1
|
Herden JM, Hermann P, Schmidt I, Dittmar K, Canaslan S, Weglage L, Nuhn S, Volpers C, Schlung A, Goebel S, Kück F, Villar-Piqué A, Schmidt C, Wedekind D, Zerr I. Comparative evaluation of clinical and cerebrospinal fluid biomarker characteristics in rapidly and non-rapidly progressive Alzheimer's disease. Alzheimers Res Ther 2023; 15:106. [PMID: 37291640 DOI: 10.1186/s13195-023-01249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rapidly progressive forms of Alzheimer's disease (rpAD) are increasingly recognized and may have a prevalence of up to 30% of patients among all patients with Alzheimer's disease (AD). However, insights about risk factors, underlying pathophysiological processes, and clinical characteristics of rpAD remain controversial. This study aimed to gain a comprehensive picture of rpAD and new insights into the clinical manifestation to enable a better interpretation of disease courses in clinical practice as well as in future clinical studies. METHODS Patients (n = 228) from a prospective observational study on AD were selected and categorized into rpAD (n = 67) and non-rpAD (n = 161) disease groups. Patients were recruited through the German Creutzfeldt-Jakob disease surveillance center and the memory outpatient clinic of the Göttingen University Medical Center, representing diverse phenotypes of the AD population. Biomarkers and clinical presentation were assessed using standardized protocols. A drop of ≥ MMSE 6 points within 12 months defined rapid progressors. RESULTS Lower CSF Amyloid beta 1-42 concentrations (p = 0.048), lower Amyloid beta 42/40 ratio (p = 0.038), and higher Tau/Amyloid-beta 1-42 ratio, as well as pTau/Amyloid-beta 1-42 ratio (each p = 0.004) were associated with rpAD. Analyzes in a subset of the cohort (rpAD: n = 12; non-rpAD: n = 31) showed higher CSF NfL levels in rpAD (p = 0.024). Clinically, rpAD showed earlier impairment of functional abilities (p < 0.001) and higher scores on the Unified Parkinson's Disease Rating Scale III (p < 0.001), indicating pronounced extrapyramidal motor symptoms. Furthermore, cognitive profiles (adjusted for overall cognitive performance) indicated marked deficits in semantic (p = 0.008) and phonematic (0.023) verbal fluency tests as well as word list learning (p = 0.007) in rpAD compared to non-rpAD. The distribution of APOE genotypes did not differ significantly between groups. CONCLUSIONS Our results suggest that rpAD is associated with distinct cognitive profiles, earlier occurrence of non-cognitive symptoms, extrapyramidal motoric disturbance, and lower Amyloid-beta 1-42 concentrations in the CSF. The findings may help to characterize a distinct phenotype of rpAD and estimate prognosis based on clinical characteristics and biomarker results. However, an important future goal should be a unified definition for rpAD to enable targeted study designs and better comparability of the results.
Collapse
Affiliation(s)
- Janne Marieke Herden
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany.
| | - Isabel Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Kathrin Dittmar
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sezgi Canaslan
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Luise Weglage
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sabine Nuhn
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Corinna Volpers
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Astrid Schlung
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Stefan Goebel
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen, 37073, Germany
| | - Anna Villar-Piqué
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- Neurologische Gemeinschaftspraxis Am Groner Tor, Göttingen, Germany
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Straße 5, Göttingen, 37075, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
2
|
Limone A, Veneruso I, D'Argenio V, Sarnataro D. Endosomal trafficking and related genetic underpinnings as a hub in Alzheimer's disease. J Cell Physiol 2022; 237:3803-3815. [PMID: 35994714 DOI: 10.1002/jcp.30864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
Genetic studies support the amyloid cascade as the leading hypothesis for the pathogenesis of Alzheimer's disease (AD). Although significant efforts have been made in untangling the amyloid and other pathological events in AD, ongoing interventions for AD have not been revealed efficacious for slowing down disease progression. Recent advances in the field of genetics have shed light on the etiology of AD, identifying numerous risk genes associated with late-onset AD, including genes related to intracellular endosomal trafficking. Some of the bases for the development of AD may be explained by the recently emerging AD genetic "hubs," which include the processing pathway of amyloid precursor protein and the endocytic pathway. The endosomal genetic hub may represent a common pathway through which many pathological effects can be mediated and novel, alternative biological targets could be identified for therapeutic interventions. The aim of this review is to focus on the genetic and biological aspects of the endosomal compartments related to AD progression. We report recent studies which describe how changes in endosomal genetics impact on functional events, such as the amyloidogenic and non-amyloidogenic processing, degradative pathways, and the importance of receptors related to endocytic trafficking, including the 37/67 kDa laminin-1 receptor ribosomal protein SA, and their implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, Napoli, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Roma, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| |
Collapse
|
3
|
Kim C, Haldiman T, Kang SG, Hromadkova L, Han ZZ, Chen W, Lissemore F, Lerner A, de Silva R, Cohen ML, Westaway D, Safar JG. Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer's disease. Sci Transl Med 2022; 14:eabg0253. [PMID: 34985969 DOI: 10.1126/scitranslmed.abg0253] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Wei Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Frances Lissemore
