1
|
Ma Y, Zhang L, Zhou P. Difference in Allergenicity between β-Lactoglobulin in Bovine Milk and Caprine Milk is Related to Their Respective Digestive Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23969-23978. [PMID: 39418592 DOI: 10.1021/acs.jafc.4c05954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The underlying cause of differences in sensitization between bovine and caprine milk β-lactoglobulin (β-LG) remains unclear. In this study, denatured forms of bovine and caprine milk β-LG were obtained through reductive alkylation and evaluated for allergenicity and digestibility in Balb/c mice. Results indicated weaker sensitization to nondenatured caprine milk β-LG compared to nondenatured bovine milk β-LG, with no significant difference in sensitization observed between denatured β-LG from both sources. The nondenatured β-LG of caprine milk and two types of denatured β-LG were degraded more rapidly than nondenatured bovine milk β-LG in the small intestine of mice. In terms of undenatured proteins, mouse intestinal tissues absorbed more bovine milk β-LG than caprine milk β-LG. Overall, structural disparities in β-LG between bovine and caprine milk resulted in varying digestion rates. Moreover, the slower-degraded bovine milk β-LG and its enzymatic fragments facilitated easier absorption by the intestine, disrupting the Th1/Th2 balance and increasing susceptibility to severe allergic reactions in mice.
Collapse
Affiliation(s)
- Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Hsieh KC, Ting Y. Atmospheric cold plasma reduces Ara h 1 antigenicity in roasted peanuts by altering the protein structure and amino acid profile. Food Chem 2024; 441:138115. [PMID: 38183716 DOI: 10.1016/j.foodchem.2023.138115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.
Collapse
Affiliation(s)
- Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan.
| |
Collapse
|
3
|
Sun S, Li K, Du H, Luo J, Jiang Y, Wang J, Liu M, Liu G, Han S, Che H. Integrating Widely Targeted Lipidomics and Transcriptomics Unravels Aberrant Lipid Metabolism and Identifies Potential Biomarkers of Food Allergies in Rats. Mol Nutr Food Res 2023; 67:e2200365. [PMID: 37057506 DOI: 10.1002/mnfr.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/17/2023] [Indexed: 04/15/2023]
Abstract
SCOPE Oral food challenges (OFCs) are currently the gold standard for determining the clinical reactivity of food allergy (FA) but are time-consuming, expensive, and risky. To screen novel peripheral biomarkers of FA and characterize the aberrant lipid metabolism in serum, 24 rats are divided into four groups: peanut, milk, and shrimp allergy (PA, MA, and SA, respectively) and control groups, with six rats in each group, and used for widely targeted lipidomics and transcriptomics analysis. METHODS AND RESULTS Widely targeted lipidomics reveal 144, 162, and 206 differentially accumulated lipids in PA, MA, and SA groups, respectively. The study integrates widely targeted lipidomics and transcriptomics and identifies abnormal lipid metabolism correlated with widespread differential accumulation of diverse lipids (including triacylglycerol, diacylglycerol, sphingolipid, and glycerophospholipid) in PA, MA, and SA. Simplified random forest classifier is constructed through five repetitions of 10-fold cross-validation to distinguish allergy from control. A subset of 15 lipids as potential biomarkers allows for more reliable and more accurate prediction of FA. Independent replication validates the reproducibility of potential biomarkers. CONCLUSION The results reveal the major abnormalities in lipid metabolism and suggest the potential role of lipids as novel molecular signatures for FA.
Collapse
Affiliation(s)
- Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kexin Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hang Du
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiangzuo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuchi Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2023; 13:1053107. [PMID: 36703973 PMCID: PMC9872660 DOI: 10.3389/fimmu.2022.1053107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected β-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.
Collapse
Affiliation(s)
- Mengshan Liu
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wim E. Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Department of Immunology, Nutricia Research B.V., Utrecht, Netherlands
| | - Cornelus F. van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,*Correspondence: Linette E. M. Willemsen,
| |
Collapse
|
5
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Maryniak NZ, Stage MH, Ballegaard AR, Sancho AI, Hansen EB, Bøgh KL. Camel Milk Cannot Prevent the Development of Cow's Milk Allergy-A Study in Brown Norway Rats. Mol Nutr Food Res 2023; 67:e2200359. [PMID: 36415026 PMCID: PMC10078016 DOI: 10.1002/mnfr.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Indexed: 11/24/2022]
Abstract
SCOPE Currently there are no specific recommendations for the use of any particular infant formula in the prevention of cow's milk allergy (CMA). Recently, there has been an increasing interest in alternative infant formulas based on milk proteins from other sources than the cow, including milk from other mammalians such as goat, sheep, donkey, horse, and camel. Whereas these have been studied for their usability in CMA management, there are no studies of their CMA preventive capacity. Thus, the aim of this study is to evaluate whether camel milk can prevent CMA and vice versa. METHODS AND RESULTS The capacity of camel milk in preventing CMA and vice versa is evaluated in a well-established prophylactic Brown Norway rat model. IgG1, IgE, and IgA responses, allergy elicitation, intestinal and mLN gene expression, and protein uptake are analyzed. The study demonstrates that camel and cow's milk in general has an insignificant cross-preventive capacity. Yet, whereas cow's milk is shown to have a low transient capacity to prevent sensitization and clinically active camel milk allergy, camel milk does not show this effect for CMA. CONCLUSIONS This study suggests that due to lack of cross-tolerance camel milk cannot be used for CMA prevention.
