1
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. Sci Rep 2024; 14:19789. [PMID: 39187542 PMCID: PMC11347619 DOI: 10.1038/s41598-024-69243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In major radiological events, rapid assays to detect ionizing radiation exposure are crucial for effective medical interventions. The purpose of these assays is twofold: to categorize affected individuals into groups for initial treatments, and to provide definitive dose estimates for continued care and epidemiology. However, existing high-throughput cytogenetic biodosimetry assays take about 3 days to yield results, which delays critical interventions. We have developed a multiwell-based variant of the chemical-induced G0-phase Premature Chromosome Condensation Assay that delivers same-day results. Our findings revealed that using a concentration of phosphatase inhibitor lower than recommended significantly increases the yield of cells with highly condensed chromosomes. These chromosomes exhibited increased fragmentation in a dose-dependent manner, enabling to quantify radiation damage using a custom Deep Learning algorithm. This algorithm demonstrated reasonable performance in categorizing doses into distinct treatment groups (84% and 80% accuracy for three and four iso-treatment dose bins, respectively) and showed reliability in determining the actual doses received (correlation coefficient of 0.879). This method is amendable to full automation and has the potential to address the need for same-day, high-throughput cytogenetic test for both dose categorization and dose reconstruction in large-scale radiation emergencies.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
2
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
3
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596074. [PMID: 38854157 PMCID: PMC11160667 DOI: 10.1101/2024.05.27.596074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In cytogenetic biodosimetry, assessing radiation exposure typically requires over 48 hours for cells to reach mitosis, significantly delaying the administration of crucial radiation countermeasures needed within the first 24 hours post-exposure. To improve medical response times, we incorporated the G0-Premature Chromosome Condensation (G0-PCC) technique with the Rapid Automated Biodosimetry Tool-II (RABiT-II), creating a faster alternative for large-scale radiation emergencies. Our findings revealed that using a lower concentration of Calyculin A (Cal A) than recommended effectively increased the yield of highly-condensed G0-PCC cells (hPCC). However, integrating recombinant CDK1/Cyclin B kinase, vital for chromosome condensation, proved challenging due to the properties of these proteins affecting interactions with cellular membranes. Interestingly, Cal A alone was capable of inducing chromosome compaction in some G0 cells even in the absence of mitotic kinases, although these chromosomes displayed atypical morphologies. This suggests that Cal A mechanism for compacting G0 chromatin may differ from condensation driven by mitotic kinases. Additionally, we observed a correlation between radiation dose and extent of hPCC chromosome fragmentation, which allowed us to automate radiation damage quantification using a Convolutional Neural Network (CNN). Our method can address the need for a same-day cytogenetic biodosimetry test in radiation emergency situations.
Collapse
|
4
|
Shorokhova M, Pugovkina N, Zemelko V, Lyublinskaya O, Grinchuk T. Long-Term Cryopreservation May Cause Genomic Instability and the Premature Senescence of Cells. Int J Mol Sci 2024; 25:1467. [PMID: 38338745 PMCID: PMC10855830 DOI: 10.3390/ijms25031467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Cryopreservation is an essential step for utilizing various cell types for biological research and medical purposes. At the same time, there is a lack of data on the effect of cryopreservation, especially when prolonged, on the karyotype of cells. In the present work, we analyzed the genetic stability of cells subjected to a cryopreservation procedure. The objects were immortalized Chinese hamster lung fibroblasts (CHL V-79 RJK line) and human endometrial mesenchymal stem/stromal cells (eMSCs). We showed that short-term cryopreservation in liquid nitrogen for up to 6 months did not affect the karyotype stability of CHL V-79 RJK and eMSCs. On the contrary, karyotyping of G-banded metaphase chromosomes in cells underwent 10-year cryopreservation, which revealed genomic instability in both cell lines associated with the variability of chromosome number in cells, random chromosomal rearrangements, and condensation disorder in homologs. In addition, we found out that long-term cryopreservation of eMSCs does not affect the expression of their typical surface markers and morphology, but results in a significant reduction in proliferative potential and early manifestation of cellular senescence features upon eMSCs culturing. Thus, we concluded that the long-term cryopreservation of cells of different types and biological origin can lead to irreversible changes of their karyotype and acceleration of cellular senescence.
Collapse
Affiliation(s)
- Mariia Shorokhova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg 194064, Russia; (N.P.); (V.Z.); (O.L.); (T.G.)
| | | | | | | | | |
Collapse
|
5
|
Kasperski A, Heng HH. The Digital World of Cytogenetic and Cytogenomic Web Resources. Methods Mol Biol 2024; 2825:361-391. [PMID: 38913321 DOI: 10.1007/978-1-0716-3946-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Institute of Biological Sciences, Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, University of Zielona Góra, Zielona Góra, Poland.
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, and Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Thanedar S, Heng E, Ju D, Zhang K, Heng HH. Studying the Dynamics of Tunneling Tubes and Cellular Spheres. Methods Mol Biol 2024; 2825:333-343. [PMID: 38913319 DOI: 10.1007/978-1-0716-3946-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cancer cytogenetic analyses often involve cell culture. However, many cytogeneticists overlook interesting phenotypes associated with cultured cells. Given that cytogeneticists need to focus more on phenotypes to comprehend the genotypes, the biological significance of seemingly trivial cellular variations deserves attention. One example is the formation of cellular tunneling tubes (TTs) in cultured cancer cells, which likely play a role in cell-to-cell communication and material transport. In this chapter, we describe protocols for studying these TTs as well as cellular spheres. In addition to diverse chromosomal variants, these different types of variations should be considered for understanding cancer heterogeneity and dynamics, as they illustrate the importance of various forms of fuzzy inheritance.