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Liu H, Kim C, Haldiman T, Sigurdson CJ, Nyström S, Nilsson KPR, Cohen ML, Wisniewski T, Hammarström P, Safar JG. Distinct conformers of amyloid beta accumulate in the neocortex of patients with rapidly progressive Alzheimer's disease. J Biol Chem 2021; 297:101267. [PMID: 34599965 PMCID: PMC8531671 DOI: 10.1016/j.jbc.2021.101267] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Amyloid beta (Aβ) deposition in the neocortex is a major hallmark of Alzheimer's disease (AD), but the extent of deposition does not readily explain phenotypic diversity and rate of disease progression. The prion strain-like model of disease heterogeneity suggests the existence of different conformers of Aβ. We explored this paradigm using conformation-dependent immunoassay (CDI) for Aβ and conformation-sensitive luminescent conjugated oligothiophenes (LCOs) in AD cases with variable progression rates. Mapping the Aβ conformations in the frontal, occipital, and temporal regions in 20 AD patients with CDI revealed extensive interindividual and anatomical diversity in the structural organization of Aβ with the most significant differences in the temporal cortex of rapidly progressive AD. The fluorescence emission spectra collected in situ from Aβ plaques in the same regions demonstrated considerable diversity of spectral characteristics of two LCOs-quatroformylthiophene acetic acid and heptaformylthiophene acetic acid. Heptaformylthiophene acetic acid detected a wider range of Aβ deposits, and both LCOs revealed distinct spectral attributes of diffuse and cored plaques in the temporal cortex of rapidly and slowly progressive AD and less frequent and discernible differences in the frontal and occipital cortex. These and CDI findings indicate a major conformational diversity of Aβ accumulating in the neocortex, with the most notable differences in temporal cortex of cases with shorter disease duration, and implicate distinct Aβ conformers (strains) in the rapid progression of AD.
Collapse
Affiliation(s)
- He Liu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, USA; Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sofie Nyström
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, New York, USA; Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Per Hammarström
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Oliveira FFD, de Almeida SS, Smith MC, Bertolucci PHF. Behavioural effects of the ACE insertion/deletion polymorphism in Alzheimer's disease depend upon stratification according to APOE-ϵ4 carrier status. Cogn Neuropsychiatry 2021; 26:293-305. [PMID: 34034613 DOI: 10.1080/13546805.2021.1931085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The inherited risk of late-onset Alzheimer's disease (AD) is genetically determined. We aimed to examine associations of genetic variants of APOE and ACE with age at AD onset and with neuropsychiatric symptoms according to each dementia stage.Methods: Consecutive outpatients with AD were assessed for demographic features, Clinical Dementia Rating scores, and the 10-item Neuropsychiatric Inventory, and genotyped for rs7412 and rs429358 (APOE haplotypes, Real-Time Polymerase Chain Reactions), and the ACE insertion/deletion polymorphism (Polymerase Chain Reactions). Combined genetic variants of APOE and ACE were associated with age at dementia onset, and with neuropsychiatric symptoms in each dementia stage (adjusted for sex and age at dementia onset).Results: Over two-thirds of the 238 patients were women, whereas the mean age at dementia onset was 73.82 ± 6.2 years-old. APOE-ϵ4/ϵ4 carriers had earlier dementia onset (p<.001). The ACE insertion/deletion polymorphism was in Hardy-Weinberg equilibrium (p=.37) but was not associated with age at dementia onset, regardless of APOE-ϵ4 carrier status. The only results that survived corrections for false discovery rates were higher scores of dysphoria for APOE-ϵ4 carriers (n=122) who also carried ACE deletion/deletion (p=.031). No results survived corrections for false discovery rates for APOE-ϵ4 non-carriers (n=116).Conclusions: Though only the APOE-ϵ4/ϵ4 haplotype affected AD onset, effects of the ACE insertion/deletion polymorphism over behavioural features might differ according to APOE-ϵ4 carrier status in genetic associations.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Marilia Cardoso Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | |
Collapse
|
6
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
7
|
Jiang S, Zhang CY, Tang L, Zhao LX, Chen HZ, Qiu Y. Integrated Genomic Analysis Revealed Associated Genes for Alzheimer's Disease in APOE4 Non-Carriers. Curr Alzheimer Res 2020; 16:753-763. [PMID: 31441725 DOI: 10.2174/1567205016666190823124724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). LOAD patients carrying or not carrying APOE4 manifest distinct clinico-pathological characteristics. APOE4 has been shown to play a critical role in the pathogenesis of AD by affecting various aspects of pathological processes. However, the pathogenesis involved in LOAD not-carrying APOE4 remains elusive. OBJECTIVE We aimed to identify the associated genes involved in LOAD not-carrying APOE4. METHODS An integrated genomic analysis of datasets of genome-wide association study, genome-wide expression profiling and genome-wide linkage scan and protein-protein interaction network construction were applied to identify associated gene clusters in APOE4 non-carriers. The role of one of hub gene of an APOE4 non-carrier-associated gene cluster in tau phosphorylation was studied by knockdown and western blot. RESULTS We identified 12 gene clusters associated with AD APOE4 non-carriers. The hub genes associated with AD in these clusters were MAPK8, POU2F1, XRCC1, PRKCG, EXOC6, VAMP4, SIRT1, MME, NOS1, ABCA1 and LDLR. The associated genes for APOE4 non-carriers were enriched in hereditary disorder, neurological disease and psychological disorders. Moreover, knockdown of PRKCG to reduce the expression of protein kinase Cγ isoform enhanced tau phosphorylation at Thr181 and Thr231 and the expression of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in the presence of APOE3 but not APOE4. CONCLUSION The study provides new insight into the mechanism of distinct pathogenesis of LOAD not carrying APOE4 and prompts the functional exploration of identified genes based on APOE genotypes.