Collapse
Affiliation(s)
| | - Mette Halkjær Stage
- National Food InstituteTechnical University of DenmarkKgs. LyngbyDK‐2800Denmark
| | | | - Ana Isabel Sancho
- National Food InstituteTechnical University of DenmarkKgs. LyngbyDK‐2800Denmark
| | - Egon Bech Hansen
- National Food InstituteTechnical University of DenmarkKgs. LyngbyDK‐2800Denmark
| | | |
Collapse
|
7
|
Lemos L, Assis HC, Alves JL, Reis DS, Campos Canesso MC, Almeida Oliveira M, Moreira TG, Miranda Sato BK, Batista LA, Gomes Lenzi J, Moraes MA, Melo L, Resende B, Aguiar D, Rezende Souza B, Cara DC, Gomes-Santos AC, Faria AMC. Neuroimmune circuits involved in β-lactoglobulin-induced food allergy. Brain Behav Immun Health 2022; 23:100471. [PMID: 35668724 PMCID: PMC9166446 DOI: 10.1016/j.bbih.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Several antigens can act as allergens eliciting IgE-mediated food allergy reactions when fed to sensitized animals. One of them is ovalbumin (OVA) which is the main allergen in egg white. Allergic mice develop aversion to OVA consumption. This aversive behavior is associated with anxiety, and it can be transferred to non-sensitized mice by injection of serum of allergic mice. However, it is yet to be determined whether altered behavior is a general component of food allergy or whether it is specific for some types of allergens. Cow's milk allergy is the most prevalent food allergy that usually begins early in life and β-lactoglobulin (BLG) is the milk component with the highest allergenicity. In this study, we investigated behavioral and neuroimmune circuits triggered by allergic sensitization to BLG. A neuroimmune conflict between aversion and reward was observed in a model of food allergy induced by BLG intake. Mice sensitized to BLG did not present aversive behavior when BLG was used for sensitization and oral challenge. Mice allergic to BLG preferred to drink the allergen-containing solution over water even though they had high levels of specific IgE, inflammatory cells in the intestinal mucosa and significant weight loss. When sensitized to OVA and challenged with the same antigen, mice had increased levels of neuron activation in the amygdala, a brain area related to anxiety. On the other hand, when mice were sensitized to OVA and received a mixture of BLG and OVA in the oral challenge, mice preferred to drink this mixture, despite their aversion to OVA, which was associated with neuron activation in the nucleus accumbens, an area related to reward behavior. Thus, the aversive behavior observed in food allergy to OVA does not apply to all antigens and some allergens may activate the brain reward system rather than anxiety and aversion. Our study provides novel insights into the neuroimmune conflicts regarding preference and avoidance to a common antigen associated with food allergy.
Collapse
Affiliation(s)
- Luísa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helder Carvalho Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela Silva Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Cecilia Campos Canesso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thais Garcias Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Luara Augusta Batista
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia Gomes Lenzi
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Muiara Aparecida Moraes
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana Melo
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna Resende
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Aguiar
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Rezende Souza
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro Universitário UNA, Instituto de Ciências Biológicas e da Saúde, Belo Horizonte, MG, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
9
|
Locke AV, Larsen JM, Graversen KB, Licht TR, Bahl MI, Bøgh KL. Amoxicillin does not affect the development of cow’s milk allergy in a Brown Norway rat model. Scand J Immunol 2022; 95:e13148. [PMID: 35152475 PMCID: PMC9285443 DOI: 10.1111/sji.13148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The use of antibiotics as well as changes in the gut microbiota have been linked to development of food allergy in childhood. It remains unknown whether administration of a single clinically relevant antibiotic directly promotes food allergy development when administrated during the sensitisation phase in an experimental animal model. We investigated whether the antibiotic amoxicillin affected gut microbiota composition, development of cow's milk allergy (CMA) and frequencies of allergic effector cells and regulatory T cells in the intestine. Brown Norway rats were given daily oral gavages of amoxicillin for six weeks and whey protein concentrate (WPC) with or without cholera toxin three times per week for the last five weeks. Microbiota composition in faeces and small intestine was analysed by 16S rRNA sequencing. The development of CMA was assessed by WPC‐specific IgE in serum, ear swelling response to WPC and body hypothermia following oral gavage of WPC. Allergic effector cells were analysed by histology, and frequencies of regulatory and activated T cells were analysed by flow cytometry. Amoxicillin administration reduced faecal microbiota diversity, reduced the relative abundance of Firmicutes and increased the abundance of Bacteroidetes and Proteobacteria. Despite these effects, amoxicillin did not affect the development of CMA, nor the frequencies of allergic effector cells or regulatory T cells. Thus, amoxicillin does not carry a direct risk for food allergy development when administrated in an experimental model of allergic sensitisation to WPC via the gut. This finding suggests that confounding factors may better explain the epidemiological link between antibiotic use and food allergy.
Collapse
Affiliation(s)
| | | | | | - Tine Rask Licht
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Martin Iain Bahl
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | | |
Collapse
|
10
|
Kamau J, Kearny S, Jaworek A, Snyder R, El Chaar M. Anaphylactic Food Allergy After Roux-en-Y Gastric Bypass. Cureus 2021; 13:e17710. [PMID: 34650884 PMCID: PMC8489797 DOI: 10.7759/cureus.17710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/26/2022] Open
Abstract
The prevalence of obesity in the United States is projected to increase as high as 85% by 2030. Weight loss is associated with improved morbidity and mortality outcomes. Roux-en-Y gastric bypass (RYGB) is an effective procedure recommended for individuals with morbid obesity for weight loss. We report the case of a patient who developed worsening food allergic reactions after RYGB surgery that progressed to an anaphylactic reaction. A 36-year-old female developed an anaphylactic reaction to an ingredient in guacamole eight years after RYGB surgery. Prior to the surgery, she had symptoms consistent with oral allergy syndrome. After the gastric bypass, however, she experienced worsening symptoms. On this occasion, she developed throat tightness prompting a visit to the emergency department where she required emergent intubation for airway protection. Blood testing to assess for an immunoglobin E-mediated allergy to common foods was negative. Despite the negative test, the allergist maintained a high suspicion for the progression of food-pollen syndrome following gastric bypass. Disruption of protein digestion from stomach bypass surgery may result in dietary proteins large enough to elicit immune responses being presented to the immune-rich intestinal mucosa. Additional consideration should be given to patients with a preexisting history of food allergic reactions undergoing RGYB surgery.