Collapse
Affiliation(s)
- Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eric Heng
- Stanford University, Stanford, CA, USA
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Heng E, Thanedar S, Heng HH. The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research. Methods Mol Biol 2024; 2825:79-111. [PMID: 38913304 DOI: 10.1007/978-1-0716-3946-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, Stanford, CA, USA
| | - Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
8
|
Ye JC, Heng HH. The New Era of Cancer Cytogenetics and Cytogenomics. Methods Mol Biol 2024; 2825:3-37. [PMID: 38913301 DOI: 10.1007/978-1-0716-3946-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The promises of the cancer genome sequencing project, combined with various -omics technologies, have raised questions about the importance of cancer cytogenetic analyses. It is suggested that DNA sequencing provides high resolution, speed, and automation, potentially replacing cytogenetic testing. We disagree with this reductionist prediction. On the contrary, various sequencing projects have unexpectedly challenged gene theory and highlighted the importance of the genome or karyotype in organizing gene network interactions. Consequently, profiling the karyotype can be more meaningful than solely profiling gene mutations, especially in cancer where karyotype alterations mediate cellular macroevolution dominance. In this chapter, recent studies that illustrate the ultimate importance of karyotype in cancer genomics and evolution are briefly reviewed. In particular, the long-ignored non-clonal chromosome aberrations or NCCAs are linked to genome or chromosome instability, genome chaos is linked to genome reorganization under cellular crisis, and the two-phased cancer evolution reconciles the relationship between genome alteration-mediated punctuated macroevolution and gene mutation-mediated stepwise microevolution. By further synthesizing, the concept of karyotype coding is discussed in the context of information management. Altogether, we call for a new era of cancer cytogenetics and cytogenomics, where an array of technical frontiers can be explored further, which is crucial for both basic research and clinical implications in the cancer field.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Ye JC, Heng HH. Tracking Karyotype Changes in Treatment-Induced Drug-Resistant Evolution. Methods Mol Biol 2024; 2825:263-280. [PMID: 38913315 DOI: 10.1007/978-1-0716-3946-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Karyotype coding, which encompasses the complete chromosome sets and their topological genomic relationships within a given species, encodes system-level information that organizes and preserves genes' function, and determines the macroevolution of cancer. This new recognition emphasizes the crucial role of karyotype characterization in cancer research. To advance this cancer cytogenetic/cytogenomic concept and its platforms, this study outlines protocols for monitoring the karyotype landscape during treatment-induced rapid drug resistance in cancer. It emphasizes four key perspectives: combinational analyses of phenotype and karyotype, a focus on the entire evolutionary process through longitudinal analysis, a comparison of whole landscape dynamics by including various types of NCCAs (including genome chaos), and the use of the same process to prioritize different genomic scales. This protocol holds promise for studying numerous evolutionary aspects of cancers, and it further enhances the power of karyotype analysis in cancer research.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry H Heng
- Department of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Ye JC, Tang G. Optical Genome Mapping: A Machine-Based Platform in Cytogenomics. Methods Mol Biol 2024; 2825:113-124. [PMID: 38913305 DOI: 10.1007/978-1-0716-3946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Heng J, Heng HH. Karyotype as code of codes: An inheritance platform to shape the pattern and scale of evolution. Biosystems 2023; 233:105016. [PMID: 37659678 DOI: 10.1016/j.biosystems.2023.105016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Organismal evolution displays complex dynamics in phase and scale which seem to trend towards increasing biocomplexity and diversity. For over a century, such amazing dynamics have been cleverly explained by the apparently straightforward mechanism of natural selection: all diversification, including speciation, results from the gradual accumulation of small beneficial or near-neutral alterations over long timescales. However, although this has been widely accepted, natural selection makes a crucial assumption that has not yet been validated. Specifically, the informational relationship between small microevolutionary alterations and large macroevolutionary changes in natural selection is unclear. To address the macroevolution-microevolution relationship, it is crucial to incorporate the concept of organic codes and particularly the "karyotype code" which defines macroevolutionary changes. This concept piece examines the karyotype from the perspective of two-phased evolution and four key components of information management. It offers insight into how the karyotype creates and preserves information that defines the scale and phase of macroevolution and, by extension, microevolution. We briefly describe the relationship between the karyotype code, the genetic code, and other organic codes in the context of generating evolutionary novelties in macroevolution and imposing constraints on them as biological routines in microevolution. Our analyses suggest that karyotype coding preserves many organic codes by providing system-level inheritance, and similar analyses are needed to classify and prioritize a large number of different organic codes based on the phases and scales of evolution. Finally, the importance of natural information self-creation is briefly discussed, leading to a call to integrate information and time into the relationship between matter and energy.
Collapse
Affiliation(s)
- Julie Heng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol 2023:10.1007/s00239-023-10117-0. [PMID: 37246992 DOI: 10.1007/s00239-023-10117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Collapse
Affiliation(s)
- Xunuo Zhu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
13
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel) 2023; 14:493. [PMID: 36833419 PMCID: PMC9956237 DOI: 10.3390/genes14020493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The powerful utilities of current DNA sequencing technology question the value of developing clinical cytogenetics any further. By briefly reviewing the historical and current challenges of cytogenetics, the new conceptual and technological platform of the 21st century clinical cytogenetics is presented. Particularly, the genome architecture theory (GAT) has been used as a new framework to emphasize the importance of clinical cytogenetics in the genomic era, as karyotype dynamics play a central role in information-based genomics and genome-based macroevolution. Furthermore, many diseases can be linked to elevated levels of genomic variations within a given environment. With karyotype coding in mind, new opportunities for clinical cytogenetics are discussed to integrate genomics back into cytogenetics, as karyotypic context represents a new type of genomic information that organizes gene interactions. The proposed research frontiers include: 1. focusing on karyotypic heterogeneity (e.g., classifying non-clonal chromosome aberrations (NCCAs), studying mosaicism, heteromorphism, and nuclear architecture alteration-mediated diseases), 2. monitoring the process of somatic evolution by characterizing genome instability and illustrating the relationship between stress, karyotype dynamics, and diseases, and 3. developing methods to integrate genomic data and cytogenomics. We hope that these perspectives can trigger further discussion beyond traditional chromosomal analyses. Future clinical cytogenetics should profile chromosome instability-mediated somatic evolution, as well as the degree of non-clonal chromosomal aberrations that monitor the genomic system's stress response. Using this platform, many common and complex disease conditions, including the aging process, can be effectively and tangibly monitored for health benefits.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sanjana Thanedar
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Henry H. Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Niu Z, Jiang D, Shen J, Liu W, Tan X, Cao G. Potential Role of the Fragile Histidine Triad in Cancer Evo-Dev. Cancers (Basel) 2023; 15:cancers15041144. [PMID: 36831487 PMCID: PMC9954361 DOI: 10.3390/cancers15041144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cancer development follows an evolutionary pattern of "mutation-selection-adaptation" detailed by Cancer Evolution and Development (Cancer Evo-Dev), a theory that represents a process of accumulating somatic mutations due to the imbalance between the mutation-promoting force and the mutation-repairing force and retro-differentiation of the mutant cells to cancer initiation cells in a chronic inflammatory microenvironment. The fragile histidine triad (FHIT) gene is a tumor suppressor gene whose expression is often reduced or inactivated in precancerous lesions during chronic inflammation or virus-induced replicative stress. Here, we summarize evidence regarding the mechanisms by which the FHIT is inactivated in cancer, including the loss of heterozygosity and the promoter methylation, and characterizes the role of the FHIT in bridging macroevolution and microevolution and in facilitating retro-differentiation during cancer evolution and development. It is suggested that decreased FHIT expression is involved in several critical steps of Cancer Evo-Dev. Future research needs to focus on the role and mechanisms of the FHIT in promoting the transformation of pre-cancerous lesions into cancer.
