1
|
Opara A, Jost A, Dagogo-Jack S, Opara EC. Islet cell encapsulation - Application in diabetes treatment. Exp Biol Med (Maywood) 2021; 246:2570-2578. [PMID: 34666516 PMCID: PMC8669170 DOI: 10.1177/15353702211040503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
| | - Alec Jost
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes & Metabolism, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV 89502, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
4
|
The Effects of Accelerated Temperature-Controlled Stability Systems on the Release Profile of Primary Bile Acid-Based Delivery Microcapsules. Pharmaceutics 2021; 13:pharmaceutics13101667. [PMID: 34683960 PMCID: PMC8538769 DOI: 10.3390/pharmaceutics13101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Bile acid-based drug encapsulation for oral delivery has been recently explored in our laboratory and has shown to be beneficial in terms of drug-targeted delivery and release profile, but stability at various temperatures has not previously been examined; hence, this is the aim of this study. Methods: Various types of bile acid-based microcapsules containing the drug metformin were produced and tested for accelerated temperature-controlled profiles, as well as morphology, elemental composition, drug content, resilience, floatability, wettability and release profiles at various pH values. Results: Accelerated temperature-controlled analysis showed negligible effects on morphology, size, or shape at very low temperatures (below 0 °C), while higher temperatures (above 25 °C) caused alterations. Drug contents, morphology and elemental composition remained similar, while wettability and the release profiles showed formulation-dependent effects. Discussion and Conclusion: Results suggest that bile acid-based microcapsules containing metformin are affected by temperature; hence, their shelf life is likely to be affected by storage temperature, all of which have a direct impact on drug release and stability profiles.
Collapse
|
5
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
6
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1861. [PMID: 34361247 PMCID: PMC8308343 DOI: 10.3390/nano11071861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Abstract
Type 1 diabetes mellitus is a common and highly morbid disease for which there is no cure. Treatment primarily involves exogenous insulin administration, and, under specific circumstances, islet or pancreas transplantation. However, insulin replacement alone fails to replicate the endocrine function of the pancreas and does not provide durable euglycemia. In addition, transplantation requires lifelong use of immunosuppressive medications, which has deleterious side effects, is expensive, and is inappropriate for use in adolescents. A bioartificial pancreas that provides total endocrine pancreatic function without immunosuppression is a potential therapy for treatment of type 1 diabetes. Numerous models are in development and take different approaches to cell source, encapsulation method, and device implantation location. We review current therapies for type 1 diabetes mellitus, the requirements for a bioartificial pancreas, and quantitatively compare device function.
Collapse
Affiliation(s)
- Sara J. Photiadis
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Rebecca C. Gologorsky
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Deepika Sarode
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11:97. [PMID: 32127037 PMCID: PMC7055095 DOI: 10.1186/s13287-020-01610-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. Methods Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (βTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. Results Exosomes derived from MSC-conditioned culture medium were 40–100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. Conclusions Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.
Collapse
Affiliation(s)
- Jin Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Junqiu Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Yuanhang Cheng
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yunfeng Fu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hongzhou Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Minying Tang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Na Lin
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Xiaohua Shi
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yan Lei
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Shuiliang Wang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Weizhen Wu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China
| |
Collapse
|
9
|
Koduri MP, S Goudar V, Shao YW, Hunt JA, Henstock JR, Curran J, Tseng FG. Fluorescence-Based Nano-Oxygen Particles for Spatiometric Monitoring of Cell Physiological Conditions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30163-30171. [PMID: 30118196 DOI: 10.1021/acsami.8b10715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Closed-loop artificial pancreas systems have recently been proposed as a solution for treating stage I diabetes by reproducing the function of the pancreas. However, there are many unresolved issues associated with their development, including monitoring and controlling oxygen, immune responses, and the optimization of glucose, all of which need to be monitored and controlled to produce an efficient and viable artificial organ that can become integrated in the patient and maintain homeostasis. This research focused on monitoring the oxygen concentration, specifically achieving this kinetically as the oxygen gradient in an artificial pancreas made of alginate spheres containing islet cells. Functional nanoparticles (NPs) for measuring the oxygen gradient in different hydrogel cellular environments using fluorescence-based (F) microscopy were developed and tested. By the ester bond, a linker Pluronic F127 was conjugated with a carboxylic acid-modified polystyrene NP (510 nm). A hydrophilic/hydrophobic interaction between the commercially available oxygen-sensitive fluorophore and F127 results in fluorescence-based nano-oxygen particles (FNOPs). The in-house synthesized FNOP was calibrated inside electrosprayed alginate-filled hydrogels and demonstrated a good broad dynamic range (2.73-22.23) mg/L as well as a resolution of -0.01 mg/L with an accuracy of ±4%. The calibrated FNOP was utilized for continuous measuring of the oxygen concentration gradient for cell lines RIN-m5F/HeLa for more than 5 days in alginate hydrogel spheres in vitro.