Collapse
Affiliation(s)
- James Kamau
- Internal Medicine, St. Luke's University Health Network, Easton, USA
| | - Shannon Kearny
- Allergy and Immunology, St. Luke's University Health Network, Bethlehem, USA
| | - Aaron Jaworek
- Otolaryngology, St. Luke's University Health Network, Bethlehem, USA
| | - Richard Snyder
- Internal Medicine, St. Luke's University Health Network, Easton, USA
| | - Maher El Chaar
- Bariatric Surgery, St. Luke's University Health Network, Bethlehem, USA
| |
Collapse
|
11
|
Graversen KB, Larsen JM, Pedersen SS, Sørensen LV, Christoffersen HF, Jacobsen LN, Halken S, Licht TR, Bahl MI, Bøgh KL. Partially Hydrolysed Whey Has Superior Allergy Preventive Capacity Compared to Intact Whey Regardless of Amoxicillin Administration in Brown Norway Rats. Front Immunol 2021; 12:705543. [PMID: 34531857 PMCID: PMC8438296 DOI: 10.3389/fimmu.2021.705543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background It remains largely unknown how physicochemical properties of hydrolysed infant formulas influence their allergy preventive capacity, and results from clinical and animal studies comparing the preventive capacity of hydrolysed infant formula with conventional infant formula are inconclusive. Thus, the use of hydrolysed infant formula for allergy prevention in atopy-prone infants is highly debated. Furthermore, knowledge on how gut microbiota influences allergy prevention remains scarce. Objective To gain knowledge on (1) how physicochemical properties of hydrolysed whey products influence the allergy preventive capacity, (2) whether host microbiota disturbance influences allergy prevention, and (3) to what extent hydrolysed whey products influence gut microbiota composition. Methods The preventive capacity of four different ad libitum administered whey products was investigated in Brown Norway rats with either a conventional or an amoxicillin-disturbed gut microbiota. The preventive capacity of products was evaluated as the capacity to reduce whey-specific sensitisation and allergic reactions to intact whey after intraperitoneal post-immunisations with intact whey. Additionally, the direct effect of the whey products on the growth of gut bacteria derived from healthy human infant donors was evaluated by in vitro incubation. Results Two partially hydrolysed whey products with different physicochemical characteristics were found to be superior in preventing whey-specific sensitisation compared to intact and extensively hydrolysed whey products. Daily oral amoxicillin administration, initiated one week prior to intervention with whey products, disturbed the gut microbiota but did not impair the prevention of whey-specific sensitisation. The in vitro incubation of infant faecal samples with whey products indicated that partially hydrolysed whey products might confer a selective advantage to enterococci. Conclusions Our results support the use of partially hydrolysed whey products for prevention of cow’s milk allergy in atopy-predisposed infants regardless of their microbiota status. However, possible direct effects of partially hydrolysed whey products on gut microbiota composition warrants further investigation.
Collapse
Affiliation(s)
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
12
|
Bourdeau T, Affolter M, Dupuis L, Panchaud A, Lahrichi S, Merminod L, Martin-Paschoud C, Adams R, Nutten S, Blanchard C. Peptide Characterization and Functional Stability of a Partially Hydrolyzed Whey-Based Formula over Time. Nutrients 2021; 13:3011. [PMID: 34578889 PMCID: PMC8465316 DOI: 10.3390/nu13093011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Human clinical trials have shown that a specific partially hydrolyzed 100% whey-based infant formula (pHF-W) reduces AD risk in the first yeast of life. Meta-analyses with a specific pHF-W (pHF-W1) confirm a protective effect while other meta-analyses pooling different pHF-W show conflicting results. Here we investigated the molecular composition and functional properties of the specific pHF-W1 as well as the stability of its manufacturing process over time. This specific pHF-W1 was compared with other pHF-Ws. We used size exclusion chromatography to characterize the peptide molecular weight (MW), a rat basophil degranulation assay to assess the relative level of beta-lactoglobulin (BLG) allergenicity and a preclinical model of oral tolerance induction to test prevention of allergic sensitization. To analyze the exact peptide sequences before and after an HLA binding assay, a mass cytometry approach was used. Peptide size allergenicity and oral tolerance induction were conserved across pHF-W1 batches of production and time. The median MW of the 37 samples of pHF-W1 tested was 800 ± 400 Da. Further oral tolerance induction was observed using 10 different batches of the pHF-W1 with a mean reduction of BLG-specific IgE levels of 0.76 log (95% CI = -0.95; -0.57). When comparing pHF-W1 with three other formulas (pHF-W2 3 and 4), peptide size was not necessarily associated with allergenicity reduction in vitro nor oral tolerance induction in vivo as measured by specific IgE level (p < 0.05 for pHF-W1 and 2 and p = 0.271 and p = 0.189 for pHF-W3 and 4 respectively). Peptide composition showed a limited overlap between the formulas tested ranging from 11.7% to 24.2%. Furthermore nine regions in the BLG sequence were identified as binding HLA-DR. In conclusion, not all pHF-Ws tested have the same peptide size distribution decreased allergenicity and ability to induce oral tolerance. Specific peptides are released during the different processes used by different infant formula producers.
Collapse
Affiliation(s)
- Tristan Bourdeau
- Gastrointestinal Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (T.B.); (C.M.-P.)
| | - Michael Affolter
- Analytical Sciences Department, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (M.A.); (A.P.); (S.L.); (L.M.)
| | - Lénaïck Dupuis
- Biometrics, Clinical Development Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Alexandre Panchaud
- Analytical Sciences Department, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (M.A.); (A.P.); (S.L.); (L.M.)
| | - Sabine Lahrichi
- Analytical Sciences Department, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (M.A.); (A.P.); (S.L.); (L.M.)
| | - Loraine Merminod
- Analytical Sciences Department, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (M.A.); (A.P.); (S.L.); (L.M.)
| | - Christine Martin-Paschoud
- Gastrointestinal Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (T.B.); (C.M.-P.)
| | - Rachel Adams
- Cultivate: Nutrition Content + Strategy, Decatur, TX 76234, USA;
| | | | - Carine Blanchard
- Gastrointestinal Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (T.B.); (C.M.-P.)