Collapse
Affiliation(s)
- Zheyun Niu
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Dongming Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Jiaying Shen
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Tan
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Correspondence: ; Tel.: +86-21-81871060
| |
Collapse
|
16
|
Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022; 11:1003-1009. [PMID: 36048170 PMCID: PMC9585945 DOI: 10.1093/stcltm/szac064] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 12/22/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system has allowed the generation of disease models and the development of therapeutic approaches for many genetic and non-genetic disorders. However, the generation of large genomic rearrangements has raised safety concerns for the clinical application of CRISPR/Cas9 nuclease approaches. Among these events, the formation of micronuclei and chromosome bridges due to chromosomal truncations can lead to massive genomic rearrangements localized to one or few chromosomes. This phenomenon, known as chromothripsis, was originally described in cancer cells, where it is believed to be caused by defective chromosome segregation during mitosis or DNA double-strand breaks. Here, we will discuss the factors influencing CRISPR/Cas9-induced chromothripsis, hereafter termed CRISPRthripsis, and its outcomes, the tools to characterize these events and strategies to minimize them.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Mégane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
17
|
Zhang X, Kschischo M. Distinct and Common Features of Numerical and Structural Chromosomal Instability across Different Cancer Types. Cancers (Basel) 2022; 14:1424. [PMID: 35326573 PMCID: PMC8946057 DOI: 10.3390/cancers14061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
A large proportion of tumours is characterised by numerical or structural chromosomal instability (CIN), defined as an increased rate of gaining or losing whole chromosomes (W-CIN) or of accumulating structural aberrations (S-CIN). Both W-CIN and S-CIN are associated with tumourigenesis, cancer progression, treatment resistance and clinical outcome. Although W-CIN and S-CIN can co-occur, they are initiated by different molecular events. By analysing tumour genomic data from 33 cancer types, we show that the majority of tumours with high levels of W-CIN underwent whole genome doubling, whereas S-CIN levels are strongly associated with homologous recombination deficiency. Both CIN phenotypes are prognostic in several cancer types. Most drugs are less efficient in high-CIN cell lines, but we also report compounds and drugs which should be investigated as targets for W-CIN or S-CIN. By analysing associations between CIN and bio-molecular entities with pathway and gene expression levels, we complement gene signatures of CIN and report that the drug resistance gene CKS1B is strongly associated with S-CIN. Finally, we propose a potential copy number-dependent mechanism to activate the PI3K pathway in high-S-CIN tumours.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
- Department of Informatics, Technical University of Munich, 81675 Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
| |
Collapse
|
18
|
Datta S, Patel M, Kashyap S, Patel D, Singh U. Chimeric chromosome landscapes of human somatic cell cultures show dependence on stress and regulation of genomic repeats by CGGBP1. Oncotarget 2022; 13:136-155. [PMID: 35070079 PMCID: PMC8765472 DOI: 10.18632/oncotarget.28174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Genomes of somatic cells in culture are prone to spontaneous mutations due to errors in replication and DNA repair. Some of these errors, such as chromosomal fusions, are not rectifiable and subject to selection or elimination in growing cultures. Somatic cell cultures are thus expected to generate background levels of potentially stable chromosomal chimeras. A description of the landscape of such spontaneously generated chromosomal chimeras in cultured cells will help understand the factors affecting somatic mosaicism. Here we show that short homology-associated non-homologous chromosomal chimeras occur in normal human fibroblasts and HEK293T cells at genomic repeats. The occurrence of chromosomal chimeras is enhanced by heat stress and depletion of a repeat regulatory protein CGGBP1. We also present evidence of homologous chromosomal chimeras between allelic copies in repeat-rich DNA obtained by methylcytosine immunoprecipitation. The formation of homologous chromosomal chimeras at Alu and L1 repeats increases upon depletion of CGGBP1. Our data are derived from de novo sequencing from three different cell lines under different experimental conditions and our chromosomal chimera detection pipeline is applicable to long as well as short read sequencing platforms. These findings present significant information about the generation, sensitivity and regulation of somatic mosaicism in human cell cultures.
