1
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
2
|
5 ns electric pulses induce Ca 2+-dependent exocytotic release of catecholamine from adrenal chromaffin cells. Bioelectrochemistry 2021; 140:107830. [PMID: 33965669 DOI: 10.1016/j.bioelechem.2021.107830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Previously we reported that adrenal chromaffin cells exposed to a 5 ns, 5 MV/m pulse release the catecholamines norepinephrine (NE) and epinephrine (EPI) in a Ca2+-dependent manner. Here we determined that NE and EPI release increased with pulse number (one versus five and ten pulses at 1 Hz), established that release occurs by exocytosis, and characterized the exocytotic response in real-time. Evidence of an exocytotic mechanism was the appearance of dopamine-β-hydroxylase on the plasma membrane, and the demonstration by total internal reflection fluorescence microscopy studies that a train of five or ten pulses at 1 Hz triggered the release of the fluorescent dye acridine orange from secretory granules. Release events were Ca2+-dependent, longer-lived relative to those evoked by nicotinic receptor stimulation, and occurred with a delay of several seconds despite an immediate rise in Ca2+. In complementary studies, cells labeled with the plasma membrane fluorescent dye FM 1-43 and exposed to a train of ten pulses at 1 Hz underwent Ca2+-dependent increases in FM 1-43 fluorescence indicative of granule fusion with the plasma membrane due to exocytosis. These results demonstrate the effectiveness of ultrashort electric pulses for stimulating catecholamine release, signifying their promise as a novel electrostimulation modality for neurosecretion.
Collapse
|
3
|
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:347-368. [PMID: 31565000 PMCID: PMC6746309 DOI: 10.2147/mder.s214152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The potential for using non-ionizing electromagnetic fields (EMF; at frequencies from 0 Hz up to the THz range) for medical purposes has been of interest since many decades. A number of established and familiar methods are in use all over the world. This review, however, provides an overview of applications that already play some clinical role or are in earlier stages of development. The covered methods include modalities used for bone healing, cancer treatment, neurological conditions, and diathermy. In addition, certain other potential clinical areas are touched upon. Most of the reviewed technologies deal with therapy, whereas just a few diagnostic approaches are mentioned. None of the discussed methods are having such a strong impact in their field of use that they would be expected to replace conventional methods. Partly this is due to a knowledge base that lacks mechanistic explanations for EMF effects at low-intensity levels, which often are used in the applications. Thus, the possible optimal use of EMF approaches is restricted. Other reasons for the limited impact include a scarcity of well-performed randomized clinical trials that convincingly show the efficacy of the methods and that standardized user protocols are mostly lacking. Presently, it seems that some EMF-based methods can have a niche role in treatment and diagnostics of certain conditions, mostly as a complement to or in combination with other, more established, methods. Further development and a stronger impact of these technologies need a better understanding of the interaction mechanisms between EMF and biological systems at lower intensity levels. The importance of the different physical parameters of the EMF exposure needs also further investigations.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| | - Myrtill Simkó
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| |
Collapse
|
4
|
Flemming D, Kimmerle J, Cress U, Sinatra GM. Research is Tentative, but That’s Okay: Overcoming Misconceptions about Scientific Tentativeness through Refutation Texts. DISCOURSE PROCESSES 2019. [DOI: 10.1080/0163853x.2019.1629805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Danny Flemming
- Knowledge Construction Lab, Leibniz-Institut fuer Wissensmedien
| | - Joachim Kimmerle
- Knowledge Construction Lab, Leibniz-Institut fuer Wissensmedien
- Department of Psychology, Eberhard Karls University
| | - Ulrike Cress
- Knowledge Construction Lab, Leibniz-Institut fuer Wissensmedien
- Department of Psychology, Eberhard Karls University
| | - Gale M. Sinatra
- Rossier School of Education, University of Southern California
| |
Collapse
|
5
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019; 9:2124. [PMID: 30765724 PMCID: PMC6375985 DOI: 10.1038/s41598-018-38099-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019. [PMID: 30765724 DOI: 10.1038/s41598-01838099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
7
|