| |
Collapse
|
13
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
14
|
Teodorowicz M, Zenker HE, Ewaz A, Tsallis T, Mauser A, Gensberger‐Reigl S, de Jong NW, Hettinga KA, Wichers HJ, van Neerven RJJ, Savelkoul HFJ. Enhanced Uptake of Processed Bovine β-Lactoglobulin by Antigen Presenting Cells: Identification of Receptors and Implications for Allergenicity. Mol Nutr Food Res 2021; 65:e2000834. [PMID: 33559978 PMCID: PMC8244112 DOI: 10.1002/mnfr.202000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Indexed: 12/12/2022]
Abstract
SCOPE β-lactoglobulin (BLG) is a major cow milk allergen encountered by the immune system of infants fed with milk-based formulas. To determine the effect of processing on immunogenicity of BLG, this article characterized how heated and glycated BLG are recognized and internalized by APCs. Also, the effect of heat-induced structural changes as well as gastrointestinal digestion on immunogenicity of BLG is evaluated. METHODS AND RESULTS The binding and uptake of BLG from raw cow milk and heated either alone (BLG-H) or with lactose/glucose (BLG-Lac and BLG-Glu) to the receptors present on APCs are analyzed by ELISA and cell-binding assays. Heated and glycated BLG is internalized via galectin-3 (Gal-3)and scavenger receptors (CD36 and SR-AI) while binding to the receptor for advanced glycation end products (R AGE) does not cause internalization. Receptor affinity of BLG is dependent on increased hydrophobicity, β-sheet exposure and aggregation. Digested glycated BLG maintained binding to sRAGE and Gal-3 but not to CD36 and SR-AI, and is detected on the surface of APCs. This suggests a mechanism via which digested glycated BLG may trigger innate (via RAGE) and adaptive immunity (via Gal-3). CONCLUSIONS This study defines structural characteristics of heated and glycated BLG determining its interaction with APCs via specific receptors thus revealing enhanced immunogenicity of glycated versus heated BLG.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Hannah E. Zenker
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Arifa Ewaz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Theodoros Tsallis
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Andreas Mauser
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Sabrina Gensberger‐Reigl
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Nicolette W. de Jong
- Internal Medicine, Allergology & Clinical ImmunologyErasmus University Medical Centre Rotterdam, the Netherlands
| | - Kasper A. Hettinga
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Harry J. Wichers
- Food & Biobased ResearchWageningen University & Research CentreWageningenthe Netherlands
| | - R. J. Joost van Neerven
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
- Friesland CampinaAmersfoortthe Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| |
Collapse
|
15
|
Wang Y, Li X, Wu S, Dong L, Hu Y, Wang J, Zhang Y, Wang S. Methylglyoxal Decoration of Glutenin during Heat Processing Could Alleviate the Resulting Allergic Reaction in Mice. Nutrients 2020; 12:E2844. [PMID: 32957487 PMCID: PMC7551842 DOI: 10.3390/nu12092844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It is widely believed that Maillard reactions could affect the sensitization of allergens. However, the mechanism of action of methylglyoxal (MGO) production in Maillard reactions in the sensitization variation of glutenin (a predominant allergen in wheat) during heat processing is still unclear. METHODS This research evaluated the effect of MGO on the immune response against glutenin in a mouse model. The resulting variations in conformation and corresponding digestibility of glutenin were determined. The immune response and gut microflora variation in mice were analyzed following administering of glutenin and MGO-glutenin. RESULTS The results of the study showed that MGO-glutenin induced a lower immune response than native glutenin. Cytokine analysis showed that MGO-glutenin regulated mouse immune response by inducing Treg differentiation. MGO decoration changed the structure and digestibility of glutenin. In addition, MGO-glutenin contributes to the maintenance of the beneficial gut microflora. CONCLUSION MGO decoration of glutenin during heat processing could alleviate the resulting allergic reaction in mice. Decoration with MGO appears to contribute to the aggregation of glutenin, potentially masking surface epitopes and abating sensitization. Furthermore, Bacteroides induced regulatory T-cell (Treg) differentiation, which may contribute to inhibition of the Th2 immune response and stimulation of immune tolerance.
Collapse
Affiliation(s)
- Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Junping Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China;
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (Y.W.); (X.L.); (S.W.); (L.D.); (Y.H.); (Y.Z.)
| |
Collapse
|
16
|
Larsen JM, Bang-Berthelsen CH, Qvortrup K, Sancho AI, Hansen AH, Andersen KIH, Thacker SSN, Eiwegger T, Upton J, Bøgh KL. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 2020; 40:881-894. [PMID: 32515236 DOI: 10.1080/07388551.2020.1772194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergen-specific immunotherapy (IT) is emerging as a viable avenue for the treatment of food allergies. Clinical trials currently investigate raw or slightly processed foods as therapeutic agents, as trials using food-grade agents can be performed without the strict regulations to which conventional drugs are subjected. However, this limits the ability of standardization and may affect clinical trial outcomes and reproducibility. Herein, we provide an overview of methods used in the production of immunotherapeutic agents for the treatment of food allergies, including processed foods, allergen extracts, recombinant allergens, and synthetic peptides, as well as the physical and chemical processes for the reduction of protein allergenicity. Commercial interests currently favor producing standardized drug-grade allergen extracts for therapeutic use, and clinical trials are ongoing. In the near future, recombinant production could replace purification strategies since it allows the manufacturing of pure, native allergens or sequence-modified allergens with reduced allergenicity. A recurring issue within this field is the inadequate reporting of production procedures, quality control, product physicochemical characteristics, allergenicity, and immunological properties. This information is of vital importance in assessing therapeutic standardization and clinical safety profile, which are central parameters for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada.,Department of Immunology, The University of Toronto, Toronto, Canada
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
17
|
Deng Y, Govers C, Tomassen M, Hettinga K, Wichers HJ. Heat treatment of β-lactoglobulin affects its digestion and translocation in the upper digestive tract. Food Chem 2020; 330:127184. [PMID: 32531635 DOI: 10.1016/j.foodchem.2020.127184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Heat treatment is a commonly applied unit operation in the processing of β-lactoglobulin containing products. This does, however, influence its structure and thereby impacts its activity and digestibility. We describe how various heat-treatments of β-lactoglobulin change the digestibility using a modified version of the current consensus INFOGEST protocol. Additionally, protein was investigated for its translocation over the intestinal epithelial barrier, which would bring them in contact with immune cells. The extent of gastric digestibility was higher when the protein structure was more modified, while the influence of glycation with lactose was limited. Translocation studies of protein across Caco-2 cell monolayers showed a lower translocation rate of protein heated in solution compared to the others. Our study indicates that structural modifications after different heat-treatments of β-lactoglobulin increase in particular gastric digestibility and the translocation efficiency across intestinal epithelial cells.