Collapse
Affiliation(s)
- Manohar Prasad Koduri
- Department of Mechanical, Materials and Aerospace, School of Engineering , University of Liverpool , Harrison Hughes Building , Liverpool L69 3GH , U.K
| | | | | | - John A Hunt
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
- Institute of Ageing and Chronic Disease , University of Liverpool , William Henry Duncan Building , Liverpool L7 8TX , U.K
| | - James R Henstock
- Institute of Ageing and Chronic Disease , University of Liverpool , William Henry Duncan Building , Liverpool L7 8TX , U.K
| | - Judith Curran
- Department of Mechanical, Materials and Aerospace, School of Engineering , University of Liverpool , Harrison Hughes Building , Liverpool L69 3GH , U.K
| | - Fan Gang Tseng
- Research Center for Applied Sciences , Academia Sinica , Taipei , Taiwan 11529 , ROC
| |
Collapse
|
10
|
Pancreatic islet macroencapsulation using microwell porous membranes. Sci Rep 2017; 7:9186. [PMID: 28835662 PMCID: PMC5569024 DOI: 10.1038/s41598-017-09647-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Allogeneic islet transplantation into the liver in combination with immune suppressive drug therapy is widely regarded as a potential cure for type 1 diabetes. However, the intrahepatic system is suboptimal as the concentration of drugs and nutrients there is higher compared to pancreas, which negatively affects islet function. Islet encapsulation within semipermeable membranes is a promising strategy that allows for the islet transplantation outside the suboptimal liver portal system and provides environment, where islets can perform their endocrine function. In this study, we develop a macroencapsulation device based on thin microwell membranes. The islets are seeded in separate microwells to avoid aggregation, whereas the membrane porosity is tailored to achieve sufficient transport of nutrients, glucose and insulin. The non-degradable, microwell membranes are composed of poly (ether sulfone)/polyvinylpyrrolidone and manufactured via phase separation micro molding. Our results show that the device prevents aggregation and preserves the islet’s native morphology. Moreover, the encapsulated islets maintain their glucose responsiveness and function after 7 days of culture (stimulation index above 2 for high glucose stimulation), demonstrating the potential of this novel device for islet transplantation.
Collapse
|
11
|
Abstract
Bioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule. In this chapter, we provide a detailed description of a microfluidic approach to islet cell encapsulation in alginate that might address the microencapsulation challenges.
Collapse
|
12
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Langlois A, Magisson J, Mura C, Sookhareea C, Polard V, Jeandidier N, Zal F, Pinget M, Sigrist S, Maillard E. Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation. Tissue Eng Part A 2016; 22:1327-1336. [PMID: 27796164 DOI: 10.1089/ten.tea.2016.0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transplantation of encapsulated islets in a bioartificial pancreas is a promising alternative to free islet cell therapy to avoid immunosuppressive regimens. However, hypoxia, which can induce a rapid loss of islets, is a major limiting factor. The efficiency of oxygen delivery in an in vitro model of bioartificial pancreas involving hypoxia and confined conditions has never been investigated. Oxygen carriers such as perfluorocarbons and hemoglobin might improve oxygenation. To verify this hypothesis, this study aimed to identify the best candidate of perfluorodecalin (PFD) or HEMOXCell® to reduce cellular hypoxia in a bioartificial pancreas in an in vitro model of encapsulation ex vivo. The survival, hypoxia, and inflammation markers and function of rat islets seeded at 600 islet equivalents (IEQ)/cm2 and under 2% pO2 were assessed in the presence of 50 μg/mL of HEMOXCell or 10% PFD with or without adenosine. Both PFD and HEMOXCell increased the cell viability and decreased markers of hypoxia (hypoxia-inducible factor mRNA and protein). In these culture conditions, adenosine had deleterious effects, including an increase in cyclooxygenase-2 and interleukin-6, in correlation with unregulated proinsulin release. Despite the effectiveness of PFD in decreasing hypoxia, no restoration of function was observed and only HEMOXCell had the capacity to restore insulin secretion to a normal level. Thus, it appeared that the decrease in cell hypoxia as well as the intrinsic superoxide dismutase activity of HEMOXCell were both mandatory to maintain islet function under hypoxia and confinement. In the context of islet encapsulation in a bioartificial pancreas, HEMOXCell is the candidate of choice for application in vivo.