Collapse
Affiliation(s)
- Subhamoy Datta
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manthan Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Sukesh Kashyap
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Current address: Research Programs Unit, Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Biomedicum, Helsinki 00290, Finland
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
19
|
Heng J, Heng HH. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel) 2021; 13:genes13010101. [PMID: 35052441 PMCID: PMC8774498 DOI: 10.3390/genes13010101] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 16 Divinity Ave, Cambridge, MA 02138, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
20
|
Heng E, Moy A, Liu G, Heng HH, Zhang K. ER Stress and Micronuclei Cluster: Stress Response Contributes to Genome Chaos in Cancer. Front Cell Dev Biol 2021; 9:673188. [PMID: 34422803 PMCID: PMC8371933 DOI: 10.3389/fcell.2021.673188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eric Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
21
|
Heng J, Heng HH. Karyotype coding: The creation and maintenance of system information for complexity and biodiversity. Biosystems 2021; 208:104476. [PMID: 34237348 DOI: 10.1016/j.biosystems.2021.104476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
The mechanism of biological information flow is of vital importance. However, traditional research surrounding the genetic code that follows the central dogma to a phenotype faces challengers, including missing heritability and two-phased evolution. Here, we propose the karyotype code, which by organizing genes along chromosomes at once preserves species genome information and provides a platform for other genetic and nongenetic information to develop and accumulate. This specific genome-level code, which exists in all living systems, is compared to the genetic code and other organic codes in the context of information management, leading to the concept of hierarchical biological codes and an 'extended' definition of adaptor where the adaptors of a code can be not only molecular structures but also, more commonly, biological processes. Notably, different levels of a biosystem have their own mechanisms of information management, and gene-coded parts inheritance preserves "parts information" while karyotype-coded system inheritance preserves the "system information" which organizes parts information. The karyotype code prompts many questions regarding the flow of biological information, including the distinction between information creation, maintenance, modification, and usage, along with differences between living and non-living systems. How do biological systems exist, reproduce, and self-evolve for increased complexity and diversity? Inheritance is mediated by organic codes which function as informational tools to organize chemical reactions, create new information, and preserve frozen accidents, transforming historical miracles into biological routines.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
22
|
Angus RB, Sadílek D, Shaarawi F, Dollimore H, Liu HC, Seidel M, Sýkora V, Fikáček M. Karyotypes of water scavenger beetles (Coleoptera: Hydrophilidae): new data and review of published records. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
This study summarizes available data on karyotypes of water scavenger beetles (Coleoptera: Hydrophiloidea: Hydrophilidae), based on newly acquired data of 23 genera and 64 species. We combine these data with previously published data, which we review. In total, karyotypes are available for 33 genera and 95 species, covering all subfamilies and tribes. Available data indicate that most groups of the Hydrophilidae are diploid and sexually reproducing, with XY (♂) and XX (♀) sex chromosomes; the Y chromosome is always minute and does not recombine with X during meiosis. Exceptions are known in Anacaena, with parthenogenetic diploid or triploid populations in some species and sex chromosomes fused with autosomes in others. The diploid number of chromosomes is 2n = 18 in the subfamilies Acidocerinae, Chaetarthriinae, Enochrinae and Hydrophilinae. Variations are known in species of Anacaena and Berosus (both usually with 2n = 18) and in Hydrochara and Hydrophilus with an increased number of chromosomes (2n = 30). The number of chromosomes is increased in the subfamily Cylominae (2n = 24–30) and in all subclades of the subfamily Sphaeridiinae (2n = 22–32). We summarize protocols for obtaining chromosome slides used for this study and provide step-by-step guidelines to facilitate future cytogenetic studies.
Collapse
Affiliation(s)
- Robert B Angus
- Department of Life Sciences (Insects), Natural History Museum, London, UK
| | - David Sadílek
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Fatma Shaarawi
- Department of Entomology, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Hsing-Che Liu
- Department of Environmental Engineering and Management, Chaoyang University of TechnologyTaichung City, Taiwan
| | - Matthias Seidel
- Centrum für Naturkunde, University of Hamburg, Martin-Luther-King Platz, Hamburg, Germany
| | - Vít Sýkora
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
| | - Martin Fikáček
- Faculty of Science, Charles University, Viničná, Praha, Czech Republic
- Department of Entomology, National Museum, Cirkusová, Praha, Czech Republic
| |
Collapse
|
23
|
Ye JC, Horne S, Zhang JZ, Jackson L, Heng HH. Therapy Induced Genome Chaos: A Novel Mechanism of Rapid Cancer Drug Resistance. Front Cell Dev Biol 2021; 9:676344. [PMID: 34195196 PMCID: PMC8237085 DOI: 10.3389/fcell.2021.676344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jing Christine Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Steve Horne
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jack Z. Zhang
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lauren Jackson
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
24
|
Heng J, Heng HH. Two-phased evolution: Genome chaos-mediated information creation and maintenance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:29-42. [PMID: 33992670 DOI: 10.1016/j.pbiomolbio.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Cancer is traditionally labeled a "cellular growth problem." However, it is fundamentally an issue of macroevolution where new systems emerge from tissue by breaking various constraints. To study this process, we used experimental platforms to "watch evolution in action" by comparing the profiles of karyotypes, transcriptomes, and cellular phenotypes longitudinally before, during, and after key phase transitions. This effort, alongside critical rethinking of current gene-based genomic and evolutionary theory, led to the development of the Genome Architecture Theory. Following a brief historical review, we present four case studies and their takeaways to describe the pattern of genome-based cancer evolution. Our discoveries include 1. The importance of non-clonal chromosome aberrations or NCCAs; 2. Two-phased cancer evolution, comprising a punctuated phase and a gradual phase, dominated by karyotype changes and gene mutation/epigenetic alterations, respectively; 3. How the karyotype codes system inheritance, which organizes gene interactions and provides the genomic basis for physiological regulatory networks; and 4. Stress-induced genome chaos, which creates genomic information by reorganizing chromosomes for macroevolution. Together, these case studies redefine the relationship between cellular macro- and microevolution: macroevolution does not equal microevolution + time. Furthermore, we incorporate genome chaos and gene mutation in a general model: genome reorganization creates new karyotype coding, then diverse cancer gene mutations can promote the dominance of tumor cell populations. Finally, we call for validation of the Genome Architecture Theory of cancer and organismal evolution, as well as the systematic study of genomic information flow in evolutionary processes.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Chromothripsis-Explosion in Genetic Science. Cells 2021; 10:cells10051102. [PMID: 34064429 PMCID: PMC8147837 DOI: 10.3390/cells10051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.