Collapse
Affiliation(s)
- Ying Deng
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Monic Tomassen
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University and Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Périz M, Pérez-Cano FJ, Rodríguez-Lagunas MJ, Cambras T, Pastor-Soplin S, Best I, Castell M, Massot-Cladera M. Development and Characterization of an Allergic Asthma Rat Model for Interventional Studies. Int J Mol Sci 2020; 21:E3841. [PMID: 32481675 PMCID: PMC7312681 DOI: 10.3390/ijms21113841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Allergic asthma is one of the most common chronic diseases of the airways, however it still remains underdiagnosed and hence undertreated. Therefore, an allergic asthma rat model would be useful to be applied in future therapeutic strategy studies. The aim of the present study was to develop an objective model of allergic asthma in atopic rats that allows the induction and quantification of anaphylactic shock with quantitative variables. Female Brown Norway rats were intraperitoneally sensitized with ovalbumin (OVA), alum and Bordetella pertussis toxin and boosted a week later with OVA in alum. At day 28, all rats received an intranasal challenge with OVA. Anaphylactic response was accurately assessed by changes in motor activity and body temperature. Leukotriene concentration was determined in the bronchoalveolar lavage fluid (BALF), and total and IgE anti-OVA antibodies were quantified in blood and BALF samples. The asthmatic animals' motility and body temperature were reduced after the shock for at least 20 h. The asthmatic animals developed anti-OVA IgE antibodies both in BALF and in serum. These results show an effective and relatively rapid model of allergic asthma in female Brown Norway rats that allows the quantification of the anaphylactic response.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Trinitat Cambras
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, 15842 Lima, Peru; (S.P.-S.); (I.B.)
| | - Iván Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, 15842 Lima, Peru; (S.P.-S.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, 15024 Lima, Peru
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
19
|
Graversen KB, Ballegaard AR, Kræmer LH, Hornslet SE, Sørensen LV, Christoffersen HF, Jacobsen LN, Untersmayr E, Smit JJ, Bøgh KL. Cow’s milk allergy prevention and treatment by heat‐treated whey—A study in Brown Norway rats. Clin Exp Allergy 2020; 50:708-721. [DOI: 10.1111/cea.13587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Louise H. Kræmer
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Sofie E. Hornslet
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Laila V. Sørensen
- Research & Development Arla Foods Ingredients Group P/S Videbæk Denmark
| | | | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| |
Collapse
|
20
|
Verhoeckx K, Bøgh KL, Dupont D, Egger L, Gadermaier G, Larré C, Mackie A, Menard O, Adel-Patient K, Picariello G, Portmann R, Smit J, Turner P, Untersmayr E, Epstein MM. The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food Chem Toxicol 2019; 129:405-423. [PMID: 31063834 DOI: 10.1016/j.fct.2019.04.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023]
Abstract
The current allergenicity assessment of novel proteins is based on the EFSA GMO guidance. Recently, EFSA launched a new guidance document on allergenicity assessment of GM plants (2017). This document describes, amongst other topics, the new scientific and regulatory developments on in vitro protein digestibility tests. The EFSA GMO Panel stated that for in vitro protein digestibility tests, additional investigations are needed before any additional recommendation in the form of guidance can be provided. To this end, an interim phase is considered necessary to evaluate the revisions to the in vitro gastrointestinal digestion test, proposed by EFSA. This prompted the establishment of a joint workshop through two COST Action networks: COST Action ImpARAS and COST Acton INFOGEST. In 2017, a workshop was organised to discuss the relevance of digestion in allergenicity risk assessment and how to potentially improve the current methods and readouts. The outcome of the workshop is that there is no rationale for a clear readout that is predictive for allergenicity and we suggest to omit the digestion test from the allergenicity assessment strategy for now, and put an effort into filling the knowledge gaps as summarized in this paper first.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | | | - Lotti Egger
- Agroscope, Schwarzenburgstr. 161, 3003, Bern, Charlotte, Switzerland.
| | - Gabriele Gadermaier
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Colette Larré
- INRA UR1268 BIA, Rue de la Géraudière, BP 71627, 44316 Nantes, France.
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| | | | - Karine Adel-Patient
- UMR Service de Pharmacologie et Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur-Yvette Cedex, France.
| | | | - Reto Portmann
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland.
| | - Joost Smit
- Institute of Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584CM, Utrecht, the Netherlands.
