus targets for interventions. We will describe cerebrovascular pathology, the role of co-morbidities, imaging studies indicating vascular pathology and the possible consequences. It is clear that our understanding of aging and AD in people with DS will benefit from further studies to determine the role that cerebrovascular dysfunction contributes to cognitive health. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
|
16
|
Zhao L, Woody SK, Chhibber A. Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics. Ageing Res Rev 2015; 24:178-90. [PMID: 26307455 DOI: 10.1016/j.arr.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA.
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
17
|
Gruszecka A, Kopczyński P, Cudziło D, Lipińska N, Romaniuk A, Barczak W, Rozwadowska N, Totoń E, Rubiś B. Telomere shortening in Down syndrome patients--when does it start? DNA Cell Biol 2015; 34:412-7. [PMID: 25786194 DOI: 10.1089/dna.2014.2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is one of the most common aneuploidy. In general population, its prevalence is 1:600-1:800 live births. It is caused by a trisomy of chromosome 21. DS is phenotypically manifested by premature aging, upward slant to the eyes, epicanthus, flattened face, and poor muscle tone. In addition to physical changes, this syndrome is characterized by early onset of diseases specific to old age, such as Alzheimer's disease, vision and hearing problems, and precocious menopause. Since DS symptoms include premature aging, the shortening of telomeres might be one of the markers of cellular aging. Consequently, the aim of the study was to determine the length of the telomeres in leukocytes from the blood of juvenile patients with DS (n=68) compared to an age-matched control group (n=56) and also to determine the diagnostic or predictive value for this parameter. We show that, for the first time, in juveniles, the average relative telomere length in studied subjects is significantly longer than in the control group (50.46 vs. 40.56, respectively arbitrary units [AU]; p=0.0026). The results provide interesting basis for further research to determine the causes and consequences of telomere maintaining and the dynamics of this process in patients with DS.
Collapse
Affiliation(s)
- Aleksandra Gruszecka
- 1Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemysław Kopczyński
- 2Centre for Orthodontic Mini-implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - Dorota Cudziło
- 3Orthodontic Department, Institute of Mother and Child, Warsaw, Poland
| | - Natalia Lipińska
- 1Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Romaniuk
- 1Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Barczak
- 4Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland.,5Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre, Poznan, Poland
| | | | - Ewa Totoń
- 1Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Błażej Rubiś
- 1Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Romano A, Moraschi M, Cornia R, Bozzao A, Gagliardo O, Chiacchiararelli L, Iani C, Stella G, Albertini G, Pierallini A. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study. Neuroradiology 2015; 57:401-11. [PMID: 25560246 DOI: 10.1007/s00234-014-1482-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. METHODS Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. RESULTS A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. CONCLUSIONS Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects.
Collapse
Affiliation(s)
- Andrea Romano
- San Raffaele Foundation Rome, Rehabilitation Facility Ceglie Messapica, Merit Project RBNE08E8CZ, Via di Grottarossa 1035, 00189, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xing Y, Jia J, Ji X, Tian T. Estrogen associated gene polymorphisms and their interactions in the progress of Alzheimer's disease. Prog Neurobiol 2013; 111:53-74. [DOI: 10.1016/j.pneurobio.2013.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/21/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
20
|
Zigman WB. Atypical aging in down syndrome. ACTA ACUST UNITED AC 2013; 18:51-67. [DOI: 10.1002/ddrr.1128] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Warren B. Zigman
- Department of Psychology, Laboratory of Community Psychology, NYS Institute for Basic Research in Developmental Disabilities; Staten Island; New York
| |
Collapse
|
21
|
McCabe LL, McCabe ERB. Down syndrome and personalized medicine: changing paradigms from genotype to phenotype to treatment. Congenit Anom (Kyoto) 2013; 53:1-2. [PMID: 23480351 DOI: 10.1111/cga.12000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
Personalized Medicine represents a paradigm shift in the conceptual framework of research and clinical care. This shift argues that Down syndrome is a treatable condition, and therefore we must invest in research to improve outcomes. Individuals with Down syndrome have varying levels of increased risk for a number of co-morbidities, including infantile spasms and early onset Alzheimer's disease. We will review research in these associated conditions to show how investigators are attempting to identify biomarkers, including genomic, epigenomic, proteomic and metabolomic "signatures" that will predict who may be at risk to develop a specific co-morbidity prior to onset and will provide novel targets for therapeutic development. This Personalized Medicine approach will permit predictive and preventive approaches for individuals at increased risk for co-morbidities. The support for clinical trials among individuals with Down syndrome is beginning to overcome the "culture of intractability" that has surrounded this disorder.
Collapse
Affiliation(s)
- Linda L McCabe
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | | |
Collapse
|