Collapse
|
26
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Ye CJ, Sharpe Z, Heng HH. Origins and Consequences of Chromosomal Instability: From Cellular Adaptation to Genome Chaos-Mediated System Survival. Genes (Basel) 2020; 11:E1162. [PMID: 33008067 PMCID: PMC7601827 DOI: 10.3390/genes11101162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
When discussing chromosomal instability, most of the literature focuses on the characterization of individual molecular mechanisms. These studies search for genomic and environmental causes and consequences of chromosomal instability in cancer, aiming to identify key triggering factors useful to control chromosomal instability and apply this knowledge in the clinic. Since cancer is a phenomenon of new system emergence from normal tissue driven by somatic evolution, such studies should be done in the context of new genome system emergence during evolution. In this perspective, both the origin and key outcome of chromosomal instability are examined using the genome theory of cancer evolution. Specifically, chromosomal instability was linked to a spectrum of genomic and non-genomic variants, from epigenetic alterations to drastic genome chaos. These highly diverse factors were then unified by the evolutionary mechanism of cancer. Following identification of the hidden link between cellular adaptation (positive and essential) and its trade-off (unavoidable and negative) of chromosomal instability, why chromosomal instability is the main player in the macro-cellular evolution of cancer is briefly discussed. Finally, new research directions are suggested, including searching for a common mechanism of evolutionary phase transition, establishing chromosomal instability as an evolutionary biomarker, validating the new two-phase evolutionary model of cancer, and applying such a model to improve clinical outcomes and to understand the genome-defined mechanism of organismal evolution.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Zehra SAFI OZ. Micronucleus scoring: An available approach in the evaluation of genomic damage in exfoliative cervicovaginal cells. ACTA ACUST UNITED AC 2020. [DOI: 10.17352/acp.000018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Leylek TR, Jeusset LM, Lichtensztejn Z, McManus KJ. Reduced Expression of Genes Regulating Cohesion Induces Chromosome Instability that May Promote Cancer and Impact Patient Outcomes. Sci Rep 2020; 10:592. [PMID: 31953484 PMCID: PMC6969069 DOI: 10.1038/s41598-020-57530-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome instability (CIN), or continual changes in chromosome complements, is an enabling feature of cancer; however, the molecular determinants of CIN remain largely unknown. Emerging data now suggest that aberrant sister chromatid cohesion may induce CIN and contribute to cancer. To explore this possibility, we employed clinical and fundamental approaches to systematically assess the impact reduced cohesion gene expression has on CIN and cancer. Ten genes encoding critical functions in cohesion were evaluated and remarkably, each exhibits copy number losses in 12 common cancer types, and reduced expression is associated with worse patient survival. To gain mechanistic insight, we combined siRNA-based silencing with single cell quantitative imaging microscopy to comprehensively assess the impact reduced expression has on CIN in two karyotypically stable cell lines. We show that reduced expression induces CIN phenotypes, namely increases in micronucleus formation and nuclear areas. Subsequent direct tests involving a subset of prioritized genes also revealed significant changes in chromosome numbers with corresponding increases in moderate and severe cohesion defects within mitotic chromosome spreads. Collectively, our clinical and fundamental findings implicate reduced sister chromatid cohesion, resulting from gene copy number losses, as a key pathogenic event in the development and progression of many cancer types.
Collapse
Affiliation(s)
- Tarik R Leylek
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Lucile M Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada.
| |
Collapse
|
30
|
Ye CJ, Stilgenbauer L, Moy A, Liu G, Heng HH. What Is Karyotype Coding and Why Is Genomic Topology Important for Cancer and Evolution? Front Genet 2019; 10:1082. [PMID: 31737054 PMCID: PMC6838208 DOI: 10.3389/fgene.2019.01082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
While the importance of chromosomal/nuclear variations vs. gene mutations in diseases is becoming more appreciated, less is known about its genomic basis. Traditionally, chromosomes are considered the carriers of genes, and genes define bio-inheritance. In recent years, the gene-centric concept has been challenged by the surprising data of various sequencing projects. The genome system theory has been introduced to offer an alternative framework. One of the key concepts of the genome system theory is karyotype or chromosomal coding: chromosome sets function as gene organizers, and the genomic topologies provide a context for regulating gene expression and function. In other words, the interaction of individual genes, defined by genomic topology, is part of the full informational system. The genes define the “parts inheritance,” while the karyotype and genomic topology (the physical relationship of genes within a three-dimensional nucleus) plus the gene content defines “system inheritance.” In this mini-review, the concept of karyotype or chromosomal coding will be briefly discussed, including: 1) the rationale for searching for new genomic inheritance, 2) chromosomal or karyotype coding (hypothesis, model, and its predictions), and 3) the significance and evidence of chromosomal coding (maintaining and changing the system inheritance-defined bio-systems). This mini-review aims to provide a new conceptual framework for appreciating the genome organization-based information package and its ultimate importance for future genomic and evolutionary studies.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lukas Stilgenbauer
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
31
|
Diminished Condensin Gene Expression Drives Chromosome Instability That May Contribute to Colorectal Cancer Pathogenesis. Cancers (Basel) 2019; 11:cancers11081066. [PMID: 31357676 PMCID: PMC6721357 DOI: 10.3390/cancers11081066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Chromosome instability (CIN), or constantly evolving chromosome complements, is a form of genome instability implicated in the development and progression of many cancer types, however, the molecular determinants of CIN remain poorly understood. Condensin is a protein complex involved in chromosome compaction, and recent studies in model organisms show that aberrant compaction adversely impacts mitotic fidelity. To systematically assess the clinical and fundamental impacts that reduced condensin gene expression have in cancer, we first assessed gene copy number alterations of all eight condensin genes. Using patient derived datasets, we show that shallow/deep deletions occur frequently in 12 common cancer types. Furthermore, we show that reduced expression of each gene is associated with worse overall survival in colorectal cancer patients. To determine the overall impact that reduced condensin gene expression has on CIN, a comprehensive siRNA-based screen was performed in two karyotypically stable cell lines. Following gene silencing, quantitative imaging microscopy identified increases in CIN-associated phenotypes, including changes in nuclear areas, micronucleus formation, and chromosome numbers. Although silencing corresponded with increases in CIN phenotypes, the most pronounced phenotypes were observed following SMC2 and SMC4 silencing. Collectively, our clinical and fundamental findings suggest reduced condensin expression and function may be a significant, yet, underappreciated driver of colorectal cancer.