| | - Paul Turner
- Section of Paediatrics, Imperial College London, London, United Kingdom.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Michelle M Epstein
- Department of Dermatology, Experimental Allergy Laboratory, Medical University of Vienna, Waehringer Guertel 18-20 room 4P9.02, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Jensen L, Larsen J, Madsen C, Laursen R, Jacobsen L, Bøgh K. Preclinical Brown Norway Rat Models for the Assessment of Infant Formulas in the Prevention and Treatment of Cow’s Milk Allergy. Int Arch Allergy Immunol 2019; 178:307-314. [DOI: 10.1159/000495801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
|
22
|
Pescuma M, Hébert E, Font G, Saavedra L, Mozzi F. Hydrolysate of β-lactoglobulin by Lactobacillus delbrueckii subsp. bulgaricus CRL 656 suppresses the immunoreactivity of β-lactoglobulin as revealed by in vivo assays. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Comparison of the Allergenicity and Immunogenicity of Camel and Cow's Milk-A Study in Brown Norway Rats. Nutrients 2018; 10:nu10121903. [PMID: 30518040 PMCID: PMC6315711 DOI: 10.3390/nu10121903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background: When breastfeeding is impossible or insufficient, the use of cow’s milk-based hypoallergenic infant formulas is an option for infants suffering from or at risk of developing cow’s milk allergy. As the Camelidae family has a large evolutionary distance to the Bovidae family and as camel milk differs from cow’s milk protein composition, there is a growing interest in investigating the suitability of camel milk as an alternative to cow’s milk-based hypoallergenic infant formulas. Methods: The aim of the study was to compare the allergenicity and immunogenicity of camel and cow’s milk as well as investigating their cross-reactivity using a Brown Norway rat model. Rats were immunised intraperitoneally with one of four products: camel milk, cow’s milk, cow’s milk casein or cow’s milk whey fraction. Immunogenicity, sensitising capacity, antibody avidity and cross-reactivity were evaluated by means of different ELISAs. The eliciting capacity was evaluated by an ear swelling test. Results: Camel and cow’s milk showed similarity in their inherent immunogenicity, sensitising and eliciting capacity. Results show that there was a lower cross-reactivity between caseins than between whey proteins from camel and cow’s milk. Conclusions: The study showed that camel and cow’s milk have a low cross-reactivity, indicating a low protein similarity. Results demonstrate that camel milk could be a promising alternative to cow’s milk-based hypoallergenic infant formulas.
Collapse
|
24
|
The Effect of Digestion and Digestibility on Allergenicity of Food. Nutrients 2018; 10:nu10091129. [PMID: 30134536 PMCID: PMC6164088 DOI: 10.3390/nu10091129] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Food allergy prevalence numbers are still on the rise. Apart from environmental influences, dietary habits, food availability and life-style factors, medication could also play a role. For immune tolerance of food, several contributing factors ensure that dietary compounds are immunologically ignored and serve only as source for energy and nutrient supply. Functional digestion along the gastrointestinal tract is essential for the molecular breakdown and a prerequisite for appropriate uptake in the intestine. Digestion and digestibility of carbohydrates and proteins thus critically affect the risk of food allergy development. In this review, we highlight the influence of amylases, gastric acid- and trypsin-inhibitors, as well as of food processing in the context of food allergenicity.
Collapse
|
25
|
Pekar J, Ret D, Untersmayr E. Stability of allergens. Mol Immunol 2018; 100:14-20. [PMID: 29606336 PMCID: PMC6020993 DOI: 10.1016/j.molimm.2018.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
For proteins to cause IgE-mediated allergic reactions, several common characteristics have to be defined, including small molecular size, solubility and stability to changing pH levels and enzymatic degradation. Nevertheless, these features are not unique for potent allergens, but are also observed in non-allergenic proteins. Due to the increasing awareness by regulatory authorities regarding the allergy pandemic, definition of characteristics unique to potent allergens would facilitate allergenicity assessment in the future. Despite major research efforts even to date the features unique for major allergens have not been elucidated so far. The route of allergen entry into the organism determines to a great extent these required characteristics. Especially orally ingested allergens are exposed to the harsh milieu of the gastrointestinal tract but might additionally be influenced by food processing. Depending on molecular properties such as disulphide bonds contributing to protein fold and formation of conformational IgE epitopes, posttranslational protein modification or protein food matrix interactions, enzymatic and thermal stability might differ between allergens. Moreover, also ligand binding influences structural stability. In the current review article, we aim at highlighting specific characteristics and molecular pattern contributing to a stabilized protein structure and overall allergenicity.
Collapse
Affiliation(s)
- Judith Pekar
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Kostadinova AI, Middelburg J, Ciulla M, Garssen J, Hennink WE, Knippels LMJ, van Nostrum CF, Willemsen LEM. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow's milk allergy prevention. Eur J Pharmacol 2017; 818:211-220. [PMID: 29079360 DOI: 10.1016/j.ejphar.2017.10.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Beta-lactoglobulin (BLG)-derived peptides may facilitate oral tolerance to whey and prevent cow's milk allergy (CMA). Loading of BLG-peptides in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Pep-NP) may improve this. Here we studied the uptake of NP and the capacity of NP and Pep-NP to activate bone marrow dendritic cells (BMDC). Furthermore, CMA prevention was evaluated by orally exposing three-week-old female C3H/HeOuJ mice to Pep-NP, NP or free peptides (PepMix) for 6 days before oral sensitization with whole whey protein and effects on the spleen and small intestine lamina propria (SI-LP) were studied. In BMDC, NP and Pep-NP enhanced CD40 expression and IL-6 and TNF-α secretion, while tended to decrease CD80 expression and prevented PepMix-induced IL-12 secretion. In vivo, oral exposure to Pep-NP, but not NP or PepMix, prior to whey sensitization tended to partially prevent the acute allergic skin response to whole whey protein. Splenocytes of NP-pre-exposed mice secreted increased levels of whey-specific IL-6, but this was silenced in Pep-NP-pre-exposed mice which also showed reduced TNF-α and IFN-γ secretion. In the SI-LP, Pep-NP pre-exposure reduced the CD4+ T cell frequency in CMA mice compared to PBS pre-exposure. In addition, while NP increased whey-specific IL-6 secretion in the SI-LP, Pep-NP did not and maintained regulatory TGF-β secretion. This study presents a proof-of-concept that PLGA nanoparticles facilitate the capacity of BLG peptides to suppress the allergic response to whole whey protein. Hence, PLGA nanoparticles may be further developed as an adjunct strategy for BLG-peptide-based oral tolerance induction and CMA prevention.