Krukiewicz K, Chudy M, Gregg S, Biggs MJP. The Synergistic Effects of Gold Particles and Dexamethasone on the Electrochemical and Biological Performance of PEDOT Neural Interfaces. Polymers (Basel) 2019; 11:E67. [PMID: 30960051 PMCID: PMC6402010 DOI: 10.3390/polym11010067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Although neural devices have shown efficacy in the treatment of neurodegenerative diseases, their functionality is limited by the inflammatory state and glial scar formation associated with chronic implantation. The aim of this study was to investigate neural electrode performance following functionalization with an anti-inflammatory coating derived from a conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) matrix doped with dexamethasone (Dex) and decorated with Au particles. Pristine PEDOT, PEDOT-Dex and their gold-decorated analogues (PEDOT/Au and PEDOT-Dex/Au) were formulated by electrochemical deposition and characterized with respect to electrode electrochemical properties, surface morphology and biocompatibility towards primary neural cells. Through a process of gold deposition, it was possible to eliminate the initial burst release observed in PEDOT-Dex and maintain a stable, stepwise increase in Dex elution over 7 days. The released amounts of Dex exceeded the concentrations considered as therapeutic for both PEDOT-Dex and PEDOT-Dex/Au. The results clearly indicated that the presence of either Dex or Au particles facilitated the outgrowth of neurites. Finally, it was shown that the application of composite materials, such as PEDOT-Dex/Au, is an efficient way to improve the efficacy of neural interfaces in vitro.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Centre for Research in Medical Devices, National University of Ireland Galway, Newcastle Road, H91 W2TY Galway, Ireland.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland.
| | - Magdalena Chudy
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland.
| | - Stephen Gregg
- Centre for Research in Medical Devices, National University of Ireland Galway, Newcastle Road, H91 W2TY Galway, Ireland.
| | - Manus J P Biggs
- Centre for Research in Medical Devices, National University of Ireland Galway, Newcastle Road, H91 W2TY Galway, Ireland.
| |
Collapse
|
8
|
Affiliation(s)
- Shama Kanodia
- 1 Department of Psychiatry Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Saibal Guha
- 2 Department of Psychiatry Belmont Private Hospital, Carina Heights, QLD, Australia
| |
Collapse
|
9
|
Jáuregui-Lobera I, Martínez-Quiñones JV. Neuromodulation in eating disorders and obesity: a promising way of treatment? Neuropsychiatr Dis Treat 2018; 14:2817-2835. [PMID: 30464467 PMCID: PMC6208872 DOI: 10.2147/ndt.s180231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuromodulation can affect the functioning of the central nervous system (CNS), and emotional/eating behavior is an exciting facet of that functioning. Therefore, it would be possible to offer an alternative (or complement) treatment to psychotropic medications and different psychological and nutritional approaches to both eating disorders (EDs) and obesity. Although there are a number of publications in these areas, a systematic review has not been conducted to date. Abstracts, letters, conference reports, dissertations, and reviews were excluded. Clinical trials and controlled human clinical trials were filtered and included in this study. Articles included were based on the population suffering from anorexia nervosa, bulimia nervosa, binge ED, overweight, and obesity. No restrictions were placed on the sample size. Only trials investigating the effect of neuromodulation by means of deep brain stimulation (DBS), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS) were included. The following databases were used to conduct the search: MEDLINE/ PubMed, PsycINFO, PsycArticles, and Cochrane (Search Trials, CENTRAL). Study selection was performed following the PRISMA process (PRISMA 2009 Checklist). The total number of participants in all the trials was 562 (DBS, 25; tDCS, 138; TMS, 399; range, 3-90; median, 23.5). As a result, 50% of the studies had samples of between 14 and 38 participants. Neuro-modulation in ED seems to have certain clinical potential, and therefore, this is a promising area for further research. Developments in ED neuromodulation will be linked to neuroimaging to identify potential stimulation targets and possible biomarkers of treatment response. To date, TMS and/or direct current stimulation (DCS) is not the first-line treatment yet, but it could become a preferred option of treatment in the future. Further studies should avoid small sample sizes and the use of different methodologies. Currently, neuromodulation techniques are in the experimental phase, and they are not an evidence-based treatment for ED.