Collapse
Affiliation(s)
| | - William Bietiger
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Claude Peronet
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Allan Langlois
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Carole Mura
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Cynthia Sookhareea
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Valerie Polard
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Nathalie Jeandidier
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Franck Zal
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Michel Pinget
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Séverine Sigrist
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Elisa Maillard
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| |
Collapse
|
13
|
Ibarra V, Appel AA, Anastasio MA, Opara EC, Brey EM. This paper is a winner in the Undergraduate category for the SFB awards: Evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res A 2016; 104:1581-90. [PMID: 27144389 PMCID: PMC5897127 DOI: 10.1002/jbm.a.35769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Islet transplantation is currently in clinical use as a treatment for type I diabetes, but donor shortages and long-term immunosuppression limit broad application. Alginate microcapsules coated with poly-l-ornithine can be used to encapsulate islets in an environment that allows diffusion of glucose, insulin, nutrients, and waste products while inhibiting cells and antibodies. While clinical trials are ongoing using islets encapsulated in alginate microbeads, there are concerns in regards to long-term stability. Evaluation of the local tissue response following implantation provides insight into the underlying mechanisms contributing to biomaterial failure, which can be used to the design of new material strategies. Macrophages play an important role in driving the response. In this study, the stability of alginate microbeads coated with PLO containing islets transplanted in the omentum pouch model was investigated. Biomaterial structure and the inflammatory response were characterized by X-ray phase contrast (XPC) μCT imaging, histology, and immunostaining. XPC allowed evaluation of microbead 3D structure and identification of failed and stable microbeads. A robust inflammatory response characterized by high cell density and the presence of pro-inflammatory macrophages was found around the failed grafts. The results obtained provide insight into the local tissue response and possible failure mechanisms for alginate microbeads. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1581-1590, 2016.
Collapse
Affiliation(s)
- Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, Illinois
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Ines, IL
| |
Collapse
|
14
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Magisson J, Sookhareea C, Langlois A, Mura C, Jeandidier N, Pinget M, Sigrist S, Maillard E. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia. J Diabetes Res 2016; 2016:3615286. [PMID: 26824040 PMCID: PMC4707363 DOI: 10.1155/2016/3615286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm(2)) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.
Collapse
Affiliation(s)
- A. Rodriguez-Brotons
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - W. Bietiger
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - C. Peronet
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - J. Magisson
- Defymed, avenue Dante, 67200 Strasbourg, France
| | - C. Sookhareea
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - A. Langlois
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - C. Mura
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - N. Jeandidier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), 67000 Strasbourg, France
| | - M. Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), 67000 Strasbourg, France
| | - S. Sigrist
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - E. Maillard
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- *E. Maillard:
| |
Collapse
|
15
|
Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. Mesenchymal Stem Cells: Rising Concerns over Their Application in Treatment of Type One Diabetes Mellitus. J Diabetes Res 2015; 2015:675103. [PMID: 26576437 PMCID: PMC4630398 DOI: 10.1155/2015/675103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/17/2015] [Accepted: 01/18/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes.
Collapse
Affiliation(s)
- Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Seyed Jafar Hashemian:
| | - Marjan Kouhnavard
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Samy KP, Martin BM, Turgeon NA, Kirk AD. Islet cell xenotransplantation: a serious look toward the clinic. Xenotransplantation 2014; 21:221-9. [PMID: 24806830 DOI: 10.1111/xen.12095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.
Collapse
Affiliation(s)
- Kannan P Samy
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
18
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|