Collapse
Affiliation(s)
- Atanaska I Kostadinova
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Immunology, Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, The Netherlands.
| | - Jim Middelburg
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Michele Ciulla
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Immunology, Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, The Netherlands
| | - Wim E Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Immunology, Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
27
|
Kostadinova AI, Pablos-Tanarro A, Diks MAP, van Esch BCAM, Garssen J, Knippels LMJ, Willemsen LEM. Dietary Intervention with β-Lactoglobulin-Derived Peptides and a Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates the Prevention of Whey-Induced Allergy in Mice by Supporting a Tolerance-Prone Immune Environment. Front Immunol 2017; 8:1303. [PMID: 29123515 PMCID: PMC5662887 DOI: 10.3389/fimmu.2017.01303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cow's milk allergy (CMA) prevails in infants and brings increased risk of developing other allergic diseases. Oral administration of specific β-lactoglobulin (BLG)-derived peptides (PepMix) and a specific blend of short- and long-chain fructo-oligosaccharides and Bifidobacterium breve M-16V (FF/Bb) was found to partially prevent CMA development in mice. In this study, we aimed to expand the knowledge on the preventive potential and the underlying mechanisms of this approach. Three-week-old female C3H/HeOuJ mice were orally exposed to PepMix±FF/Bb prior to a 5-week oral sensitization with whole whey and cholera toxin as an adjuvant. The acute allergic skin response was determined after an intradermal challenge with whole whey protein. Following an oral challenge with whey, regulatory T cells (Tregs) in the small intestine lamina propria (SI-LP) and mRNA expression of immune markers in the Peyer's patches (PP) were investigated. The early impact of PepMix and FF/Bb interventions on the immune system during the oral tolerance (OT) induction phase was investigated after the last OT administration. Pre-exposing mice to PepMix+FF/Bb partially prevented the acute allergic skin response compared to PBS and increased Tregs and activated T cells in the SI-LP compared to sham-sensitized mice. It also increased the mRNA expression of Tbet over GATA3 in the PP of whey-sensitized mice. Directly upon the 6-day OT phase, FF/Bb intervention enhanced cecal content levels of propionic and butyric acid in PepMix-fed mice and the former was positively correlated with Foxp3+ cell numbers in the colon. In the PP of PepMix+FF/Bb-exposed mice, IL-22 mRNA expression increased and IL-10 followed the same tendency, while the Foxp3 expression was increased over GATA3 and RorγT. In the colon, the Tbet mRNA expression increased over GATA3, while IL-22 decreased. In addition, the Foxp3+/GATA3+ and regulatory/effector T cell ratios in the mesenteric lymph nodes and the CD11b+/CD11b- conventional dendritic cells ratio in the SI-LP were increased. In conclusion, the FF/Bb diet facilitates the capacity of the specific BLG-peptides to partially prevent the allergic response after sensitization to whole whey protein, possibly by creating a tolerance-prone environment during the OT phase. Such a dietary intervention might contribute to tailoring successful strategies for CMA prevention.
Collapse
Affiliation(s)
- Atanaska I Kostadinova
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Alba Pablos-Tanarro
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Mara A P Diks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
29
|
Lozano-Ojalvo D, Pérez-Rodríguez L, Pablos-Tanarro A, López-Fandiño R, Molina E. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Bøgh KL, Madsen CB. Food Allergens: Is There a Correlation between Stability to Digestion and Allergenicity? Crit Rev Food Sci Nutr 2017; 56:1545-67. [PMID: 25607526 DOI: 10.1080/10408398.2013.779569] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Food allergy is a major health problem in the Western countries, affecting 3-8% of the population. It has not yet been established what makes a dietary protein a food allergen. Several characteristics have been proposed to be shared by food allergens. One of these is resistance to digestion. This paper reviews data from digestibility studies on purified food allergens and evaluates the predictive value of digestibility tests on the allergenic potential. We point out that food allergens do not necessarily resist digestion. We discuss how the choice of in vitro digestibility assay condition and the method used for detection of residual intact protein as well as fragments hereof may greatly influence the outcome as well as the interpretation of results. The finding that digests from food allergens may retain allergenicity, stresses the importance of using immunological assays for evaluating the allergenic potential of food allergen digestion products. Studies assessing the allergenicity of digestion products, by either IgE-binding, elicitation or sensitizing capacity, shows that digestion may abolish, decrease, have no effect, or even increase the allergenicity of food allergens. Therefore, the predictive value of the pepsin resistance test for assessing the allergenic potential of novel proteins can be questioned.
Collapse
Affiliation(s)
- Katrine Lindholm Bøgh
- a National Food Institute , Division for Diet, Disease Prevention and Toxicology, Technical University of Denmark , Søborg , Denmark
| | - Charlotte Bernhard Madsen
- a National Food Institute , Division for Diet, Disease Prevention and Toxicology, Technical University of Denmark , Søborg , Denmark
| |
Collapse
|
31
|
Kostadinova AI, Meulenbroek LAPM, van Esch BCAM, Hofman GA, Garssen J, Willemsen LEM, Knippels LMJ. A Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates Partial Non-Responsiveness to Whey Protein in Mice Orally Exposed to β-Lactoglobulin-Derived Peptides. Front Immunol 2017; 7:673. [PMID: 28127297 PMCID: PMC5226939 DOI: 10.3389/fimmu.2016.00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Oral tolerance is a promising approach for allergy prevention in early life, but it strongly depends on allergen exposure and proper immune environment. Small tolerance-inducing peptides and dietary immunomodulatory components may comprise an attractive method for allergy prevention in at-risk infants. This study aimed to investigate whether early oral exposure to β-lactoglobulin-derived peptides (BLG-peptides) and a specific synbiotic mixture of short- and long- chain fructo-oligosaccharides (scFOS/lcFOS, FF) and Bifidobacterium breve (Bb) M-16V (FF/Bb) can prevent cow’s milk allergy (CMA). Three-week-old female C3H/HeOuJ mice were orally exposed to phosphate buffered saline (PBS), whey protein, or a mixture of four synthetic BLG-peptides combined with a FF/Bb-enriched diet prior to intragastric sensitization with whey protein and cholera toxin. To assess the acute allergic skin response and clinical signs of allergy, mice were challenged intradermally with whole whey protein. Serum immunoglobulins were analyzed after a whey protein oral challenge. Cytokine production by allergen-reactivated splenocytes was measured and changes in T cells subsets in the spleen, mesenteric lymph nodes, and intestinal lamina propria were investigated. Pre-exposing mice to a low dosage of BLG-peptides and a FF/Bb-enriched diet prior to whey protein sensitization resulted in a significant reduction of the acute allergic skin response to whey compared to PBS-pretreated mice fed a control diet. Serum immunoglobulins were not affected, but anaphylactic symptom scores remained low and splenocytes were non-responsive in whey-induced cytokine production. In addition, preservation of the Th1/Th2 balance in the small intestine lamina propria was a hallmark of the mechanism underlying the protective effect of the BLG-peptides–FF/Bb intervention. Prior exposure to BLG-peptides and a FF/Bb-enriched diet is a promising approach for protecting the intestinal Th1/Th2 balance and reducing the allergic response to whole whey protein. Therefore, it might have implications for developing successful nutritional strategies for CMA prevention.