Collapse
|
32
|
Ye CJ, Sharpe Z, Alemara S, Mackenzie S, Liu G, Abdallah B, Horne S, Regan S, Heng HH. Micronuclei and Genome Chaos: Changing the System Inheritance. Genes (Basel) 2019; 10:genes10050366. [PMID: 31086101 PMCID: PMC6562739 DOI: 10.3390/genes10050366] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Micronuclei research has regained its popularity due to the realization that genome chaos, a rapid and massive genome re-organization under stress, represents a major common mechanism for punctuated cancer evolution. The molecular link between micronuclei and chromothripsis (one subtype of genome chaos which has a selection advantage due to the limited local scales of chromosome re-organization), has recently become a hot topic, especially since the link between micronuclei and immune activation has been identified. Many diverse molecular mechanisms have been illustrated to explain the causative relationship between micronuclei and genome chaos. However, the newly revealed complexity also causes confusion regarding the common mechanisms of micronuclei and their impact on genomic systems. To make sense of these diverse and even conflicting observations, the genome theory is applied in order to explain a stress mediated common mechanism of the generation of micronuclei and their contribution to somatic evolution by altering the original set of information and system inheritance in which cellular selection functions. To achieve this goal, a history and a current new trend of micronuclei research is briefly reviewed, followed by a review of arising key issues essential in advancing the field, including the re-classification of micronuclei and how to unify diverse molecular characterizations. The mechanistic understanding of micronuclei and their biological function is re-examined based on the genome theory. Specifically, such analyses propose that micronuclei represent an effective way in changing the system inheritance by altering the coding of chromosomes, which belongs to the common evolutionary mechanism of cellular adaptation and its trade-off. Further studies of the role of micronuclei in disease need to be focused on the behavior of the adaptive system rather than specific molecular mechanisms that generate micronuclei. This new model can clarify issues important to stress induced micronuclei and genome instability, the formation and maintenance of genomic information, and cellular evolution essential in many common and complex diseases such as cancer.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Stephanie Mackenzie
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Batoul Abdallah
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steve Horne
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
33
|
Frias S, Ramos S, Salas C, Molina B, Sánchez S, Rivera-Luna R. Nonclonal Chromosome Aberrations and Genome Chaos in Somatic and Germ Cells from Patients and Survivors of Hodgkin Lymphoma. Genes (Basel) 2019; 10:genes10010037. [PMID: 30634664 PMCID: PMC6357137 DOI: 10.3390/genes10010037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Anticancer regimens for Hodgkin lymphoma (HL) patients include highly genotoxic drugs that have been very successful in killing tumor cells and providing a 90% disease-free survival at five years. However, some of these treatments do not have a specific cell target, damaging both cancerous and normal cells. Thus, HL survivors have a high risk of developing new primary cancers, both hematologic and solid tumors, which have been related to treatment. Several studies have shown that after treatment, HL patients and survivors present persistent chromosomal instability, including nonclonal chromosomal aberrations. The frequency and type of chromosomal abnormalities appear to depend on the type of therapy and the cell type examined. For example, MOPP chemotherapy affects hematopoietic and germ stem cells leading to long-term genotoxic effects and azoospermia, while ABVD chemotherapy affects transiently sperm cells, with most of the patients showing recovery of spermatogenesis. Both regimens have long-term effects in somatic cells, presenting nonclonal chromosomal aberrations and genomic chaos in a fraction of noncancerous cells. This is a source of karyotypic heterogeneity that could eventually generate a more stable population acquiring clonal chromosomal aberrations and leading towards the development of a new cancer.
Collapse
Affiliation(s)
- Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Cd. De Mexico, P.O. Box 04510, Mexico.
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Consuelo Salas
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Silvia Sánchez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| | - Roberto Rivera-Luna
- Subdirección de Hemato-Oncología, Instituto Nacional de Pediatría, Cd. De Mexico, P.O. Box 04530, Mexico.
| |
Collapse
|
34
|
Ramos S, Navarrete-Meneses P, Molina B, Cervantes-Barragán DE, Lozano V, Gallardo E, Marchetti F, Frias S. Genomic chaos in peripheral blood lymphocytes of Hodgkin's lymphoma patients one year after ABVD chemotherapy/radiotherapy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:755-768. [PMID: 30260497 DOI: 10.1002/em.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Hodgkin's lymphoma (HL) is a lymphoid malignancy representing 5% of all cancers in children, 16% in adolescents, and 30-40% of all malignant lymphomas and has a survival rate of ~95% at 10 years. One of the most common treatment schemes uses a cocktail of genotoxic agents including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) with or without radiotherapy. We investigated the occurrence of chromosomal damage in peripheral blood lymphocytes from five patients diagnosed with HL who provided samples before (BT), during chemotherapy (DT) and ~1 year after ABVD chemotherapy/radiotherapy (AT). Five healthy subjects served as controls. Chromosomal abnormalities were evaluated by multicolor fluorescence in situ hybridization. The average frequencies of structural chromosomal aberrations in HL samples were 0.11, 0.22, and 0.96 per cell in BT, DT, and AT samples, respectively. These frequencies were significantly different (P < 0.0001) with respect to control subjects (0.02 per cell). Interestingly, the highest frequency of structural damage, including genomic chaos and nonclonal abnormalities, was observed in the AT samples indicating that new aberrations were continuously produced. Rejoined structural chromosomal aberrations were the most common type of aberrations, although aneuploidies were also significantly increased. Finally, we found several chromosomal abnormalities linked to cancer secondary to treatment in all five HL patients. Our results show that ABVD chemotherapy plus radiotherapy is inducing genomic chaos in vivo; moreover, the persistence of genomic instability in the hematopoietic stem cells from HL patients may play a role in the occurrence of secondary cancer that is observed in 5-20% of HL patients. Environ. Mol. Mutagen. 59:755-768, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | | | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | | | - Valentn Lozano
- Departamento de Hematología, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Emma Gallardo
- Servicio de Hematología, Hospital General de México, Ciudad de México, Mexico
| | | | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
35
|
Uryvaeva IV, Mikaelyan AS, Dashenkova NO, Marshak TL. Chromothripsis in Hepatocarcinogenesis: The Role of a Micronuclear Aberration and Polyploidy. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018050163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 2018; 11:31. [PMID: 29760781 PMCID: PMC5946397 DOI: 10.1186/s13039-018-0376-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. RESULTS Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. CONCLUSION Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
37
|
Heng HH, Horne SD, Chaudhry S, Regan SM, Liu G, Abdallah BY, Ye CJ. A Postgenomic Perspective on Molecular Cytogenetics. Curr Genomics 2018; 19:227-239. [PMID: 29606910 PMCID: PMC5850511 DOI: 10.2174/1389202918666170717145716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The postgenomic era is featured by massive data collection and analyses from various large scale-omics studies. Despite the promising capability of systems biology and bioinformatics to handle large data sets, data interpretation, especially the translation of -omics data into clinical implications, has been challenging. DISCUSSION In this perspective, some important conceptual and technological limitations of current systems biology are discussed in the context of the ultimate importance of the genome beyond the collection of all genes. Following a brief summary of the contributions of molecular cytogenetics/cytogenomics in the pre- and post-genomic eras, new challenges for postgenomic research are discussed. Such discussion leads to a call to search for a new conceptual framework and holistic methodologies. CONCLUSION Throughout this synthesis, the genome theory of somatic cell evolution is highlighted in contrast to gene theory, which ignores the karyotype-mediated higher level of genetic information. Since "system inheritance" is defined by the genome context (gene content and genomic topology) while "parts inheritance" is defined by genes/epigenes, molecular cytogenetics and cytogenomics (which directly study genome structure, function, alteration and evolution) will play important roles in this postgenomic era.