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Chun-Yun Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling Tang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Cerebrospinal Fluid Mitochondrial DNA in Rapid and Slow Progressive Forms of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21176298. [PMID: 32878083 PMCID: PMC7503553 DOI: 10.3390/ijms21176298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s type dementia (AD) exhibits clinical heterogeneity, as well as differences in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to determine whether a particular biomarker profile underlies the different rates of AD progression. We measured the content of cf-mtDNA, beta-amyloid peptide 1–42 (Aβ), total tau protein (t-tau) and phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and 44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria: high t-tau and low Aβ in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort included only subjects selected by Aβ and t-tau biomarker criteria, the spAD group showed a larger decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In the whole cohort, the CSF levels of cf-mtDNA correlated positively with Aβ and negatively with p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the disease, Aβ and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support the hypothesis that low cf-mtDNA, together with low Aβ and high p-tau, constitute a distinctive CSF biomarker profile that differentiates spAD from other neurological disorders.
Collapse
|
9
|
Arseniou S, Siokas V, Aloizou AM, Stamati P, Mentis AFA, Tsouris Z, Dastamani M, Peristeri E, Valotassiou V, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E. SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease. Neurol Res 2020; 42:853-861. [DOI: 10.1080/01616412.2020.1786973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stylianos Arseniou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A. Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo Larissa, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
10
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, Yang CH. The rs1277306 Variant of the REST Gene Confers Susceptibility to Cognitive Aging in an Elderly Taiwanese Population. Dement Geriatr Cogn Disord 2018; 43:119-127. [PMID: 28142142 DOI: 10.1159/000455833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS There is growing evidence that the RE1-silencing transcription factor (REST) gene may contribute to cognitive aging and Alzheimer diseases. In this replication study, we reassessed whether single nucleotide polymorphisms (SNPs) within the REST gene are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. METHODS A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to weigh cognitive functions. RESULTS Our data showed that the REST rs1277306 SNP was significantly associated with cognitive aging among all subjects (p = 0.0052). Furthermore, the association remained significant for individuals without APOE ε4 allele (p = 0.0092), but not for individuals with at least 1 APOE ε4 allele. This association remained significant after Bonferroni correction. Additionally, we found the interactions between the rs1713985 and rs1277306 SNPs on cognitive aging (p = 0.016). However, the 3-marker haplotype derived from the rs1713985, rs3796529, and rs7680734 SNPs in the REST gene demonstrated no association with cognitive aging. CONCLUSION Our study indicates that the REST gene may contribute to susceptibility to cognitive aging independently as well as through SNP-SNP and APOE-REST interactions.
Collapse
Affiliation(s)
- Eugene Lin
- TickleFish Systems Corporation, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Almeida JFF, dos Santos LR, Trancozo M, de Paula F. Updated Meta-Analysis of BIN1, CR1, MS4A6A, CLU, and ABCA7 Variants in Alzheimer’s Disease. J Mol Neurosci 2018; 64:471-477. [DOI: 10.1007/s12031-018-1045-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/28/2022]
|
12
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Castro-Torres RD, Verdaguer E, Garcia ML, Olloquequi J, Casadesús G, Beas-Zarate C, Pelegri C, Vilaplana J, Auladell C, Camins A. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. J Alzheimers Dis 2018; 62:1223-1240. [PMID: 29254093 PMCID: PMC5870028 DOI: 10.3233/jad-170672] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of extracellular amyloid-β protein (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The N-Methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptor, are essential for processes like learning and memory. An excessive activation of NMDARs has been associated with neuronal loss. The discovery of extrasynaptic NMDARs provided a rational and physiological explanation between physiological and excitotoxic actions of glutamate. Memantine (MEM), an antagonist of extrasynaptic NMDAR, is currently used for the treatment of AD jointly with acetylcholinesterase inhibitors. It has been demonstrated that MEM preferentially prevents the excessive continuous extrasynaptic NMDAR disease activation and therefore prevents neuronal cell death induced by excitotoxicity without disrupting physiological synaptic activity. The problem is that MEM has shown no clear positive effects in clinical applications while, in preclinical stages, had very promising results. The data in preclinical studies suggests that MEM has a positive impact on improving AD brain neuropathology, as well as in preventing Aβ production, aggregation, or downstream neurotoxic consequences, in part through the blockade of extrasynaptic NMDAR. Thus, the focus of this review is primarily to discuss the efficacy of MEM in preclinical models of AD, consider possible combinations of this drug with others, and then evaluate possible reasons for its lack of efficacy in clinical trials. Finally, applications in other pathologies are also considered.