Collapse
Affiliation(s)
- Ignacio Jáuregui-Lobera
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Seville, Spain,
| | - José V Martínez-Quiñones
- Department of Neurosurgery, Mutua de Accidentes de Zaragoza (Servicio de Neurocirugía), Zaragoza, Spain
| |
Collapse
|
10
|
Zech N, Seemann M, Seyfried T, Lange M, Schlaier J, Hansen E. Deep Brain Stimulation Surgery without Sedation. Stereotact Funct Neurosurg 2018; 96:370-378. [DOI: 10.1159/000494803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Sedatives and opioids used during deep brain stimulation (DBS) surgery interfere with optimal target localization and add to side effects and risks, and thus should be minimized. <b><i>Objective:</i></b> To retrospectively test the actual need for sedatives and opioids when cranial nerve blocks and specific therapeutic communication are applied. <b><i>Methods:</i></b> In a case series, 64 consecutive patients treated with a strong rapport, constant contact, non-verbal communication and hypnotic suggestions, such as dissociation to a “safe place,” reframing of disturbing noises and self-confirmation, were compared to 22 preceding patients under standard general anaesthesia or conscious sedation. <b><i>Results:</i></b> With introduction of the protocol the need for sedation dropped from 100% in the control group to 5%, and from a mean dose of 444 mg to 40 mg in 3 patients. Remifentanil originally used in 100% of the patients in an average dose of 813 µg was reduced in the study group to 104 µg in 31% of patients. There were no haemodynamic reactions indicative of stress during incision, trepanation, electrode insertion and closure. <b><i>Conclusion:</i></b> With adequate therapeutic communication, patients do not require sedation and no or only low-dose opioid treatment during DBS surgery, leaving patients fully awake and competent during surgery and testing.
Collapse
|
11
|
Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurg Rev 2017; 42:227-241. [PMID: 29063229 DOI: 10.1007/s10143-017-0920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Collapse
|
12
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
13
|
McElcheran CE, Yang B, Anderson KJ, Golestanirad L, Graham SJ. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model. Magn Reson Med 2017; 78:2406-2415. [DOI: 10.1002/mrm.26622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Clare E. McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Kevan J.T. Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Laleh Golestanirad
- Massachusetts General Hospital, Harvard Medical School; Charlestown Massachusetts USA
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| |
Collapse
|
14
|
Machado ARP, Zaidan HC, Paixão APS, Cavalheiro GL, Oliveira FHM, Júnior JAFB, Naves K, Pereira AA, Pereira JM, Pouratian N, Zhuo X, O'Keeffe A, Sharim J, Bordelon Y, Yang L, Vieira MF, Andrade AO. Feature visualization and classification for the discrimination between individuals with Parkinson's disease under levodopa and DBS treatments. Biomed Eng Online 2016; 15:169. [PMID: 28038673 PMCID: PMC5203727 DOI: 10.1186/s12938-016-0290-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
Background Over the years, a number of distinct treatments have been adopted for the management of the motor symptoms of Parkinson’s disease (PD), including pharmacologic therapies and deep brain stimulation (DBS). Efficacy is most often evaluated by subjective assessments, which are prone to error and dependent on the experience of the examiner. Our goal was to identify an objective means of assessing response to therapy. Methods In this study, we employed objective analyses in order to visualize and identify differences between three groups: healthy control (N = 10), subjects with PD treated with DBS (N = 12), and subjects with PD treated with levodopa (N = 16). Subjects were assessed during execution of three dynamic tasks (finger taps, finger to nose, supination and pronation) and a static task (extended arm with no active movement). Measurements were acquired with two pairs of inertial and electromyographic sensors. Feature extraction was applied to estimate the relevant information from the data after which the high-dimensional feature space was reduced to a two-dimensional space using the nonlinear Sammon’s map. Non-parametric analysis of variance was employed for the verification of relevant statistical differences among the groups (p < 0.05). In addition, K-fold cross-validation for discriminant analysis based on Gaussian Finite Mixture Modeling was employed for data classification. Results The results showed visual and statistical differences for all groups and conditions (i.e., static and dynamic tasks). The employed methods were successful for the discrimination of the groups. Classification accuracy was 81 ± 6% (mean ± standard deviation) and 71 ± 8%, for training and test groups respectively. Conclusions This research showed the discrimination between healthy and diseased groups conditions. The methods were also able to discriminate individuals with PD treated with DBS and levodopa. These methods enable objective characterization and visualization of features extracted from inertial and electromyographic sensors for different groups.