Collapse
Affiliation(s)
- Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven D. Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sarah M. Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Batoul Y. Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine J. Ye
- The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Liu G, Ye CJ, Chowdhury SK, Abdallah BY, Horne SD, Nichols D, Heng HH. Detecting Chromosome Condensation Defects in Gulf War Illness Patients. Curr Genomics 2018; 19:200-206. [PMID: 29606907 PMCID: PMC5850508 DOI: 10.2174/1389202918666170705150819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Gulf War Illness (GWI) impacts 25-30% of gulf war veterans. Due to its heterogeneity in both etiology and symptoms, it has been challenging to establish the commonly accepted case definition for GWI. Equally challenging are the understanding of the general mechanism of GWI and the development of biomarkers useful for its clinical diagnosis and treatment. Objective: We have observed that chromosome condensation defects can be detected in GWI patients. To document this phenomenon in GWI, we aim to describe and compare different types of chromosomal condensation defects in GWI patients, if possible. Since chromosomal condensation represents an important step of ensuring genome integrity, condensation defects could be used as a potential biomarker of GWI. Methods: Lymphocytes from GWI patients have been used for short term cell culture followed by chromosome slide preparation. Both Giemsa staining and multiple color spectral karyotyping (SKY) were applied to study chromosome aberrations, focusing on different types of condensation defects. Results: At least three subtypes of Defective Mitotic Figures (DMFs) were observed. Some individuals displayed elevated frequencies of DMFs. Another type of condensation defect identified as sticky chromosomes were also observed. Conclusion: Various types of condensation defects have been observed in GWI patients. It is rather surprising that some GWI patients exhibited a high level of chromosomal condensation defects. Previously, the elevated frequency of DMFs was only observed in cancer patients. Since chromosome condensation can be linked to other types of chromosome aberrations, as well as cellular stress conditions, the detailed mechanism and clinical impact should be further studied, especially with increased sample size.
Collapse
Affiliation(s)
- Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109, USA
| | | | - Batoul Y Abdallah
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Steven D Horne
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Denise Nichols
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI48201, USA.,The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109, USA.,John D. Dingell VA Medical Center, Detroit, MI48201, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI48201, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI48201, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI48201, USA
| |
Collapse
|
39
|
Abstract
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
40
|
Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers (Basel) 2017; 10:cancers10010004. [PMID: 29283387 PMCID: PMC5789354 DOI: 10.3390/cancers10010004] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of death, and despite increased research in recent years, control of advanced-stage disease and optimal therapeutic responses remain elusive. Recent technological improvements have increased our understanding of human cancer as a heterogeneous disease. For instance, four hallmarks of cancer have recently been included, which in addition to being involved in cancer development, could be involved in therapeutic responses and resistance. One of these hallmarks is chromosome instability (CIN), a source of genetic variation in either altered chromosome number or structure. CIN has become a hot topic in recent years, not only for its implications in cancer diagnostics and prognostics, but also for its role in therapeutic responses. Chromosomal alterations are mainly used to determine genetic heterogeneity in tumors, but CIN could also reveal treatment efficacy, as many therapies are based on increasing CIN, which causes aberrant cells to undergo apoptosis. However, it should be noted that contradictory findings on the implications of CIN for the therapeutic response have been reported, with some studies associating high CIN with a better therapeutic response and others associating it with therapeutic resistance. Considering these observations, it is necessary to increase our understanding of the role CIN plays not only in tumor development, but also in therapeutic responses. This review focuses on recent studies that suggest possible mechanisms and consequences of CIN in different disease types, with a primary focus on cancer outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Natalia Vargas-Rondón
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia.
| | - Victoria E Villegas
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia.
| |
Collapse
|
41
|
Guja K, Liehr T, Rincic M, Kosyakova N, Hussein Azawi SS. Molecular Cytogenetic Characterization Identified the Murine B-Cell Lymphoma Cell Line A-20 as a Model for Sporadic Burkitt's Lymphoma. J Histochem Cytochem 2017; 65:669-677. [PMID: 28902524 DOI: 10.1369/0022155417731319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Here, we report the first molecular cytogenetic characterization of the BALB/cAnN mouse derived B-cell non-Hodgkin lymphoma (B-cell NHL) cell lines A-20. Even though previously used as a model for testing of, for example, dexametason, up to present, no data in the genetic properties of A-20 were available. The present study closed this gap and provides evidence that A-20 is a model for B-cell NHL subgroup sporadic Burkitt's lymphoma. C-myc oncogene is involved in a translocation and copy number alterations as gain of murine 14q material could be observed. Interestingly, the cell line showed the karyotype 39,X,-X or -Y,t(2;15)(qE5;qD2),del(6)(qB3qC3),del(9)(qA3qA4),dup(14)(qE1qE4) in ~95% of the cells, being exceptionally stable for cell lines being established 38 years ago. Still, ~5% of the cells showed polyploidization followed by chromothripsis. It remains to be determined if this can be observed also in other cell lines, just has not been reported yet, and/or if it is a unique feature of A-20. Overall, finally here, the necessary genetic data to identify A-20 as a model for human sporadic Burkitt's lymphoma are provided.
Collapse
Affiliation(s)
- Karolina Guja
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.,Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Shaymaa S Hussein Azawi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
42
|
New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response. Genes (Basel) 2017; 8:genes8060155. [PMID: 28587191 PMCID: PMC5485519 DOI: 10.3390/genes8060155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers.