Collapse
Affiliation(s)
- Jaume Folch
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ruben Dario Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Ester Verdaguer
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Maria Luisa Garcia
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Carme Pelegri
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Wang F, Feng J, Yang Y, Liu J, Liu M, Wang Z, Pei H, Wei Y, Li H. The Chinese herbal formula Fuzheng Quxie Decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018; 14:3037-3051. [PMID: 30519025 PMCID: PMC6233692 DOI: 10.2147/ndt.s175484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study was designed to explore the underlying mechanism of action for a Fuzheng Quxie Decoction (FQD) in Alzheimer's disease (AD), to validate its neuroprotective effects, and to provide experimental support for its predicted mechanism of action. METHODS An integrative approach to network pharmacology was performed to predict the mechanism of action for treatment of AD with FQD. The predicted mechanism was validated in SAMP8 mice. RESULTS With predicted putative FQD targets and a collection of AD-related genes, 245 possible regulatory targets of FQD were identified for the treatment of AD. Pathway-enrichment analysis for the possible regulatory targets indicated that vascular endothelial growth factor (VEGF) and VEGF-receptor signaling were pivotal in the treatment of AD with FQD. In vivo experiments confirmed the neuroprotective effect and the predicted mechanism of action for treatment of AD with FQD. CONCLUSION This study contributes to an understanding of the neuroprotective effect of FQD and its potential mechanism of action for the treatment of AD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jianchao Feng
- Intensive Care Unit, Heze Hospital of Traditional Chinese Medicine, Heze, Shandong, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jiangang Liu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| |
Collapse
|
14
|
Wu QJ, Sun SY, Yan CJ, Cheng ZC, Yang MF, Li ZF, Cheng HW, Fang TK. EXOC3L2 rs597668 variant contributes to Alzheimer's disease susceptibility in Asian population. Oncotarget 2017; 8:20086-20091. [PMID: 28423615 PMCID: PMC5386745 DOI: 10.18632/oncotarget.15380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Recent genome-wide association studies have established the association between EXOC3L2 rs597668 variant and Alzheimer's disease (AD) in European population. However, recent studies reported inconsistent results in Asian population. Here, we performed a systematic review and meta-analysis to evaluate the impact of rs597668 on AD risk in Asian population using a total of 8686 samples including 2855 cases and 5831 controls. Meanwhile, we selected 17,008 AD cases and 37,154 controls in European population to evaluate the potential heterogeneity between East Asian and European populations. In East Asian population, we identified no potential heterogeneity with P=0.31 and I2 = 15.8%. By meta-analysis, we identified positive association between rs597668 and AD risk with P=0.023, OR=0.93, 95% CI 0.87-0.99. We further found significant heterogeneity in pooled Asian and European populations with P<0.0001 and I2 = 87.7%. The meta-analysis indicated negative association with P=0.66, OR=0.97, 95% CI 0.85-1.11. In summary, all these findings indicate that rs597668 C allele is a risk factor for AD in European population with OR=1.18 and P=2.49E-13. However the rs597668 C allele played a protective role in AD with OR=0.93 and P=0.023 in East Asian population.
Collapse
Affiliation(s)
- Qing-Jian Wu
- Department of Emergency, Jining No. 1 People's Hospital, Jining, Shandong, 272011, China.,Department of Neurology, Shandong University School of Medicine, Jinan, Shandong, 250012, China.,Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China
| | - Shu-Yin Sun
- Department of Emergency, Jining No. 1 People's Hospital, Jining, Shandong, 272011, China
| | - Cheng-Jun Yan
- Department of Emergency, Jining No. 1 People's Hospital, Jining, Shandong, 272011, China
| | - Zi-Cui Cheng
- Department of Encephalopathy Rehabiliation Center, Taian Traditional Chinese Medical Hospital, Taian, Shandong, 271000, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China
| | - Zi-Fei Li
- Department of Emergency, Jining No. 1 People's Hospital, Jining, Shandong, 272011, China
| | - Hou-Wen Cheng
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China
| | - Ti-Kun Fang
- Department of Emergency, Jining No. 1 People's Hospital, Jining, Shandong, 272011, China
| |
Collapse
|
15
|
Cohen M, Appleby B, Safar JG. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease. Prion 2017; 10:9-17. [PMID: 26809345 DOI: 10.1080/19336896.2015.1123371] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.