Collapse
Affiliation(s)
- Alessandro R P Machado
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil.
| | - Hudson Capanema Zaidan
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Paula Souza Paixão
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme Lopes Cavalheiro
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Henrique Monteiro Oliveira
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - João Areis Ferreira Barbosa Júnior
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Kheline Naves
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | - Adriano Alves Pereira
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Xiaoyi Zhuo
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Andrew O'Keeffe
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Justin Sharim
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, USA
| | - Laurice Yang
- Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Marcus Fraga Vieira
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| | - Adriano O Andrade
- Postgraduate Program in Electrical and Biomedical Engineering, Faculty of Electrical Engineering, Centre for Innovation and Technology Assessment in Health (NIATS), Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
15
|
Peters SK, Dunlop K, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front Syst Neurosci 2016; 10:104. [PMID: 28082874 PMCID: PMC5187454 DOI: 10.3389/fnsys.2016.00104] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Sarah K Peters
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Katharine Dunlop
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada; Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada; MRI-Guided rTMS Clinic, University Health NetworkToronto, ON, Canada
| |
Collapse
|
16
|
De Rosa A, Tessitore A, Bilo L, Peluso S, De Michele G. Infusion treatments and deep brain stimulation in Parkinson's Disease: The role of nursing. Geriatr Nurs 2016; 37:434-439. [PMID: 27444659 DOI: 10.1016/j.gerinurse.2016.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/27/2022]
Abstract
Parkinson's Disease (PD) represents one of the most common neurodegenerative disorders in the elderly. PD is caused by a loss of dopaminergic cells in the substantia nigra pars compacta. The motor cardinal signs include a resting tremor, bradykinesia, rigidity and postural reflex impairment. Although levodopa represents the gold standard also in the advanced stage of the disease, over the years most patients develop disabling motor fluctuations, dyskinesias, and non-motor complications, which are difficult to manage. At this stage, more complex treatment approaches, such as infusion therapies (subcutaneous apomorphine and intraduodenal levodopa) and deep brain stimulation of the subthalamic nucleus or the globus pallidus internus should be considered. All three procedures require careful selection and good compliance of candidate patients. In particular, infusional therapies need adequate training both of caregivers and nursing staff in order to assist clinicians in the management of patients in the complicated stages of disease.
Collapse
Affiliation(s)
- Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy.
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Leonilda Bilo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Silvio Peluso
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
17
|
Magdaleno-Madrigal VM, Pantoja-Jiménez CR, Bazaldúa A, Fernández-Mas R, Almazán-Alvarado S, Bolaños-Alejos F, Ortíz-López L, Ramírez-Rodriguez GB. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis. Behav Brain Res 2016; 314:65-76. [PMID: 27435420 DOI: 10.1016/j.bbr.2016.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022]
Abstract
Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression.