Collapse
Affiliation(s)
- Atanaska I Kostadinova
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | | | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | - Gerard A Hofman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| |
Collapse
|
32
|
Fang X, Rioux LE, Labrie S, Turgeon SL. Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Bøgh KL, Barkholt V, Madsen CB. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates--A Study in Brown Norway Rats. Scand J Immunol 2015; 81:274-83. [PMID: 25619117 DOI: 10.1111/sji.12271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which characteristics of hydrolysates that contribute to allergenicity, in vivo models are valuable tools. In this study, we examine the immunogenicity and allergenicity of two hydrolysates in a Brown Norway (BN) rat model, using i.p. dosing, which allows for the use of small quantities. Intact BLG, hydrolysed BLG and a hydrolysed whey product suitable for use in extensively hydrolysed formulas were thoroughly characterized for protein chemical features and administered to BN rats by i.p. immunization with or without adjuvant. Sera were analysed for specific IgG and IgE for evaluation of sensitizing capacity, immunogenicity and antibody-binding capacity. For evaluation of eliciting capacity a skin test was performed. The study showed that the hydrolysates had no residual allergenicity, lacking the capacity to sensitize and elicit reactions in the BN rats. Dosing with or without adjuvant induced a large difference in immunogenicity. Only antibodies from rats sensitized to intact BLG with adjuvant were able to bind the hydrolysates, and the whey-based hydrolysate only showed immunogenicity when dosed with adjuvant. This study showed that hydrolysates can be evaluated by an i.p. animal model, but that the choice of in vitro tests used for evaluation of antibody responses may greatly influence the result as well as may the use of adjuvant.
Collapse
Affiliation(s)
- K L Bøgh
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | | |
Collapse
|
34
|
Abril-Gil M, Garcia-Just A, Pérez-Cano FJ, Franch À, Castell M. Development and characterization of an effective food allergy model in Brown Norway rats. PLoS One 2015; 10:e0125314. [PMID: 25923134 PMCID: PMC4414460 DOI: 10.1371/journal.pone.0125314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. OBJECTIVE The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. METHODS Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. RESULTS Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. CONCLUSIONS These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.
Collapse
Affiliation(s)
- Mar Abril-Gil
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA-UB), Barcelona, Spain
| | - Alba Garcia-Just
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA-UB), Barcelona, Spain
| | - Francisco J. Pérez-Cano
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA-UB), Barcelona, Spain
| | - Àngels Franch
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA-UB), Barcelona, Spain
| | - Margarida Castell
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA-UB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
35
|
Madsen JL, Kroghsbo S, Madsen CB, Pozdnyakova I, Barkholt V, Bøgh KL. The impact of structural integrity and route of administration on the antibody specificity against three cow's milk allergens - a study in Brown Norway rats. Clin Transl Allergy 2014; 4:25. [PMID: 25206972 PMCID: PMC4158394 DOI: 10.1186/2045-7022-4-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023] Open
Abstract
Background Characterisation of the specific antibody response, including the epitope binding pattern, is an essential task for understanding the molecular mechanisms of food allergy. Examination of antibody formation in a controlled environment requires animal models. The purpose of this study was to examine the amount and types of antibodies raised against three cow’s milk allergens; β-lactoglobulin (BLG), α-lactalbumin (ALA) and β-casein upon oral or intraperitoneal (i.p.) administration. A special focus was given to the relative amount of antibodies raised against linear versus conformational epitopes. Methods Specific antibodies were raised in Brown Norway (BN) rats. BN rats were dosed either (1) i.p. with the purified native cow’s milk allergens or (2) orally with skimmed milk powder (SMP) alone or together with gluten, without the use of adjuvants. The allergens were denatured by reduction and alkylation, resulting in unfolding of the primary structure and a consequential loss of conformational epitopes. The specific IgG1 and IgE responses were analysed against both the native and denatured form of the three cow’s milk allergens, thus allowing examination of the relative amount of linear versus conformational epitopes. Results The inherent capacity to induce specific IgG1 and IgE antibodies were rather similar upon i.p. administration for the three cow’s milk allergens, with BLG = ALA > β-casein. Larger differences were found between the allergens upon oral administration, with BLG > ALA > β-casein. Co-administration of SMP and gluten had a great impact on the specific antibody response, resulting in a significant reduced amount of antibodies. Together results indicated that most antibodies were raised against conformational epitopes irrespectively of the administration route, though the relative proportions between linear and conformational epitopes differed remarkably between the allergens. Conclusions This study showed that the three-dimensional (3D) structure has a significant impact on the antibodies raised for both systemic and orally administered allergens. A remarkable difference in the antibody binding patterns against linear and conformational epitope was seen between the allergens, indicating that the structural characteristics of proteins may heavily affect the induced antibody response.
Collapse
Affiliation(s)
- Jeanette Lund Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Stine Kroghsbo
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Charlotte Bernhard Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Irina Pozdnyakova
- NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Barkholt
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrine Lindholm Bøgh
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| |
Collapse
|
36
|
Bublin M, Eiwegger T, Breiteneder H. Do lipids influence the allergic sensitization process? J Allergy Clin Immunol 2014; 134:521-9. [PMID: 24880633 PMCID: PMC4151997 DOI: 10.1016/j.jaci.2014.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1–like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future.
Collapse
Affiliation(s)
- Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Eiwegger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Järvinen KM. Allergy Prevention via Co-Administration of Intact Food Allergen and Its Epitope Soup? Int Arch Allergy Immunol 2013; 161:195-6. [DOI: 10.1159/000346869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|