Collapse
Affiliation(s)
- Mark Cohen
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Pathology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Brian Appleby
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,c Department of Neurology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,d Department of Psychiatry , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Jiri G Safar
- a National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Pathology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,c Department of Neurology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| |
Collapse
|
16
|
Mathews PM, Levy E. Cystatin C in aging and in Alzheimer's disease. Ageing Res Rev 2016; 32:38-50. [PMID: 27333827 DOI: 10.1016/j.arr.2016.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Under normal conditions, the function of catalytically active proteases is regulated, in part, by their endogenous inhibitors, and any change in the synthesis and/or function of a protease or its endogenous inhibitors may result in inappropriate protease activity. Altered proteolysis as a result of an imbalance between active proteases and their endogenous inhibitors can occur during normal aging, and such changes have also been associated with multiple neuronal diseases, including Amyotrophic Lateral Sclerosis (ALS), rare heritable neurodegenerative disorders, ischemia, some forms of epilepsy, and Alzheimer's disease (AD). One of the most extensively studied endogenous inhibitor is the cysteine-protease inhibitor cystatin C (CysC). Changes in the expression and secretion of CysC in the brain have been described in various neurological disorders and in animal models of neurodegeneration, underscoring a role for CysC in these conditions. In the brain, multiple in vitro and in vivo findings have demonstrated that CysC plays protective roles via pathways that depend upon the inhibition of endosomal-lysosomal pathway cysteine proteases, such as cathepsin B (Cat B), via the induction of cellular autophagy, via the induction of cell proliferation, or via the inhibition of amyloid-β (Aβ) aggregation. We review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced by CysC under various conditions. Beyond highlighting the essential role that balanced proteolytic activity plays in supporting normal brain aging, these findings suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Paul M Mathews
- Departments of Psychiatry, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Efrat Levy
- Departments of Psychiatry, New York University School of Medicine, USA; Biochemistry and Molecular Pharmacology, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
17
|
Bungenberg J, Surano N, Grote A, Surges R, Pernhorst K, Hofmann A, Schoch S, Helmstaedter C, Becker AJ. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance. Neurobiol Dis 2015; 86:121-30. [PMID: 26631617 DOI: 10.1016/j.nbd.2015.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 01/05/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe brain disorder affecting particularly young adults. TLE is frequently associated with memory deterioration and neuronal damage of the hippocampal formation. It thereby reveals striking parallels to neurodegenerative disorders including Alzheimer's disease (AD). TLE patients differ with respect to their cognitive performance, but currently little is known about relevant molecular-genetic factors. Here, we correlated differential memory performance of pharmacoresistant TLE patients undergoing neurosurgery for seizure control with in-vitro findings of their hippocampal tissues. We analyzed mRNA transcripts and subsequently promoter variants specifically altered in brain tissue of individuals with 'very severe' memory impairment. TLE patients (n=79) were stratified according to preoperative memory impairment using an established four-tiered grading system ranging from 'average' to 'very severely'. Multimodal cluster analyses revealed molecules specifically associated with synaptic function and abundantly expressed in TLE patients with very impaired memory performance. In a subsequent promoter analysis, we found the single nucleotide polymorphism rs744373 C-allele to be associated with high mRNA levels of bridging integrator 1 (BIN1)/Amphiphysin 2, i.e. a major component of the endocytotic machinery and located in a crucial genetic AD risk locus. Using in vitro luciferase transfection assays, we found that BIN1 promoter activation is genotype dependent and strongly increased by reduced binding of the transcriptional repressor TGIF. Our data indicate that poor memory performance in patients with TLE strongly corresponds to distinctly altered neuronal transcript signatures, which - as demonstrated for BIN1 - can correlate with a particular allelic promoter variant. Our data suggest aberrant transcriptional signaling to significantly impact synaptic dynamics in TLE resulting in impaired memory performance and may serve as basis for future therapy development of this severe comorbidity.
Collapse
Affiliation(s)
- Julia Bungenberg
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Natascha Surano
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | - Alexander Grote
- Dept. of Neurosurgery, University of Bonn Medical Center, Germany
| | - Rainer Surges
- Dept. of Epileptology, University of Bonn Medical Center, Germany
| | | | - Andrea Hofmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Schoch
- Dept. of Neuropathology, University of Bonn Medical Center, Germany
| | | | - Albert J Becker
- Dept. of Neuropathology, University of Bonn Medical Center, Germany.
| |
Collapse
|
18
|
Ten Kate M, Sanz-Arigita EJ, Tijms BM, Wink AM, Clerigue M, Garcia-Sebastian M, Izagirre A, Ecay-Torres M, Estanga A, Villanua J, Vrenken H, Visser PJ, Martinez-Lage P, Barkhof F. Impact of APOE-ɛ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. Neurobiol Aging 2015; 38:14-20. [PMID: 26827639 DOI: 10.1016/j.neurobiolaging.2015.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
The apolipoprotein E ε4 allele (APOE4) and family history of dementia (FH) are well-known risk factors for the development of sporadic Alzheimer's disease. We assessed the effects of these risk factors on gray matter (GM) volume in 295 cognitively healthy middle-aged community-dwelling subjects. Voxel-based morphometry was used to study GM volume differences between high- and low-risk subjects, based on APOE4 carriership (n = 74), first-degree FH (n = 228), or both (n = 62). No significant results were found using a corrected p value. Using a more lenient threshold (p < 0.001 and minimum cluster size of 100 voxels), APOE4 carriers had reduced GM in the striatum compared to noncarriers. Subjects with FH had reduced GM in right precuneus compared to subjects without FH. Maternal and paternal FH provided similar atrophy patterns. APOE4 carriers with FH had GM reductions in bilateral insula compared to subjects with neither APOE4 nor FH. We conclude that a family history of dementia and APOE4 carriership are both associated with regional GM decreases in cognitively healthy middle-aged subjects, with differential effects on brain regions typically affected in Alzheimer's disease.