Collapse
Affiliation(s)
- Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico; Carrera de Psicología, FES Zaragoza-UNAM Facultad de Estudios Superiores Zaragoza-UNAM, Av. Guelatao 66, Col. Ejército de Oriente Del. Iztapalapa, 09230 Ciudad de México, Mexico.
| | - Christopher Rodrigo Pantoja-Jiménez
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Adrián Bazaldúa
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Rodrigo Fernández-Mas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Salvador Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370 Ciudad de México, Mexico
| | - Fernanda Bolaños-Alejos
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| | - Leonardo Ortíz-López
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| | - Gerardo Bernabé Ramírez-Rodriguez
- Laboratorio de Neurogénesis. Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz México-Xochimilco No. 101, Col. San Lorenzo Huipulco Del. Tlalpan, 14370, Ciudad de México, Mexico
| |
Collapse
|
18
|
Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:278-285. [DOI: 10.1016/j.msec.2016.03.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022]
|
19
|
Abstract
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
Collapse
Affiliation(s)
- Omer Naor
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology Haifa 32000, Israel. The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | | | | |
Collapse
|
20
|
Optimized depiction of thalamic substructures with a combination of T1-MPRAGE and phase: MPRAGE. Clin Neuroradiol 2016; 27:511-518. [PMID: 27119153 DOI: 10.1007/s00062-016-0513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Deep brain stimulation has received increasing attention in recent years as a treatment option for many neurological diseases. The thalamic nuclei in particular are widely used as targets. The goal of the present work was to evaluate whether the combination of two known MRI techniques can lead to identification of thalamic substructures at 3 T. METHODS In nine healthy subjects, an optimized 3D magnetization prepared rapid acquisition GRE (MPRAGE) protocol and phase data from a 3D GRE sequence were combined to form a new contrast (MPRAGE*). The depiction of 13 thalamic substructures was rated by two independent raters in the MPRAGE, phase and MPRAGE* image on a five-point scale. Inter-rater reliability was scored with a weighted Cohen's kappa. RESULTS Inter-rater reliability was good, with the average weighted κ = 0.68. No significant difference between the depiction of the thalamic substructures between phase and MPRAGE images could be found. MPRAGE* showed a significantly better depiction of thalamic substructures in comparison to MPRAGE and phase (p < 0.001 for both cases). CONCLUSION The combination of an optimized MPRAGE protocol with phase data to form an MPRAGE* image leads to a further improvement in the depiction of thalamic substructures, which enables the depiction of thalamic nuclei at 3 T.
Collapse
|
21
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Chunling W, Zheng X. Review on clinical update of essential tremor. Neurol Sci 2016; 37:495-502. [DOI: 10.1007/s10072-015-2380-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023]
|
23
|
Insola A, Padua L, Mazzone P, Valeriani M. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement. Clin Neurophysiol 2015; 126:2366-75. [DOI: 10.1016/j.clinph.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
24
|
MRI Guided Focused Ultrasound Thalamotomy for Moderate-to-Severe Tremor in Parkinson's Disease. PARKINSONS DISEASE 2015; 2015:219149. [PMID: 26421209 PMCID: PMC4572440 DOI: 10.1155/2015/219149] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 01/20/2023]
Abstract
Background. Thalamotomy is effective in alleviating tremor in Parkinson's disease (PD). Methods. Seven PD patients, mean age 59.4 ± 9.8 years (range, 46-74) with a mean disease duration of 5.4 ± 2.8 years (range, 2-10) suffering from severe refractory tremor, underwent ventral intermediate nucleus thalamotomy using MRI guided focused ultrasound (MRgFUS), an innovative technology that enables noninvasive surgery. Results. Tremor stopped in the contralateral upper extremity in all patients immediately following treatment. Total UPDRS decreased from 37.4 ± 12.2 to 18.8 ± 11.1 (p = 0.007) and PDQ-39 decreased from 42.3 ± 16.4 to 21.6 ± 10.8 (p = 0.008) following MRgFUS. These effects were sustained (mean follow-up 7.3 months). Adverse events during MRgFUS included headache (n = 3), dizziness (n = 2), vertigo (n = 4), and lip paresthesia (n = 1) and following MRgFUS were hypogeusia (n = 1), unsteady feeling when walking (n = 1, resolved), and disturbance when walking tandem (n = 1, resolved). Conclusions. Thalamotomy using MRgFUS is safe and effective in PD patients. Large randomized studies are needed to assess prolonged efficacy and safety.