Collapse
|
43
|
Heng HH. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract 2017; 23:233-237. [PMID: 27421676 DOI: 10.1111/jep.12598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
Big-data-omics have promised the success of precision medicine. However, most common diseases belong to adaptive systems where the precision is all but difficult to achieve. In this commentary, I propose a heterogeneity-mediated cellular adaptive model to search for the general model of diseases, which also illustrates why in most non-infectious non-Mendelian diseases the involvement of cellular evolution is less predictable when gene profiles are used. This synthesis is based on the following new observations/concepts: 1) the gene only codes "parts inheritance" while the genome codes "system inheritance" or the entire blueprint; 2) the nature of somatic genetic coding is fuzzy rather than precise, and genetic alterations are not just the results of genetic error but are in fact generated from internal adaptive mechanisms in response to environmental dynamics; 3) stress-response is less specific within cellular evolutionary context when compared to known biochemical specificities; and 4) most medical interventions have their unavoidable uncertainties and often can function as negative harmful stresses as trade-offs. The acknowledgment of diseases as adaptive systems calls for the action to integrate genome- (not simply individual gene-) mediated cellular evolution into molecular medicine.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, and Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Abstract
High resolution fiber-Fluorescence in situ hybridization (FISH) is an advanced FISH technology that can effectively bridge the resolution gap between probe hybridizing on DNA molecules and chromosomal regions. Since various types of DNA and chromatin fibers can be generated reflecting different degrees of DNA/chromatin packaging status, fiber-FISH technology has been successfully used in diverse molecular cytogenetic/cytogenomic studies. Following a brief review of this technology, including its major development and increasing applications, typical protocols to generate DNA/chromatin fiber will be described, coupled with rationales, as well as technical tips. These released DNA/chromatin fibers are suitable for an array of cytogenetic/cytogenomic analyses.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3226 Scott Hall, 540 E, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
45
|
Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DCJ, de Jong TV, Halsema N, Kazemier HG, Hoekstra-Wakker K, Bradley A, de Bont ESJM, van den Berg A, Guryev V, Lansdorp PM, Colomé-Tatché M, Foijer F. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol 2016; 17:115. [PMID: 27246460 PMCID: PMC4888588 DOI: 10.1186/s13059-016-0971-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. RESULTS To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. CONCLUSION Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.
Collapse
Affiliation(s)
- Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Aaron Taudt
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mirjam E Belderbos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - David Porubsky
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hinke G Kazemier
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Karina Hoekstra-Wakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Eveline S J M de Bont
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| |
Collapse
|
46
|
Heng HHQ, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 2016; 9:15. [PMID: 26877768 PMCID: PMC4752783 DOI: 10.1186/s13039-016-0223-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Current cytogenetics has largely focused its efforts on the identification of recurrent karyotypic alterations, also known as clonal chromosomal aberrations (CCAs). The rationale of doing so seems simple: recurrent genetic changes are relevant for diseases or specific physiological conditions, while non clonal chromosome aberrations (NCCAs) are insignificant genetic background or noise. However, in reality, the vast majority of chromosomal alterations are NCCAs, and it is challenging to identify commonly shared CCAs in most solid tumors. Furthermore, the karyotype, rather than genes, represents the system inheritance, or blueprint, and each NCCA represents an altered genome system. These realizations underscore the importance of the re-evaluation of NCCAs in cytogenetic analyses. In this concept article, we briefly review the definition of NCCAs, some historical misconceptions about them, and why NCCAs are not insignificant "noise," but rather a highly significant feature of the cellular population for providing genome heterogeneity and complexity, representing one important form of fuzzy inheritance. The frequencies of NCCAs also represent an index to measure both internally- and environmentally-induced genome instability. Additionally, the NCCA/CCA cycle is associated with macro- and micro-cellular evolution. Lastly, elevated NCCAs are observed in many disease/illness conditions. Considering all of these factors, we call for the immediate action of studying and reporting NCCAs. Specifically, effort is needed to characterize and compare different types of NCCAs, to define their baseline in various tissues, to develop methods to access mitotic cells, to re-examine/interpret the NCCAs data, and to develop an NCCA database.
Collapse
Affiliation(s)
- Henry H. Q. Heng
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Department of Pathology, Wayne State University School of Medicine, 3226 Scott Hall, 540 E. Canfield, Detroit, MI 48201 USA
| | - Sarah M. Regan
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118 USA
| | - Guo Liu
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Christine J. Ye
- />The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| |
Collapse
|
47
|
Potapova TA, Unruh JR, Box AC, Bradford WD, Seidel CW, Slaughter BD, Sivagnanam S, Wu Y, Li R. Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software. Biotechniques 2015; 59:335-6, 338, 340-2 passim. [PMID: 26651513 DOI: 10.2144/000114362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022] Open
Abstract
Multispectral karyotyping analyzes all chromosomes in a single cell by labeling them with chromosome-specific probes conjugated to unique combinations of fluorophores. Currently available multispectral karyotyping systems require the purchase of specialized equipment and reagents. However, conventional laser scanning confocal microscopes that are capable of separating multiple overlapping emission spectra through spectral imaging and linear unmixing can be utilized for classifying chromosomes painted with multicolor probes. Here, we generated multicolor chromosome paints from single-sorted human and mouse chromosomes and developed the Karyotype Identification via Spectral Separation (KISS) analysis package, a set of freely available open source ImageJ tools for spectral unmixing and karyotyping. Chromosome spreads painted with our multispectral probe sets can be imaged on widely available spectral laser scanning confocal microscopes and analyzed using our ImageJ tools. Together, our probes and software enable academic labs with access to a laser-scanning spectral microscope to perform multicolor karyotyping in a cost-effective manner.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | | | - Yuping Wu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Rong Li
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS.,Department of Cell Biology, Johns Hopkins University School of Medicine, 855, N. Wolfe Street, 21205, Baltimore, MD
| |
Collapse
|
48
|
Walen KH. Wound Healing Is a First Response in a Cancerous Pathway: Hyperplasia Developments to 4n Cell Cycling in Dysplasia Linked to Rb-Inactivation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.610099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2014; 136:2012-21. [PMID: 24957955 DOI: 10.1002/ijc.29031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumulation drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of cancer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on individual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original estimation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowledge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be summarized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers, including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolutionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of cancer.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|