Collapse
Affiliation(s)
- Mara Ten Kate
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | | | - Betty M Tijms
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | - Andrea Izagirre
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Miriam Ecay-Torres
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Ainara Estanga
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Jorge Villanua
- Neuroimaging Department, CITA-Alzheimer Foundation, San Sebastian, Spain; Donostia Unit, Osatek SA, Donostia Univeristy Hospital, San Sebastian, Spain
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
20
|
Gallone S, Boschi S, Rubino E, De Martino P, Scarpini E, Galimberti D, Fenoglio C, Acutis PL, Maniaci MG, Pinessi L, Rainero I. Is HCRTR2 a genetic risk factor for Alzheimer's disease? Dement Geriatr Cogn Disord 2015; 38:245-53. [PMID: 24969517 DOI: 10.1159/000359964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUNDS/AIMS Alzheimer's disease (AD) is one of the main types of dementia affecting about 50-55% of all demented patients. Sleep disturbances in AD patients are associated with the severity of dementia and are often the primary reason for institutionalization. These sleep problems partly resemble the core symptoms of narcolepsy, a sleep disorder caused by a general loss of the neurotransmitter hypocretin. The aim of our study was to investigate whether genetic variants in the hypocretin (HCRT) and in the hypocretin receptors 1 and 2 (HCRTR1, HCRTR2) genes could modify the occurrence and the clinical features of AD and to examine if these possible variants influence the role of the protein in sleep regulation. METHODS Using a case-control strategy, we genotyped 388 AD patients and 272 controls for 10 SNPs in the HCRT, HCRTR1 and HCRTR2 genes. In order to evaluate which residues belong to the HCRTR2 binding site, we built a molecular model. RESULTS The genotypic and allelic frequencies of the rs2653349 polymorphism were different (χ(2) = 5.77, p = 0.016; χ(2) = 6.728, p = 0.035) between AD patients and controls. The carriage of the G allele was associated with an increased AD risk (OR 2.53; 95% CI 1.10-5.80). No significant differences were found in the distribution of either genotypic or allelic frequencies between cases and controls in the HCRTR1 polymorphisms rs2271933, rs10914456 and rs4949449 and in the HCRTR2 polymorphism rs3122156. CONCLUSION Our data support the hypothesis that the HCRTR2 gene is likely to be a risk factor for AD. The increased risk inferred is quite small, but in the context of a multi-factorial disease, the presence of this polymorphism may significantly contribute to influencing the susceptibility for AD by interacting with other unknown genetic or environmental factors in sleep regulation.
Collapse
Affiliation(s)
- Salvatore Gallone
- Neurology II, Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis CC, Zoubouliss CC, Adjaye J. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 2015; 16:84. [PMID: 25765079 PMCID: PMC4344782 DOI: 10.1186/s12864-015-1262-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. Results In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. Conclusions Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| | - Alessandro Prigione
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Current address: Max Delbrueck Center for Molecular Medicine (MDC), Robert Roessle Str. 10, D-13125, Berlin, Germany.
| | - Bjoern Lichtner
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Mohammad R Toliat
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Wasco Wruck
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Friederike Schröter
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Peter Nuernberg
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Hartmut Kroll
- Institute for Transfusion Medicine Dessau, Red Cross Blood Transfusion Service NSTOB, 06847, Dessau, Germany.
| | - Eugenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany. .,Geriatrics Research Group, Department of Geriatric Medicine, Charité Universitätsmedizin Berlin, Reinickendorfer Str. 61, 13447, Berlin, Germany.