Collapse
|
25
|
Evans MC, Clark VW, Manning PJ, De Ridder D, Reynolds JN. Optimizing Deep Brain Stimulation of the Nucleus Accumbens in a Reward Preference Rat Model. Neuromodulation 2015; 18:531-40; discussion 540-1. [DOI: 10.1111/ner.12339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/01/2015] [Accepted: 06/29/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Maggie C. Evans
- Department of Anatomy; Brain Health Research Centre; School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Vincent W. Clark
- Department of Anatomy; Brain Health Research Centre; School of Medical Sciences; University of Otago; Dunedin New Zealand
- Department of Surgical Sciences; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Patrick J. Manning
- Department of Medicine; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - John N.J. Reynolds
- Department of Anatomy; Brain Health Research Centre; School of Medical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
26
|
Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging. PLoS One 2015; 10:e0134379. [PMID: 26237218 PMCID: PMC4523176 DOI: 10.1371/journal.pone.0134379] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022] Open
Abstract
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.
Collapse
|
27
|
Moutaud B. Neuromodulation Technologies and the Regulation of Forms of Life: Exploring, Treating, Enhancing. Med Anthropol 2015. [DOI: 10.1080/01459740.2015.1055355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Hayes DJ, Lipsman N, Chen DQ, Woodside DB, Davis KD, Lozano AM, Hodaie M. Subcallosal Cingulate Connectivity in Anorexia Nervosa Patients Differs From Healthy Controls: A Multi-tensor Tractography Study. Brain Stimul 2015; 8:758-68. [PMID: 26073966 DOI: 10.1016/j.brs.2015.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anorexia nervosa is characterized by extreme low body weight and alterations in affective processing. The subcallosal cingulate regulates affect through wide-spread white matter connections and is implicated in the pathophysiology of anorexia nervosa. OBJECTIVES We examined whether those with treatment refractory anorexia nervosa undergoing deep brain stimulation (DBS) of the subcallosal white matter (SCC) show: (1) altered anatomical SCC connectivity compared to healthy controls, (2) white matter microstructural changes, and (3) microstructural changes associated with clinically-measured affect. METHODS Diffusion magnetic resonance imaging (dMRI) and deterministic multi-tensor tractography were used to compare anatomical connectivity and microstructure in SCC-associated white matter tracts. Eight women with treatment-refractory anorexia nervosa were compared to 8 age- and sex-matched healthy controls. Anorexia nervosa patients also completed affect-related clinical assessments presurgically and 12 months post-surgery. RESULTS (1) Higher (e.g., left parieto-occipital cortices) and lower (e.g., thalamus) connectivity in those with anorexia nervosa compared to controls. (2) Decreases in fractional anisotropy, and alterations in axial and radial diffusivities, in the left fornix crus, anterior limb of the internal capsule (ALIC), right anterior cingulum and left inferior fronto-occipital fasciculus. (3) Correlations between dMRI metrics and clinical assessments, such as low pre-surgical left fornix and right ALIC fractional anisotropy being related to post-DBS improvements in quality-of-life and depressive symptoms, respectively. CONCLUSIONS We identified widely-distributed differences in SCC connectivity in anorexia nervosa patients consistent with heterogenous clinical disruptions, although these results should be considered with caution given the low number of subjects. Future studies should further explore the use of affect-related connectivity and behavioral assessments to assist with DBS target selection and treatment outcome.
Collapse
Affiliation(s)
- Dave J Hayes
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Nir Lipsman
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - David Q Chen
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - D Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Karen D Davis
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Andres M Lozano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Division of Brain, Imaging and Behaviour - Systems Neuroscience, University Health Network, Toronto, Ontario M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
29
|
Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WSJ, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 2015; 58:186-210. [PMID: 25684727 DOI: 10.1016/j.neubiorev.2015.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Suelen L Boschen
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Charles D Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
30
|
|