| | | | - Christos C Zoubouliss
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
22
|
CR1 is potentially associated with rate of decline in sporadic Alzheimer’s disease. J Clin Neurosci 2014; 21:1705-8. [DOI: 10.1016/j.jocn.2014.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/17/2014] [Accepted: 03/08/2014] [Indexed: 01/21/2023]
|
23
|
Xu W, Tan L, Yu JT. The Role of PICALM in Alzheimer's Disease. Mol Neurobiol 2014; 52:399-413. [PMID: 25186232 DOI: 10.1007/s12035-014-8878-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a highly heritable disease (with heritability up to 76%) with a complex genetic profile of susceptibility, among which large genome-wide association studies (GWASs) pointed to the phosphatidylinositol-binding clathrin assembly protein (PICALM) gene as a susceptibility locus for late-onset Alzheimer's disease (LOAD) incidence. Here, we summarize the known functions of PICALM and discuss its genetic polymorphisms and their potential physiological effects associated with LOAD. Compelling data indicated that PICALM affects AD risk primarily by modulating production, transportation, and clearance of β-amyloid (Aβ) peptide, but other Aβ-independent pathways are discussed, including tauopathy, synaptic dysfunction, disorganized lipid metabolism, immune disorder, and disrupted iron homeostasis. Finally, given the potential involvement of PICALM in facilitating AD occurrence in multiple ways, it might be possible that targeting PICALM might provide promising and novel avenues for AD therapy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
24
|
Villeneuve S, Brisson D, Marchant NL, Gaudet D. The potential applications of Apolipoprotein E in personalized medicine. Front Aging Neurosci 2014; 6:154. [PMID: 25071563 PMCID: PMC4085650 DOI: 10.3389/fnagi.2014.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/18/2014] [Indexed: 01/25/2023] Open
Abstract
Personalized medicine uses various individual characteristics to guide medical decisions. Apolipoprotein (ApoE), the most studied polymorphism in humans, has been associated with several diseases. The purpose of this review is to elucidate the potential role of ApoE polymorphisms in personalized medicine, with a specific focus on neurodegenerative diseases, by giving an overview of its influence on disease risk assessment, diagnosis, prognosis, and therapy. This review is not a systematic inventory of the literature, but rather a summary and discussion of novel, influential and promising works in the field of ApoE research that could be valuable for personalized medicine. Empirical evidence suggests that ApoE genotype informs pre-symptomatic risk for a wide variety of diseases, is valuable for the diagnosis of type III dysbetalipoproteinemia, increases risk of dementia in neurodegenerative diseases, and is associated with a poor prognosis following acute brain damage. ApoE status appears to influence the efficacy of certain drugs, outcome of clinical trials, and might also give insight into disease prevention. Assessing ApoE genotype might therefore help to guide medical decisions in clinical practice.
Collapse
Affiliation(s)
- Sylvia Villeneuve
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada ; Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| | - Diane Brisson
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada
| | - Natalie L Marchant
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London London, UK
| | - Daniel Gaudet
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada
| |
Collapse
|
25
|
Wang XB, Cui NH, Gao JJ, Qiu XP, Yang N, Zheng F. Angiotensin-converting enzyme gene polymorphisms and risk for sporadic Alzheimer’s disease: a meta-analysis. J Neural Transm (Vienna) 2014; 122:211-24. [DOI: 10.1007/s00702-014-1235-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022]
|
26
|
Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol Med 2013; 19:594-603. [PMID: 23871436 DOI: 10.1016/j.molmed.2013.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
The bridging integrator 1 (BIN1) gene, also known as amphiphysin 2, has recently been identified as the most important risk locus for late onset Alzheimer's disease (LOAD), after apolipoprotein E (APOE). Here, we summarize the known functions of BIN1 and discuss the polymorphisms associated with LOAD, as well as their possible physiological effects. Emerging data suggest that BIN1 affects AD risk primarily by modulating tau pathology, but other affected cellular functions are discussed, including endocytosis/trafficking, inflammation, calcium homeostasis, and apoptosis. Epigenetic modifications are important for AD pathogenesis, and we review data that suggests the possible DNA methylation of the BIN1 promoter. Finally, given the potential contributions of BIN1 to AD pathogenesis, targeting BIN1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Meng-Shan Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | | | | |
Collapse
|
27
|
Shang H, Fu J, Zhang XM, Song RR, Wang WZ. Association between EXOC3L2 rs597668 polymorphism and Alzheimer's disease. CNS Neurosci Ther 2013; 19:834-9. [PMID: 23663385 DOI: 10.1111/cns.12119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND EXOC3L2 gene rs597668 polymorphism was identified to be significantly associated with Alzheimer's disease (AD) in Caucasian population. However, recent studies reported consistent and inconsistent results in Caucasian and Asian populations. AIMS In order to assess this association, we performed a meta-analysis of rs597668 polymorphism using RevMan (v.5.1) software. METHODS We searched PubMed and Google scholar databases and selected 4 independent publications, which included 16 independent studies. We conducted sensitivity analysis and evaluated the publication bias. In the end, we calculated the odds ratio (OR) using fixed effect model (Mantel-Haenszel). RESULTS We observed significant association between rs597668 polymorphism and AD using allele model (P = 0.006, OR = 1.09, 95% CI 1.03-1.16) and the dominant model (P = 0.008, OR = 1.11, 95% CI 1.03-1.21). DISCUSSION AND CONCLUSIONS To our knowledge, this is the first study that assesses the association between rs597668 polymorphism and AD by meta-analysis. We believe that our findings will be very useful for future genetic studies in AD.
Collapse
Affiliation(s)
- Hong Shang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
28
|
Elias-Sonnenschein LS, Helisalmi S, Natunen T, Hall A, Paajanen T, Herukka SK, Laitinen M, Remes AM, Koivisto AM, Mattila KM, Lehtimäki T, Verhey FRJ, Visser PJ, Soininen H, Hiltunen M. Genetic loci associated with Alzheimer's disease and cerebrospinal fluid biomarkers in a Finnish case-control cohort. PLoS One 2013; 8:e59676. [PMID: 23573206 PMCID: PMC3616106 DOI: 10.1371/journal.pone.0059676] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/16/2013] [Indexed: 01/18/2023] Open
Abstract
Objectives To understand the relation between risk genes for Alzheimer’s disease (AD) and their influence on biomarkers for AD, we examined the association of AD in the Finnish cohort with single nucleotide polymorphisms (SNPs) from top AlzGene loci, genome-wide association studies (GWAS), and candidate gene studies; and tested the correlation between these SNPs and AD markers Aβ1–42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF). Methods We tested 25 SNPs for genetic association with clinical AD in our cohort comprised of 890 AD patients and 701-age matched healthy controls using logistic regression. For the correlational study with biomarkers, we tested 36 SNPs in a subset of 222 AD patients with available CSF using mixed models. Statistical analyses were adjusted for age, gender and APOE status. False discovery rate for multiple testing was applied. All participants were from academic hospital and research institutions in Finland. Results APOE-ε4, CLU rs11136000, and MS4A4A rs2304933 correlated with significantly decreased Aβ1–42 (corrected p<0.05). At an uncorrected p<0.05, PPP3R1 rs1868402 and MAPT rs2435211 were related with increased t-tau; while SORL1 rs73595277 and MAPT rs16940758, with increased p-tau. Only TOMM40 rs2075650 showed association with clinical AD after adjusting for APOE-ε4 (p = 0.007), but not after multiple test correction (p>0.05). Conclusions We provide evidence that APOE-ε4, CLU and MS4A4A, which have been identified in GWAS to be associated with AD, also significantly reduced CSF Aβ1–42 in AD. None of the other AlzGene and GWAS loci showed significant effects on CSF tau. The effects of other SNPs on CSF biomarkers and clinical AD diagnosis did not reach statistical significance. Our findings suggest that APOE-ε4, CLU and MS4A4A influence both AD risk and CSF Aβ1–42.
Collapse
Affiliation(s)
- Lyzel S. Elias-Sonnenschein
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Seppo Helisalmi
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| | - Teemu Natunen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Teemu Paajanen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Marjo Laitinen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M. Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M. Koivisto
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Kari M. Mattila
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Frans R. J. Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Center, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
29
|
Pereira PA, Romano-Silva MA, Bicalho MAC, de Moraes EN, Malloy-Diniz L, Pimenta GJGS, Mello MP, Bozzi ICRS, de Marco LA, Nicolato R, Miranda DM. Catechol-O-methyltransferase genetic variant associated with the risk of Alzheimer's disease in a Brazilian population. Dement Geriatr Cogn Disord 2013; 34:90-5. [PMID: 22922787 DOI: 10.1159/000341578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to examine the association between polymorphism in the catechol-O-methyltransferase(COMT) gene and Alzheimer's disease (AD) in a Brazilian population. The case-control method was used to study the association between AD and genetic variants of COMT. Six tag single-nucleotide polymorphisms(SNPs) in the COMT gene were genotyped by RT-PCR. Our findings showed that the 6 tag SNPs analyzed in this study were not associated with AD at the allele and genotype levels in comparison with the control group. No statistical difference was found between groups with and without behavioral and psychological symptoms of dementia (BPSD). Our results do not support the hypothesis that the polymorphisms of the COMT gene may be associated with susceptibility to AD with and without BPSD.
Collapse
Affiliation(s)
- Patricia Araújo Pereira
- INCT - de Medicina Molecular, Faculdade de Medicina,Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leclerc B, Abulrob A. Perspectives in molecular imaging using staging biomarkers and immunotherapies in Alzheimer's disease. ScientificWorldJournal 2013; 2013:589308. [PMID: 23476143 PMCID: PMC3576798 DOI: 10.1155/2013/589308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is an emerging chronic illness characterized by a progressive pleiotropic pathophysiological mode of actions triggered during the senescence process and affecting the elderly worldwide. The complex molecular mechanisms of AD not only are supported by cholinergic, beta-amyloid, and tau theories but also have a genetic basis that accounts for the difference in symptomatology processes activation among human population which will evolve into divergent neuropathological features underlying cognitive and behaviour alterations. Distinct immune system tolerance could also influence divergent responses among AD patients treated by immunotherapy. The complexity in nature increases when taken together the genetic/immune tolerance with the patient's brain reserve and with neuropathological evolution from early till advance AD clinical stages. The most promising diagnostic strategies in today's world would consist in performing high diagnostic accuracy of combined modality imaging technologies using beta-amyloid 42 peptide-cerebrospinal fluid (CSF) positron emission tomography (PET), Pittsburgh compound B-PET, fluorodeoxyglucose-PET, total and phosphorylated tau-CSF, and volumetric magnetic resonance imaging hippocampus biomarkers for criteria evaluation and validation. Early diagnosis is the challenge task that needs to look first at plausible mechanisms of actions behind therapies, and combining them would allow for the development of efficient AD treatment in a near future.
Collapse
Affiliation(s)
- Benoît Leclerc
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Abedelnasser Abulrob
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
- Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Building M-54, Ottawa, ON, Canada K1A 0R6
| |
Collapse
|